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The MeV range – A Messenger for Everything
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Cosmic-Ray De-Excitation Lines
Questions: 	 1) How does particle acceleration work?

	 	 	 2) What are the abundances in the ISM / SNR / CSM?

	 	 	 3) What is the low-energy cosmic-ray spectrum?

?

 ?

  ?

Stone+2013

Current 3σ limit

Milky Way

Bulge


Siegert2019

Weinberger2021


Cas A

Hillas+2006
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The Milky Way in MeV Gamma-Rays

Thomas Siegert, MeV–PeV Frontiers, Tokyo, Japan, 17.12.2025 4

Siegert+2022 
Berteaud+2022
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Scattering

Unresolved 
Point 

Sources

Nuclear 
Decay Lines 
26Al, 60Fe, …

Positronium 
511 keV + 
ortho-Ps
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Data Points
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Components
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The “COMPTEL Bump”
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Search for positron annihilation in flight:

➡ Positron sources (injection energy)

➡ Dark matter?

Strong+2005Strong+2011

Bouchet+2011

IC (2x e-)
IC (optical)

IC (IR)
IC (CMB)

Bremsstrahlung

π0 decay

Until ~2013

Sizun+2006

Beacom+2006

“COMPTEL

Bump”???



SPI Spatial Fit - Inverse Compton
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Background-only

residuals

Bisschoff+2019

(Incl. Voyager data)

GALPROP (v56)

Spatial Models


Testing

systematic


flux variations

δ1 = 0

(low rigidities)

ISRF(opt) x 10

(central star light)

z = 8 kpc

(halo size / diffusion)

δ1 = δ2 = 0.5

(secondary/primary)



SPI Spectral Modelling
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δ1 = δ2 = 0.5:

secondary/primary important in 0.5–8 MeV


ISRF(opt.) x 10:

Too much, too steep


δ1 = 0:

Too shallow, no turn-over

GALPROP (v56)

Spectral Models

Comparison to

COMPTEL

Power-law: C0(E/MeV)α


C0 = (3.1±0.3) x 10-6 ph/cm2/s/keV/sr

α = -1.39±0.09

Cut-off power-law: C0(E/MeV)αexp(-E/EC)

α = -0.95±0.16


EC = 4.9±1.4 MeV (Bouchet+2011: 4.0±1.8 MeV)



Modelling the Galaxy
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Inverse Compton Scattering

The continuum is not(!) a power-law! 
There is structure in the spectrum!

This is merely a 
tangent spectrum!



Modelling the Galaxy
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[ Electron 
and ion


densities]
Bremsstrahlung

The continuum is not(!) a power-law! 
There is structure in the spectrum!

This is merely a 
tangent spectrum!



Modelling the Galaxy
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Detected High-Energy Components

Some gamma-ray lines peak out: 
511 keV, 60Fe (1173, 1332 keV), 26Al (1809 keV)

About ~25 “good” data points between 50 and 8000 keV
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Modelling the Galaxy
Missing Components

Low-Energy Cosmic-Ray De-Excitation Lines

LECR gamma-ray lines: 
12C (4439 keV), 
16O (6129 keV)
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Modelling the MeV Galaxy
Low-Energy Cosmic-Ray De-Excitation Lines

Pros/Cons:

- We have never detected any (only for Solar flares: same mechanism)

- They are at the energy boundaries of typical MeV telescopes (small effective area)

+ There are many of them (look for cumulative effect, not individual lines)

+ They should appear everywhere, plus localised (diffuse ISM, SNRs)



Calculating the LECR Gamma-Rays
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Abundances in ISM

Solar abundance [Lodders 2010]


& Metallicity x2

Hydrogen column density

NH = 2 × 1022 cm–2


(Roughly reproducing the  
diffuse GeV gamma-rays)

Cross section 

estimated with TALYS


[ver. 2.0; Koning+2023]

Cosmic Ray spectrum

Test with Broken PL & “Carrot” models


adopted from e.g. Indriolo+2009

De-excitation line flux 
(approx.)


[ph/cm2/s/sr]

Approximations in 2D (projected column densities)

Tomohiko Oka (JMU) et al. 
in prep. (2026) 
 
Then complete 3D modelling!



Calculating the LECR Gamma-Rays
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Abundances in ISM

Solar abundance [Lodders 2010]


& Metallicity x2

Abundances in the ISM (may vary more then 1 oom!)

Tomohiko Oka (JMU) et al. 
in prep. (2026) 
 
Then complete 3D modelling!

Refer to Lodders (2010)



Calculating the LECR Gamma-Rays
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LECR spectrum (the thing we want to know)

Tomohiko Oka (JMU) et al. 
in prep. (2026) 
 
Then complete 3D modelling!

Cosmic Ray spectrum

Test with Broken PL & “Carrot” models


adopted from e.g. Indriolo+2009

Broken PL model

slow = +1.0 – –3.0



Calculating the LECR Gamma-Rays
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Tomohiko Oka (JMU) et al. 
in prep. (2026) 
 
Then complete 3D modelling!

Cosmic Ray spectrum

Test with Broken PL & “Carrot” models


adopted from e.g. Indriolo+2009

Carrot model

α = –2.7 – –5.0 

f = 0.01–0.1

LECR spectrum (the thing we want to know)



Calculating the LECR Gamma-Rays
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Tomohiko Oka (JMU) et al. 
in prep. (2026) 
 
Then complete 3D modelling!

Nuclear Excitation Cross Sections (TALYS code)

Cross section 

estimated with TALYS


[ver. 2.0; Koning+2023]

For simplicity of illustration: 
Use max cross section 

at mean energy: 
12C: 10 MeV

16O: 20 MeV



What does it help to measure LECR lines?
LECR lines step-by-step: Step 1: Varying the total power P


- CR proton spectrum:  Total Power: 


- Only 12C in the ISM: Strongest line 4.439 MeV

➡ Get P from one measured line.

d N
dE

= P ⋅
α + 2

Eα+2
max − Eα+2

min
Eα ∫

Emax

Emin

d N
dE

E dE = P
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α = 1.5 = const.
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What does it help to measure LECR lines?
LECR lines step-by-step: Step 2: Varying the index α


- CR proton spectrum:  Total Power: 


- Only 12C in the ISM: Strongest line 4.439 MeV

➡ But P is degenerate with α.

d N
dE

= P ⋅
α + 2

Eα+2
max − Eα+2

min
Eα ∫

Emax

Emin

d N
dE

E dE = P

P = const.
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What does it help to measure LECR lines?
LECR lines step-by-step: Step 3: Adding other elements


- CR proton spectrum:  Total Power: 


- 12C & 16O in the ISM: Strongest lines 4.439, 6.129 MeV

➡ Get α/P from only two(!) measured lines!

d N
dE

= P ⋅
α + 2

Eα+2
max − Eα+2

min
Eα ∫

Emax

Emin

d N
dE

E dE = P

P = const.



LECR lines step-by-step: Step 5: Add more lines / elements


- CR proton spectrum:  Total Power: 


- All elements in the ISM: many many lines

➡ Get α and(!) P from three+ measured lines! (+ LECR shape!)

d N
dE

= P ⋅
α + 2

Eα+2
max − Eα+2

min
Eα ∫

Emax

Emin

d N
dE

E dE = P
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What does it help to measure LECR lines?

Oka+2026 
(in prep.)
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What does it help to measure LECR lines?
LECR lines step-by-step: Step 5: Add more lines / elements


- CR proton spectrum:  Total Power: 


- All elements in the ISM: many maye lines

➡ Get α and(!) P from three+ measured lines! (+ LECR shape!)

d N
dE

= P ⋅
α + 2

Eα+2
max − Eα+2

min
Eα ∫

Emax

Emin

d N
dE

E dE = P

Oka+2026 
(in prep.)
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What does it help to measure LECR lines?

Oka+2026 
(in prep.)

LECR lines step-by-step: Step 6: Carefully check TALYS


- TALYS does not check if line is forbidden


- 16O L=1–0 is an E0 transition (no gamma-rays!)


- 16O L=1–0 is internal pair creation (IPC: e+/e- pair created!)


- 16O*(6049) is not a real γ-ray, but leads to 2.5 MeV positrons



Line flux ratios for strongest lines
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What does it help to measure LECR lines?



Supernovae: Timescales
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Boggs+2015, 44Ti

Non-gamma-ray observations

Gamma-ray observations and modelling

<107 s

Day -20–50 Day <5000

<109 s

Year <1000

<1011 s

Year <107

<1015 s

Summa+2011 12C, 16O, … Bouchet+2015, 26AlThe+2014, 56Ni, 56Co

Explosion Lightcurve Remnant Superbubble

Benhabiles-
Mezhoud+2013



SN Remnants vs. Galactic Diffuse
Pathway to solve the onset of particle acceleration
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Injection at SNRs

Einj ~ Ebreak,SNR

Propagation in ISM

Einj,prop ~ Ebreak,ISM

“Measurements”

SNRs 
= hotspots

Ebreak,SNR ~ 
200 MeV

Ebreak,ISM ~ 
20 MeV

Maxwellian 
+ Tail

Losses 
+ Diffusion

“Inference”

SNR
ISM



Internal Pair Creation: Link to 511 keV
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CR + X → 16O* → e+/e-(5.027/2 MeV) CR + X → 16O* → anything

{forbidden



Injection Problem
- Use positrons as tracers for acceleration


- Similar idea, plus: Annihilation tells us about efficiency


- Expect an annihilation signal for particles that don’t escape
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The Milky Way from Radio to Gamma
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21 cmHα 656 nm

Dust

Free-Free

CO

430 MHz IR Visible

X-ray

1.809 MeV

>100 MeV

> 1GeV

511 keV

Yoneda, 
Siegert, 
Mittal 
2025



The Positron Puzzle
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What do we see?

Where do the 
positrons come from?

Why does it 
look like that?



Positron Sources in Space
Positron production is ubiquitous!
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• Massive stars / Novae / SNe Ia&II

!	Radioactivity from β+-decay


• XRBs / Microquasars

! “Compact γ-ray source”; Jets; …


• Sgr A*

! Past AGN activity; Accretion disk


• Cosmic rays

! p-p collisions: Secondary positrons


• Pulsars

! Magnetic field interactions


• Dark Matter

! Decay; Annihilation; Excitation


• Stars

! Stellar flares; e+-capture


• Your ad here

26Al

44Ti

Cas A

µQs

Fermi 
Bubbles

SN2014J

Sgr A*

DM

56Co

SNe Ia

SNe II

Pulsars

Stars

CRs



   Positron Production Mechanisms
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β+-decay

γγ pair 
production

γ/EM-field

pair production

Dark matter …

… annihilation

… decay

… deexcitation

High-energy 
processes!



SNRs: Injection, Escape, and Annihilation
Time-dependent escape of positrons from SNRs 

as tracers for acceleration
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Phase 
space 

density

Source 
term: 

Q = n(r,t)λF(p)
Annihilation 

term: 
Γ = nX(r,t)σannvAdvection 

term

Adiabatic 
losses: 

compression/ 
expansion Spatial 

diffusion

Reacceleration 
term

Energy 
losses

By measuring the annihilation gamma-rays, 
we find the escaping spectrum



SNRs: Injection, Escape, and Annihilation
Time-dependent escape of positrons from SNRs 

as tracers for acceleration
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Source term:

By measuring the annihilation gamma-rays, 
we find the escaping spectrum

Radioactive 
decay (β+)

Internal pair 
creation (16O*)

Link to 
LECR spectrum

Link to 
nucleosynthesis

Unique 
annihilation 

spectrum



Conclusion / Outlook
Measuring the LECR spectrum in SNRs and ISM will:


+   shed light on injection problem


+   estimate the ionisation rate in the Galaxy


+   have links to the 511 keV positron puzzle


+/- be a major target for COSI and successors


-    require high sensitivity and spectral resolution
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MeV Gamma-Ray Measurements
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Coded-Mask Spectrometer Telescope SPI

Sky

Background

Mask

Detectors

Patterns from the

sky

Patterns from the

background

INTEGRAL

INTErnational

Gamma-Ray

Astrophysics

Laboratory

SPI specs:

Energy range:


0.02–8 MeV 
FWHM: 

2.1 keV @ 511 keV 
Angular res.: 

2.7° resolution 
Line sensitivity (3σ/1Ms):

3·10-5 ph cm-2 s-1 @ 1.8 MeV


Conti. sensitivity (3σ/1Ms): 
2·10-10 erg cm-2 s-1 @ 1 MeV



Massive Star Nucleosynthesis

- 1.2–2.4 MSun of 26Al in the Galaxy


- Star formation rate: 4–8 M☉ yr-1


- 0.3×1043 e+ s-1 along Galactic plane


→ Constrain star formation and 
  nucleosynthesis at the same time
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Milky Way in 26Al from massive star ejecta  (1.809 MeV)

Plüschke+2001

1.809 MeV
Positron!

T1/2 


0.7 Myr

13 yr SPI 
Spectrum

Full sky

Siegert2017

Siegert+2023



Massive Stars: 20 years of SPI
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 Milky Way


• 

• 


• 


• 


 Single Stars and Star Groups

• Reduced explodability for massive stars

• Clustered star formation

• Frequent superbubble merging


 Solar Vicinity

• Large  flux

• Small  flux ratio

• High latitude emission

• Prominent nearby emission

⇒
M(26Al) ≈ 2 M⊙
SFR ≳ 4 M⊙ yr−1

CFR ≳ 0.29 × 10−2 yr−1

SNR = (1.4 ± 1.1) × 10−2 yr−1

⇒

⇒
26Al
60Fe/26Al

?How does nucleosynthesis feedback from massive star groups affect the chemical evolution of 
the Milky Way and the Solar System?

Diehl+2006/2010

Wang+2007/2020

Martin+2009/2012

Kretschmer+2013

Krause+2015/2018

Siegert+2017/2024

Pleintinger+2019/2024

γ2-Velorum

Perseus OB

Milky Way

PSYCO 
model



Life of a Positron in Space
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Positron propagation
Energy

eV

TeV/
GeV/

MeV

keV/

eV

MeV/
keV

Sink distribution

Annihilation

Reaccel-

eration

Thermalised

positron

reservoir

Slowing

down

Escape from Galaxy

Sizun+2006

1-100 MeV

Annihilation in flightPropa-
gation 

through 
ISM

Milne+2001

Trapped e+

Released e+ (3.3%)

Light curves 
of 22 SNe Ia

Escape 
local 

environ
-ment

0 50 100 150
Days after explosion

Christodolou2016; Siegert2017

51
1 

ke
V 

lin
e 

fl
ux

SN 2014J

Annihilationin source

Source distribution

Production



     Positron Annihilation: e+ + e- ≥ 2γ
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- Annihilation in Flight:


	 ! Direct annihilation with Ekin(e±) ≥ 0


	! Ekin(e+) = Ekin(e-) ≈ 0: 511 keV line


	! Ekin(e+) ≠/= Ekin(e-) > 0: continuous spectrum


- Formation of Positronium Atom (Ps):


	 ! Singlet state (S=0): antiparallel spins


	 “Para-Positronium” p-Ps

	 2γ: monoenergetic γ-ray line (511 keV)


	! Triplet state (S=1): parallel spins


	 “Ortho-Positronium” o-Ps 

	 3γ: continuous spectrum

E
kin(e+) = E

kin(e-) ≈ 0

Ekin(e
-) > 0

Ortho-

Positronium

Para-Positronium



      INTEGRAL/SPI 511 keV Portrayal
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The Bulge

Disk Annihilation budget: 3.1×1043 e+ s-1 

GCS

Disk l>0Disk l<0

Bulge:

1.7×1043 e+ s-1 

Galactic 
centre:


0.1×1043 e+ s-1

FWHM: 3.5 keV

E0: 510.6 keV


fPs: 0.7–1.0 

FWHM: 2.6 keV

E0: 511.1 keV

fPs: 1.0

FWHM: 1.6 keV

E0: 511.1 keV


fPs: 0.8– 1.0 

FWHM: 3.1 keV

E0: 511.3 keV

fPs: 0.8–1.0 

Total Milky Way: (4.9±1.7)×1043 e+ s-1 

Siegert+2016a



Compact Objects: Microquasars
Microquasars are Galactic positron sources!


103 – 108 µQs expected in the Milky Way: 
Understanding the “inner engine” of accreting black holes!

Thomas Siegert, MeV–PeV Frontiers, Tokyo, Japan, 17.12.2025 43

V404 Cygni

Siegert+2016b, Nature

γ+γ!e++e-

• e+ annihilated:

	  ≈ 1042 s-1


• Duty cycle:

	  ≈ 10-3


• Escape fraction:

	  ≈ 20%



V404 Cygni

Siegert+2016b

V404 Cygni flaring


Radio emission associated with pair plasma?

Pair-plasma 
annihilation light 

curve in V404 Cygni

Siegert+2016b, Nature

Compact Objects: Microquasars
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Budgeting Galactic Positrons
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Decay, Annihilation, De-excitation
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Serpico &
 H

ooper 2009

GCS

ρ(NFW)2

ρ(NFW)

?

! DM density very similar to 511 keV profile

! Predict coherently primary (prompt), secon-
dary (Inverse Compton, synchrotron), and terti-
ary (positron annihilation) emission for galaxies

𝐹511 ∝ (𝜌𝐷𝑀)𝑛 ?

offset 
peak

Kuhlen+2008
Dark matter simulation

Dwarf 
galaxies


 

DM sub-
haloes

Galactic 
centre


 

DM main halo

Siegert+2016a,c

Dark Matter in the Light of 511 keV
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From Remnants to Superbubbles
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Cas A

Vela SNR

λ Orionis

Wilms2012

Krause+2013

Evolution of Supernova Remnants Hydro-Simulations of Superbubble Phase

SN1987A



What do Line Shapes tell us?

Line shapes trace 
warm and partly 
ionised gas:

- T ≈ 7000-40000 K

- xion ≈ 2-25%

Thomas Siegert, MeV–PeV Frontiers, Tokyo, Japan, 17.12.2025

Guessoum+1991 Prantzos+2011

Cold H2 Cold H Warm 
neutral

Warm 
ionised

Hot 
plasma

Guessoum+2005
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Sources and Sinks
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Boxy Bulge X-Bulge Nuclear Bulge

Inverse

Compton

CO 115 GHz HI 21 cm

NFW γ=1.0 NFW γ=1.2 Fermi

Bubbles

Siegert+2022a


