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Astrophysics with MeV gamma rays

Nucleosynthesis Anti-matter Particle Acceleration
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MeV photons are a direct tracer of the cosmic matter production



The MeV Gap in Gamma-ray Astronomy
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Challenges in MeV gamma-ray observations

Limited Imaging Capabilities A
+ X-rays: focusing mirrors work well ( )
+ GeV gamma-rays: pair conversion tracking Vi

Cumani+19

+ MeV: no efficient focusing currently possible

High Background Environment (S/B < a few %)
+ Cosmic ray interactions in spacecraft/atmosphere
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Current Status achieved by COMPTEL, INTEGRAL and Hitomi/SGD
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COSI: The Compton Spectrometer and Imager

COS] o + An all-sky survey Compton telescope covering 0.2 - 5 MeV
o B 4+ Selected as a NASA SMEX satellite

+ The Critical Design Review (CDR) was successfully passed
+ To be launched by SpaceX Falcon 9 in the summer of 2027
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Detector

Matuura+14

3 events detected 128 events detected g15 events detected

Core Institutes (PI: John Tomsick) + Uses a double-sided strip germanium semiconductor detector array
Univ. of California (UCB, UCSD) - MeV gamma-ray observations with an energy resolution of ~1%
Naval Research Laboratory + Instantaneous field-of-view is ~25% of the sky

Goddard S Flight Cent .r o . .
oddard Space Flight tLenter - All-sky monitoring with a uniform exposure
Northrop Grumman




Detector Configuration and Requirement Performance

Germanium double-side strip
detectors in a vacuum cryostat

2x2 x 4layer configuration
8cmx8cmx1.5cm for each %

Active BGO shields Germanium Compton telescope
2.5 cm thickness (side)

E R 0.2-5 MeV
2.4 cm thickness (bottom) NETgy Range

6 keV @ 0.511 MeV
9 keV @ 1.157 MeV

4.1 deg @ 0.511 MeV
2.1 deg @ 1.809 MeV

FoV 25% of the sky

Energy Resolution

Angular Resolution

Front-end

electronics with _
ASIC readout  Background and Transient Observer

- -

Energy Range 350 keV -2 MeV
Energy Resolution 15% @ 662 keV
FoV >60% of the Sky

Radiator for heat . @ Background and
removal Transient Observer

Cryocooler behind it Nal(Tl) scintillator arXiv:2308.12362



Detector Configuration and Requirement Performance

Germanium double-side strip
detectors in a vacuum cryostat

2x2 x 4layer configuration
8cmx8cmx1.5cm for each

Active BGO shields
2.5 cm thickness (side)
2.4 cm thickness (bottom)
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Galactic Latitude [deg]

Operation and sky coverage

Orbital
Plane
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+ A low-earth and near-equatorial orbit (to minimize SAA
passages)

+ The satellite changes its pointing from 20 deg. North to
20 deg. South with 12-hour cycle

+ 25% sky coverage in a single shot
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INTEGRAL/SPI 20- year exposure map
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+ Line sensitivity improved by up to a factor of 10
+ Nearly uniform all-sky exposure



Observation Performance
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Figure 2: Narrow-line (a) and continuum (b) sensitivities based on COSI’s requirements compared to current

and previous instruments. The sensitivity curves are for point sources at the 3-o level during 2 years of COSI

survey time. Due to the all-sky coverage that COSI obtains, these sensitivities will be reached for every

source 1n the sky.
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Primary Science Goals of COSI

(D Uncover the origin of Galactic positrons

+ Imaging 511 keV emission from the Galactic disk and bulge / scale-height measurement
+ Constraints on positron initial energy combining o-Ps and continuum emission
+ identify potential individual positron sources in the Galaxy

(2 Reveal Galactic element formation
+ Fe-60 (1.17,1.33 MeV),Al-26 (1.81 MeV), Ti-44 (1.16 MeV)

@ Gain insight into extreme environments with polarization

@ Probe the physics of multimessenger events

+ To maximize observation time for critical transient events, constant zenith angle
(CZA) observations are scheduled.




A. Uncover the origin of Galactic positrons
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What is the positron source (B+ decaying radio isotopes, X-ray binaries, pulsars, etc.)?
+ Cannot be explained by a single source

Why is the galactic center bright?, bulge/disk luminosity ratio = 1.0
+ Past activity of the galactic center black hole (TotaniO6, Cheng+07)
+ Positron production from annihilation/decay of dark matter (e.g., Finkbeiner+07/)



B. Reveal Galactic element formation

Galactic Center 2.1° (FWHM, req.)

The tracer of the nucleosynthesis in the universe

Fe-60 (1.173&1.335 MeV, T = 2.6x106 yr)
+ Core-collapsed supernovae (CCSNe)

Line gamma-ray imaging with COSI
+ First all-sky image of Fe-60
+ Improved Al-26 image, and

Al-26 (1.809 MeV, T = 7.2x10° yr) correlation with Fe-60
+ massive star wind & CCSNe + Search for Ti-44 sources
Ti-44 (1.157 MeV, T = 60 yr) (Cas A, Tycho, SN1897A, etc.)

+ Young SNe



Connecting Positrons and Nucleosynthesis
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+ 511 keV map was updated using 20-yr INTEGRAL SPI observations (HY+25)

+ 2-sigma excess of 511 keV emission detected above GC (1.4£0.8+0.5 x 10*-5 ph cm™-2 s*-1)
+ Associated with ScoCen OB association (distance ~100 pc,~100 massive stars)?

+ 26Al = e* = 511 keV chain?

+ COSI will test this connection with better sensitivity and uniform exposure



Connecting Positrons and Nucleosynthesis
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+ 511 keV map was updated using 20-yr INTEGRAL SPI observations (HY+25)

+ 2-sigma excess of 511 keV emission detected above GC (1.4£0.8+0.5 x 10*-5 ph cm™-2 s*-1)
+ Associated with ScoCen OB association (distance ~100 pc,~100 massive stars)?

+ 26Al = e* = 511 keV chain?

+ COSI will test this connection with better sensitivity and uniform exposure



Photon/cm?s keV

C. Polarization & D. Multi-messenger events

Polarization measurements with COSI

Azimuthal angle distribution of scattered gamma rays provides

the polarization degree/angle

Measure the polarization of galactic black holes and AGNs with
~20 mCrab, and constrain the emission models (e.g., corona, jet)

]0-2 Cyg X-1 B
SoOft state &4
-3 3
10 «?U 2
-4 0 100 200 300
10 angle (degree)
-
-5 || W ’ -
10 Z4
2,
-6 ) e
10 2 '
00 100 200 300
-7 angle (degree) =R
10

100 1000

e ©OP. Laurent

Minimum Detectable Polarization [ %]

Corrected ASAD with best fit modulation curve

HEH  Lowell, pho, 17
E 0 1500+ i |-{-|OW6 P |-{-||+"
.
¢ 0
0 H HH HH HH
5 1000- -, -
-180-150-120-90 -60-30 0 30 60 90 120 150 180
Angle (degrees)
100: 3| él |§ "fﬁl'l,i' '§| - sl
c0 - U = F ~ S Zi
:  LRLE = LN ol | S
- Ol I 10 el I I | |
60 - 11 1 N COSI | ! !
- I I 30-day | | |
Y T T ——— SRR oo A R S 8
40'_ COSI | I N I ! I
- 24-mohth 1 \J | N I ! I
" Req. lgvell I ol Black Hole Transients
20 __ [ | 11 b - (several in 2 years)
- R I ! S I
i I R Il ! L
0 1 .1 1. Ll N - | L ———
0.01 0.1 1

0.2-0.5 MeV Flux [Crab]



C. Polarization & D. Multi-messenger events

GRB events
+ For a short GRB, its localization <2.5 deg will be reported within 1 hour
+ Constrain GRB models using polarization measurements
+ Goal in 2 years: > 10 short GRBs,> 30 GRB polarization measurements
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C. Polarization & D. Multi-messenger events

Cosmic-ray accelerators - efficient particle acceleration
The characteristic energy of synchrotron radiation is:
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Data analysis framework for COSI

No de facto standard software in MeV astronomy as for now
— Need to establish data analysis framework even for future MeV astronomy

COSltools: a collection of COSI data-analysis tools, documentation, and verification data sets

+ MEGALib: Detector simulation & raw data processing COSI ).
+ cosipy: Python-based high-level data analysis ”“*1[1\)&1
+ Fitting based on the threeML library f cosipy

+ All-sky image reconstruction
ﬁ”ﬁ ‘43;, ML o
The COSI Data Challenge (DC) is currently released annually MEGALib ) B
+ Softwares under development are publicly available with simulation datasets @
+ Balloon data in 2016 (DC1), 3-month observation simulations (DC2, DC3).
+ Provide a broader community with opportunities to get familiar with COSI data
+ https://qgithub.com/cositools/cosi-data-challenges

COSI data challenge


https://github.com/cositools/cosi-data-challenges

All-sky Image Reconstruction Framework

Data = Compton scattering patterns of gamma rays in a detector
All-sky images need to be reconstructed by solving an inverse problem statistically

Detector : : : :
Multi-dimensional positrons .
0. E, response matrix

D 3 t 3 interaction

<—  21d Compton
interaction

All-sky image (model)

Image Deconvolution with Richardson-Lucy Algorithm :
. o . . ImageDeconvolution
+ A type of maximum likelihood estimation that It performs the image deconvolution using the following classes
estimates the flux of each pixel in an image Model
+ lteratively updates the image to obtain an image 2D/3D Image, Spectrum etc.

that maximizes the likelihood @ W& Functional interface

Generic data format compatibility: Applicable to other Datalnterface DeconvolutionAlgorithm
MeV gamma-ray missions, e.g., INTEGRAL/SPI COSI, INTEGRAL, etc. Richardson-Lucy, MREM, MAP, etc.




Image Deconvolution using Bayesian approach

Maximizing the posterior probability
P(mage & bkg | data) & P(data|image & bkg) X P(image & bkg)
| ikelihood Prior probability, e.qg.,
- Image features (smooth, sparse, flat etc.)
- bkg. normalization with uncertainties

Ex.) Imaging of the black hole shadow with EHT (EHT collab. 19)

Implement modern image reconstruction techniques adopted in other fields into COSI
+ Maximize the posterior rather than the likelihood using the RL algorithm (MAP estimation)

D D;loge; - Ze — VNN (4= A — cSPngz

J ke€o

Likelihood Total Squared Variation sparseness prior
(smoothness) (Ikeda+14)



Validation with 3-month COSI Simulation of 511 keV

511 keV thin disk model

L - Simulating the 3-month observations including in-orbit background
components

Sparse modeling suppresses high-latitude noise
Smoothness prior preserves the galactic plane structure
| Within 3 months, global structures across the sky can be identified

MAP estimation Conventional algorithm

0.0198925 0.0001 0.0598458



Towards better background modeling

The low S/B ratio requires detailed understanding of background components
+ Full background simulation compared with 2016 balloon data (Gallego+25)

+ In addition to the main detectors, scintillation detectors (Nal) will be onboard as a student
collaboration project (Gulick+24,25, Nagasawa+2025)

+ BTO will be used as a tracer of background components, which will be incorporated in the
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Beyond COSI

Future
2020 2030 2040

A large-scale mission in

2030s? 2040s?
SMILE,AMEGO, GRAMS, MASS, Me(Gal,

MeVCube (CC), GECCO (CC+coded mask) ...

OSSE

COMPTEL

SMILE-3 (CC)
- Kyoto University, CR group

Continuum Sensitivity (erg cm™ s"l)

COSI - Science balloon flight in 2027
(Reqt. level)
Charged Particle Gamma Ray: Compton Scattering  Pair- Productlon
COSI, NASA (CC) Anoie\\(/\/[ljfli]i/epads § Segmentatlon
(2027-) T E YO S l ' l ' l ' Wi
GRAMS, Japan+US (CC) | \ s
Fermi/LAT - A large-scale mission with liquid argon

“MeV Gap”

- Engineer balloon flight in US in 2026
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Energy (MeV) Sub-GeV/GeV Gamma Rays with Balloon-borne
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Electron-tracking semiconductor Compton telescopes

Semi-conductor detector 20 u

56
55
54 _
53k
52
51
50

— - 49
Strip/Pixel Wire Bonds 48— |
47—
46
45
44

wo/ Electron Trajectory  w/ Electron Trajectory

100 puup————
_70 ’d h‘

1 100

—60

Point

Pixel Y

----------

~ 2100 -50 0 50 100

x [mm] ’

4%3 84 85 86 87 88 89 90 91 92 93 94 95 96 9|7 98 99
A Offset Component

is removed!

in collaboration with Hamamatsu Photonics (Yoneda et al. 2018)

1:galdef ID 54_20::7!3 A W. Sofor;i);;;) éfggé;;;g;:;
i "' "',' u u u :;
scatter £ Fnamentum vector Gaseous TPC + I_?_lxel S(?Iwntll'l- I'gtf)r Arrays
(ex. Si) P Vo A= T <&§ (SMILE project, Pl:A. |
[ e s Tgkada. Kyoto university) ¢
recoiled electron , NY y)
absorber . . h
Galactic diffuse emission
(ex. CdTe) *(Eo,r2)

Energy, MeV

SMILE-2+ : 1 day
30x30x30 cm3 TPC

“Electron-tracking based

. . " SMILE-I : 4 hrs
Compfon lmaglng (e.g. Vetter et al. 2011)

10xT10x10 cm3 TPC

Alice Springs, AU .

SMILE-3 :1 day
[planned]

SMILE-3 (T month) SPB ZOXX

[under consideration]

FulasShims

LLLLLLLLLL

Scintillator
- ' Sanriku, JP
Electron-Tracking Compton Camera




Electron-tracking semiconductor Compton telescopes
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Conclusions

NASAs SMEX mission COSI will be the first dedicated MeV mission in over 20 years, filling the
gap left by COMPTEL and INTEGRAL.

Utilizing a germanium Compton telescope, it achieves both high spectral resolution and a
wide field of view (25% of the sky) in 0.2-5 MeV.
It improves MeV sensitivity by ~10x and opens the window for gamma-ray polarimetry.

With uniform exposure and large FoV, it provides all-sky maps of key nuclear lines and 511
keV and capabilities to observe transient events like GRBs and multimessenger events.

Characterizing the in-orbit background and establishing statistical analysis methods for non-
direct imaging systems will set the standard for MeV astronomy.
COSI’s scientific results and technical verification pave the way for future large-scale missions.



