A New Look at an Old Friend KAERU Conference Kavli IPMU, March 26, 2015

My recent involvement

CEPC-SppC Preliminary Conceptual Design Report

Volume I: Physics and Detector

44

45

46

47

48

49

50

To be available soon. Please check back on April 8th or later.

Volume II: Accelerator

5	New	Physics searches at SPPC A normalized with the searches at SPPC	131
	5.1	Supersymmetry	131
	5.2	New resonances	144
<	5.3	New phenomena of Standard Model physics	155
	5.4	Running Electroweak Couplings as a Probe of New Physics	169
	5.5	B+L violation at high energies	171
	5.6	Higgs and new physics 2	174

VLHC LEADS ENERGY FRONTIER

"Old Physics" still rich at 100 TeV

NEW BEHAVIOR OF "OLD PHYSICS"

At the new energy frontier VLHC: $v/\sqrt{s} \sim 2.5 \times 10^{-3}$

The EW gauge bosons & the top quark pretty much "massless": the EW symmetry is "restored" In the collision processes

- Initial particles → partons
- Final state particles \rightarrow narrow jets, radiations
- New physics @ heavier scales $\rightarrow W^{\pm}/Z/H/top$
 - → Studying $W^{\pm}/Z/H/top$ at higher energies:
 - bread & butter (new) phenomena within SM
 - first step toward understanding O(10 TeV) scale physics

TOP QUARK INITIATED PROCESSES With $m_t << E_{cm}$, The top quark *IS* as

massless at the VLHC as *b*-quark at the Tevatron:

 $m_{b}/E_{TeV} \sim 3.5/1 \times 10^{3} \sim 3.5 \times 10^{-3}$ $m_t/E_{VLHC} \sim 160/50 \mathrm{x} 10^3 \sim 3.2 \mathrm{x} 10^{-3}$ When a heavy scale M is involved, so that $\alpha_{s} \ln(M^{2}/m_{t}^{2}) \sim O(1) \rightarrow M \sim (50-100) m_{t}$ then the collinear large logs need to be resummed \rightarrow top quarks as partons 8 6000000 - H · g recorded

TH, J. Sayre, S. Westhoff: 1411.2588

New Physics Examples: $t\bar{t} \rightarrow X$ With $m_t \sim v$,

Top quark may hold the key to new physics:

- Most sensitive to the "naturalness" issue.
- Vacuum stability

TH, J. Sayre, S. Westhoff: 1411.2588

Partonic luminosities

Top lumi tracking gg, reaching few% of bb! $\sqrt{s} = m_H [\text{TeV}]$ Relevant range: $0.002 \leq \bar{x} \leq 0.1$, for $200 \text{ GeV} \leq \sqrt{s} \leq 10 \text{ TeV}$. Lumi(gg, bb, tt @100/14) increased by $1000 - 10^5$ for 500 GeV - 4 TeV! 7 TH, J. Sayre, S. Westhoff: 1411.2588 5-flavor vs. 6-flavor: (ACOT: massive top subtraction)

- 5-flavors usually underestimate the rate (better at low M)
 6 flavors usually underestimate the rate (better at low M)
- 6-flavors usually overestimate the rate (better at high M) (too much resummation) → proper treatment needed
 Higher CM Energies better approximation

Recollection: Double-counting and subtraction For $m_H >> m_b$ ($m_H > 100 \text{ GeV}$), (Maltoni, Stelzer, Sullivan, Willenbrock) it would be justifiable to start with 5-flavors H $bb \to H$ NLO correction at α_s $gb \rightarrow b H, gb \rightarrow b H$ 666666 But near the collinear regions, there H exists double-counting, that needs to \overline{Q} be subtracted out 8 666666 -H-HNNLO correction at α_s^2 8 666666 g ~666666 $q\bar{q}, gg \rightarrow bb H$ (b)Subtraction as well 8 600000 H

9

GAUGE-BOSON INITIATED PROCESSES

At colliding energies $E >> M_W$,

EW gauge bosons are new "gluons"!

"Effective W-Approximation" S. Dawson, 1985; G. Kane et al., 1984; Chanowitz & Gailard, 1984

(Full treatment for VBF: Dieter's talk)

In the EW theory:

- $P_{q \to qV_T} = (g_V^2 + g_A^2) \frac{\alpha_2}{2\pi} \frac{1 + (1 x)^2}{1 x} \ln \frac{Q^2}{\Lambda^2}$ "forward-jet tagging" $P_{q \to qV_L} = (g_V^2 + g_A^2) \frac{\alpha_2}{\pi} \frac{1 x}{x}$ "central-jet vetoing"
- V_T radiation the same as $g, \gamma : |\mathcal{M}|^2 \sim p_T^2$:
 - "dead cone" at $p_T \rightarrow 0$
 - log-enhancement at high p_T & soft x
- V_L radiation no collinear enhancement/suppression, not the same as a scalar radiation.

Lumi(W⁺_TW⁻_T) similar size to lumi(tt); Lumi(W⁺_TW⁻_T) ~ Lumi(W[±] γ), Electro=weak Lumi(W⁺_LW⁻_L) 100 times smaller: Goldstones Lumi(100/14) increased by 1000 – 10⁵ for 500 GeV - 4 TeV!

W_LW_L Scattering: The existence of a light, weakly coupled Higgs boson unitarize the WW amplitude:

- Consistent perturbative theory up to Λ (?)
- New strong dynamics effects may still exist, but "delayed" to ρ^2/Λ^2 .

$W_L W_L$ Scattering:

Different channels are sensitive to different physics:

- ► I = 0: resonant in W^+W^- and ZZ scattering
- ► I = 1: resonant in W^+Z and W^-Z scattering
- ► I = 2: resonant in W^+W^+ and W^-W^- scattering

Equally important: $WW \rightarrow HH$, *tt* for H³ & top couplings.

MULTI GAUGE-BOSON PRODUCTION FROM PROMPT PRODUCTION

At 100 TeV:

WW	σ=770 pb
WWW	σ=2 pb
WWZ	σ=1.6 pb
WWWW	σ=15 fb
WWWZ	σ=20 fb

(M. Mangano)

Each W costs you a factor of ~ 1/100 (EW coupling)

MULTI GAUGE-BOSON PRODUCTION FROM SPLITTING/SHOWERING: At colliding energies $E >> M_v$, In EW gauge boson splitting:

A contraction of the second se

$$P_{V_T \to V_T V_T'} = \frac{\alpha_2}{2\pi} \left[\frac{1}{x(1-x)} + x(1-x) \right] \ln \frac{Q^2}{M_W^2}$$

$$P_{V_T \to V_L V'_L} = \frac{\alpha_2}{4\pi} x (1-x) \ln \frac{Q^2}{M_W^2}$$

$$P_{V_T \to V_T H} = \frac{\alpha_2}{4\pi} \frac{1-x}{x}$$

- V_T the "new gluons"!
- V_L/H radiations the Goldstone Eq. Theo.

SPLITTING PROBABILITIES:

	J.	Chen, K. Hagiwara, TH	, B. Tweedie
Split	Form	Rate: E=1TeV	10 TeV
$q \rightarrow qV_T$	$-2.8 \times 10^{-3} \ln^2(E/M_W)$	1.7%	(7%)
$q \rightarrow qV_L$	$T_{1.4x}10^{-3} \ln (E/M_W)$ proportional to gv	0.5%	1%
$V_T \rightarrow V_T V_T$	$0.01 \mathrm{x} \ln^2(\mathrm{E/M}_\mathrm{W})$) 6%	(22%)
$V_T \rightarrow V_L V_L$	$4 \times 10^{-4} \ln (E/M_W)$) 0.15%	0.3%
$\rightarrow V_L h$	<i>ET</i> same pure gauge	e couplings	
$V_L \rightarrow V_T V_L$	$2x10^{-3}\ln^2(E/M_V)$	_N) 1%	(4%)
$ \begin{array}{c} \rightarrow V_{T}h \\ h \rightarrow V_{T}V_{L} \end{array} $	same ET same		
$V_T^* \rightarrow ff'$	$0.04 \mathrm{x} \ln(\mathrm{E/M}_{\mathrm{W}})$	5%	(10%)
$V_T \rightarrow V_T V_L$	$0.01 \mathrm{x} \ln(\mathrm{E/M}_{\mathrm{W}})$	2%	(5%)
$\rightarrow V_{T}h$	ET $3x10^{-4}$ proportio	0.03%	0.03%

MULTI GAUGE-BOSON FROM SHOWERING:

Christiansen, Sjostrand: 1401.5238 At higher energies, each Wcosts you a factor of ~ 1/10 !

We are in the process of developing a more complete EW showering code.

Kruass, Petrov, Schonher, Spannowsky: 1403.4788

NEW PHYSICS WINDOW WITH ENERGETIC/MULTI TOPS/GAUGE-BOSONS

SUSY examples: $\tilde{b}\tilde{b}^* \to t\chi^- \bar{t}\chi^+$, $\tilde{t}W^- \tilde{t}^*W^+ \to 4W^{\pm} b\bar{b}$. Heavy quark examples: *TT*', *BB*', ...

Energetic W^{\pm} , Z, H, t as new radiation sources from heavy W', Z' decays & $W_L W_L$ scattering

OVERALL

- With the Higgs discovery, the SM is healthier than ever, valid to a scale up to $\Lambda \sim ?$
- VLHC will take the lead for searches: $\tilde{g}, \tilde{t}, \tilde{b}, \chi^{\pm,0}, \dots H^{\pm}, A^{0}; W^{\pm'}, Z' \dots$ The *top, W,Z,H* may hold the key for new discovery!
- Searching for new physics starts from understanding old physics in the new regime:
 - *top*, *W*,*Z* may behave as partons to produce new heavy states;
 - *top*, *W*,*Z*,*H* may serve as new radiation sources; and may help reveal new heavy states.
 - Thus, need precise understanding of the dynamics/kinematics

WHILE NEW PHYSICS SEARCHES EXCITING, "OLD PHYSICS" REMAINS RICH AT VLHC!

Special Thanks to Kaoru! A mentor, a teacher, an old friend

A fresh look:

