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User’s guide to lattice QCD results

• Full lattice results have three main ingredients

1. (tech.) technically correct: control systematics (users can’t prove)
2. (mq) physical quark masses: ms/mud ≈28 (and mc/ms ≈12)
3. (cont.) continuum extrapolated: at least 3 points with c · an

only few full results (nature, Tc , spectrum, EoS, mq, curvature, BK ...)

ad 1: obvious condition, otherwise forget it
ad 2: difficult (CPU demanding) to reach the physical u/d mass
BUT even with non-physical quark masses: meaningful questions
e.g. in a world with Mπ=Mρ/2 what would be MN/Mπ

these results are universal, do not depend on the action/technique
ad 3: non-continuum results contain lattice artefacts
(they are good for methodological studies, they just "inform" you)
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FLAG review of lattice results Colangelo et al. Eur.Phys.J. C71 (2011) 1695
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PACS-CS 10 P F � � F a 2.78(27) 86.7(2.3)
MILC 10A C • F F • − 3.19(4)(5)(16) –
HPQCD 10 A • F F F − 3.39(6)∗ 92.2(1.3)
BMW 10AB P F F F F b 3.469(47)(48) 95.5(1.1)(1.5)
RBC/UKQCD P • • F F c 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)
Blum et al. 10 P • � • F − 3.44(12)(22) 97.6(2.9)(5.5)
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Hadron spectroscopy in lattice QCD

Determine the transition amplitude between:
having a “particle” at time 0 and the same “particle” at time t
⇒ Euclidean correlation function of a composite operator O:

C(t) = 〈0|O(t)O†(0)|0〉

insert a complete set of eigenvectors |i〉

=
∑

i〈0|eHt O(0) e−Ht |i〉〈i |O†(0)|0〉 =
∑

i |〈0|O†(0)|i〉|2 e−(Ei−E0)t ,

where |i〉: eigenvectors of the Hamiltonian with eigenvalue Ei .

and O(t) = eHt O(0) e−Ht .

t large ⇒ lightest states (created by O) dominate: C(t) ∝ e−M·t

t large ⇒ exponential fits or mass plateaus Mt=log[C(t)/C(t+1)]
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Final result for the hadron spectrum S. Durr et al., Science 322 1224 2008
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Introduction to isospin symmetry

Isospin symmetry: 2+1 or 2+1+1 flavor frameworks
if ’up’ and ’down’ quarks had identical properties (mass,charge)
Mn = Mp, MΣ+ = MΣ0 = MΣ− , etc.

The symmetry is explicitly broken by
• up, down quark mass difference (md/mu ≈ 2)
• up, down quark electric charge difference (up: 2/3·e down:-1/3·e)
⇒ proton: uud=2/3+2/3-1/3=1 whereas neutron: udd=2/3-1/3-1/3=0

The breaking is large on the quark’s level (md/mu ≈ 2 or charges)
but small (typically sub-percent) compared to hadronic scales.

These two competing effects provide the tiny Mn-Mp mass difference
≈ 0.14% is required to explain the universe as we observe it
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Big bang nucleosynthesys and nuclei chart

if ∆mN < 0.05%→ inverse β decay leaving (predominantly) neutrons
∆mN >∼0.05% would already lead to much more He and much less H
→ stars would not have ignited as they did

if ∆mN > 0.14%→ much faster beta decay, less neutrons after BBN
burinng of H in stars and synthesis of heavy elements difficult

The whole nuclei chart is based
on precise value of ∆mN

Could things have been different?
Jaffe, Jenkins, Kimchi, PRD 79 065014 (2009)
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Three mechanisms
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The challenge of computing Mn −Mp (on the 5σ level)

Unprecedented precision is required
∆MN/MN = 0.14%→ sub-permil precision is needed to get a high
significance on ∆MN

mu 6= md → 1+1+1+1 flavor lattice calculations are needed→
algorithmic challenge
(Previous QCD calculations were typically 2+1 or 2+1+1 flavors)

Inclusion of QED: no mass gap
→ power-like finite volume corrections expected
→ long range photon field may cause large autocorrelations
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Autocorrelation of the photon field
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naive HMC
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Standard HMC has O(1000) autocorrelation
Improved HMC has none (for the pure photon theory)
Small coupling to quarks introduces a small autocorrelation
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Lattice spacings and pion masses

final result is quite independent of the lattice spacing & pion mass
=⇒ four lattice spacings with a=0.102, 0.089, 0.077 and 0.064 fm
four volumes for a large volume scan: L=2.4 ... 8.2 fm
five charges for large electric charge scan: e=0 ... 1.41
41 ensembles with Mπ=195–440 MeV (various cuts)
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large parameter space: helps in the Kolmogorov-Smirnov analysis
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Finite V dependence of the kaon mass
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Neutral kaon shows essentially no (small 1/L3) volume dependence
Volume dependence of the K splitting is perfectly described
1/L3 order is significant for kaon (baryons are not as precise)
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Finite V dependence of the kaon mass
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Neutral kaon shows essentially no (small 1/L3) volume dependence
Volume dependence of the K splitting is perfectly described
1/L3 order is significant for kaon (baryons are not as precise)
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Choice of the physical QED coupling

eventually we want a. α = 1/137.036... b. in the Thomson limit
thus renormalizing it at the scale of the electron mass
our lattices are small to make measurements in this limit (0.5 MeV)

⇒ define the renormalized coupling at a hadronic scale
(we use the Wilson-flow to define the renormalization procedure)
the difference between the two is of order O(α2)
physical case (that is where we interpolate): relative difference 1%
can be neglected (perturbatively included): subdominant error

much more serious issue: L dependence of eR (up to 20%)
can be removed by tree-level improvement of the flow
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Analysis: avoid arbitrarinesses & include systematics

extended frequentist’s method:
2 ways of scale setting, 2 strategies to extrapolate to Mπ(phys)
3 pion mass ranges, 2 different continuum extrapolations
18 time intervals for the fits of two point functions
2·2·3·2·18=432 different results for the mass of each hadron
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central value and systematic error is given by the mean and the width
statistical error: distribution of the means for 2000 bootstrap samples
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Systematic uncertainties/blind analysis

various fits go into BMW Collaboration’s hystogram method
its mean: central value with the central 68%: systematic error
use AIC/goodness/no: same result within 0.2σ (except Ξcc : 0.7σ)
2000 bootstrap samples: statistical uncertainty

∆MX has tiny errors, it is down on the 0.1 permil level
many of them are known =⇒ possible bias =⇒ blind analysis

medical research: double-blind randomized clinical trial (Hill, 1948)
both clinicians and patients are not aware of the treatement
physics: e/m of the electron with angle shift (Dunnington 1933)

we extracted MX & multiplied by a random number between 0.7–1.3
the person analysing the data did not know the value =⇒
reintroduce the random number =⇒ physical result (agreement)
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Isospin splittings

splittings in channels that are stable under QCD and QED:
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∆MN , ∆MΣ and ∆MD splittings: post-dictions
∆MΞ, ∆MΞcc splittings and ∆CG: predicitions
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Quantitative anthropics

Precise scientific version of the great question:
Could things have been different (string landscape)?

eg. big bang nucleosynthsis & today’s stars need ∆MN≈ 1.3 MeV
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(lattice message: too large or small α would shift the mass)
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Summary

Motivations:
• neutrons are more massive than protons ∆MN=1.3 MeV
• existence/stability of atoms (as we know them) relies on this fact
• splitting: significant astrophysical and cosmological implications
• genuine cancellation between QCD and QED effects: new level

Computational setup:
• 1+1+1+1 flavor full dynamical QCD+QED simulations
• four lattice spacings in the range of 0.064 to 0.10 fm
• pion masses down to 195 MeV
• lattice volumes up to 8.2 fm (large finite L corrections)
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Technical novelties (missing any of them would kill the result):
• dynamical QEDL: zero modes are removed on each time slice
• analytic control over finite L effects (larger than the effect)
• high precision numerics for finite L corrections
• large autocorrelation for photon fileds⇒ new algorithm
• improved Wilson flow for electromagnetic renormalization
• Kolmogorov-Smirnov analysis for correlators
• Akakike information criterion for extrapolation/interpolation
• fully blind analysis to extract the final results
⇒ all extrapolated to the continuum and physical mass limits

Results:
• ∆MN is greater than zero by five standard deviations
• ∆MN , ∆MΣ and ∆MD splittings: post-dictions
• ∆MΞ, ∆MΞcc splittings and ∆CG: predicitions
• quantitative anthropics possible (fairly large region is OK)
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Finite V dependence of baryon masses
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Σ splitting (identical charges) shows no volume dependence
V dependence of all baryons is well described by the universal part
1/L3 order is insignificant for the volumes we use
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Ensambles

strategy to tune to the physical point: 3+1 flavor simulations
pseudoscalar masses: Mq̄q = 410 MeV and Mc̄c = 2980 MeV
lattice spacings was determined by using w0 = 0.1755 fm (fast)
for the final result a spectral quantity, MΩ was used

series of nf = 1 + 1 + 1 + 1 runs: QCDSF strategy
decreasing mu/d & increasing ms by keeping the sum constant
small splitting in the mass of the up and down quarks
=⇒ 27 neutral ensembles with no QED interaction: e=0

turning on electromagnetism with e =
√

4π/137,0.71,1 and 1.41
significant change in the spectrum⇒ we compensate for it
additive mass: connected Mq̄q same as in the neutral ensemble
=⇒ 14 charged ensembles with various L and e
four ensembles for a large volume scan: L=2.4 ... 8.2 fm
five ensembles for a large electric charge scan: e=0 ... 1.41
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Take couplings larger than 1/137

simulate at couplings that are larger than the physical one:
in such a case the signal outweighs the noise
precise mass and mass difference determination is possible

for e=0 and mu = md we know the isospin splittings exactly
=⇒ they vanish, because isospin symmetry is restored
α = e2/4π � 1/137 and e=0 can be used for interpolation

this setup will be enough to determine the isospin splittings
leading order finite volume corrections: proportional to α
leading order QED mass-splittings: proportional to α
no harm in increasing α, only gain (renormalization)

(perturbative Landau-pole is still at a much higher scale:
hundred-million times higher scale than our cutoff/hadron mass)
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Tree-level improvement of the Wilson-flow

Wilson-flow for QED is a soluble case M. Luscher, 1009.5877

in the t →∞ case t2〈GµνGµν〉 = 3e2
R/32π2

which gives for our bare couplings renormalized ones: Z = e2
R/e

2

on a finite lattice the flow is not yet 3e2
R/32π2

it is proportional to the finite lattice sum:

τ2

TL3

∑
k

exp(−2|k̂ |2τ)

|k̂ |2

∑
µ6=ν

(1 + cos kν) sin2 kµ


which indeed approaches 3/32π2 for T ,L, τ →∞

in our simulations: Z (relating eR and e) must include this effect
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Tree-level improved Z factors

how in this limit (T,L,τ →∞) can we reach 3/32π2
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for Mπ=290 MeV four volumes from L=2.4 fm to L=8.2 fm
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at small τ (cutoff scale) no sensitivity to the volume
for large τ sensitivity increases (up to 20%)
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Interpolation to the physical QED coupling

expansions in renormalized quantities behave usually better
(faster convergence than if one used bare quantities)
illustration (precise data): ∆M2

π = M2
d̄u − (M2

ūu + M2
d̄d )/2

(connected diagrams: ChPT tells us that it is purely electromagnetic)
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large higher order terms if one uses the bare e
the splitting is linear in eR (higher order terms are small)
true for all isosplin splitting channels (others: less sensitive)
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