T-odd Asymmetry in W + jet events at the LHC

National Central University Toshifumi Yamada

in collaboration with

R. Frederix (*CERN*), K. Hagiwara (*KEK*) and H. Yokoya (*Toyama*) Phys. Rev. Lett. 113, 152001 (2014) [arXiv:1407.1016 [hep-ph]]

1

Introduction

Absorptive Part of Scattering Amplitude

We study **theoretical calculation** & **direct measurement** of the **absorptive part** of a QCD amplitude.

Transition operator \hat{T} is given as $\hat{S} = T \left[e^{-i \int d^4 x \hat{\mathcal{H}}_{int}} \right] = \hat{1} + i \hat{T}$. Unitarity of S-matrix $\hat{S}^{\dagger}\hat{S} = \hat{1}$ gives $-i(\hat{T} - \hat{T}^{\dagger}) = \hat{T}^{\dagger}\hat{T}$. Absorptive part of transition amplitude from state "i" to state "f" is defined as $-i\langle f|(\hat{T}-\hat{T}^{\dagger})|i\rangle = \langle f|\hat{T}^{\dagger}\hat{T}|i\rangle = \sum \langle f|\hat{T}^{\dagger}|k\rangle\langle k|\hat{T}|i\rangle \equiv A_{fi}$ summation over complete set of states $\mathcal{H} \rightarrow k \in \mathcal{H}$

c.f. When the initial and final states are the same, we get the optical theorem: $A_{ii} = \operatorname{Im}\left(\langle i|\hat{T}|i\rangle\right) = \sum |\langle k|\hat{T}|i\rangle|^2 \propto \sigma_{\text{tot}}$

3

Measurement of Absorptive Part

Absorptive part can be measured through part of the cross section that is odd under naïve T-reversal, which we call "T-odd asymmetry".

any 3-momentum $ec{k}
ightarrow -ec{k}$, any spin σ ightarrow $-\sigma$, but the initial and final states are not interchanged.

proof:

We denote the naïve-T-reversal of states i, f by \tilde{i} , \tilde{f} , respectively. We find

Experimentally, T-odd asymmetry is measured through a T-odd quantity, e.g., $\vec{k}_1 \times \vec{k}_2 \cdot \vec{s}$ (\vec{k}_i : 3-momentum, \vec{s} : spin).

Measurement of Absorptive Part

Absorptive part can be measured through part of the cross section that is odd under naïve T-reversal, which we call "T-odd asymmetry".

any 3-momentum $ec{k}
ightarrow -ec{k}$, any spin $\,\sigma\,
ightarrow\,-\sigma$, but the initial and final states are not interchanged.

proof:

We denote the naïve-T-reversal of states i, f by \tilde{i} , \tilde{f} , respectively. We find

Experimentally, T-odd asymmetry is measured through a T-odd quantity, e.g., $\vec{k}_1 \times \vec{k}_2 \cdot \vec{s}$ (\vec{k}_i :3-momentum, \vec{s} :spin).

† This quantity is **P-even**, hence T-odd asymmetry appears **without P-violation**.

5

 $A \equiv \frac{\sigma(\text{events with } (\vec{q_l})_y > 0) - \sigma(\text{events with } (\vec{q_l})_y < 0)}{\sigma(\text{events with } (\vec{q_l})_y > 0) + \sigma(\text{events with } (\vec{q_l})_y < 0)}$

Calculation of Absorptive Part

We use **perturbative QCD** to calculate the cross section for $pp \rightarrow W^+ + \text{jet}$ process.

Then absorptive part becomes calculable with Cutkosky rules:

Absorptive part appears at one-loop level in the leading order.

Observation of T-odd Asymmetry at the LHC

Problem of the Sign of $\cos \hat{\theta}$

 $\vec{p}_{p1} \times \vec{p}_{W^+} \cdot \vec{s}_\perp$ flips sign with cosine of the scattering angle in parton center-of-mass frame, denoted by $\cos \hat{\theta}$. Hence we need to separate events with $\cos \hat{\theta} > 0$ and $\cos \hat{\theta} < 0$. In hadron collisions, $\cos \hat{\theta}$ is reconstructed by calculating ν_l 's longitudinal momentum, but this gives one positive and one negative solutions for $\cos \hat{\theta}$.

Instead, we use $\eta_{\ell^+} - \eta_j$, which is correlated with $\cos \hat{\theta}$.

We study the distribution of the asymmetry A in each bin of the pseudo-rapidity difference $\,\eta_{l^+}-\eta_j$.

Parton-level Analysis

First, simply integrating the leading order analytic formulae of the diff. cross section of $p p \rightarrow W^+(\mu^+ \nu) + 1$ parton process and imposing realistic selection cuts, we obtain

T-odd asymmetry can be as large as 10 %.

Detector-level Analysis

Detector-level analysis for measurement of T-odd asymmetry has become feasible very recently, with the invention of

"MadGraph5_aMC@NLO", ^{J. Alwall et al. (2014)}

which generates events based on one-loop level calculation of matrix elements.

We use "MadGraph5_aMC@NLO" to generate

 $p p \rightarrow W^+ (\rightarrow \mu^+ \nu_\mu) + 1 \text{ jet}$ events with $\sqrt{s} = 8 \text{ TeV}$,

G. Corcella *et al.* (2010) **"HERWIG6"** to simulate parton showering and hadronization, J. Conway *et al.* (2012) and **"PGS4"** to simulate detector responses and jet clustering at the LHC.

Asymmetry can be **as large as 5 % even at detector-level**. With 20 fb⁻¹ of data, the statistical error of the asymmetry A, $\delta A = \sqrt{(1 - A^2)/N_{\text{evt}}}$, is 0.11 %, 0.15 %, 0.25 %, 0.45% for $|\eta_{l^+} - \eta_j|$ bins of [1,2], [2,3], [3,4], [4,5].

Summary

- Absorptive part of a scattering amplitude can be measured through T-odd asymmetry of the cross section.
- We have focused on $p p \rightarrow W^+ + jet$ process, where the absorptive part is calculable with perturbative QCD, and study the asymmetry of $\vec{p}_{p1} \times \vec{p}_{W^+} \cdot \vec{s}_{\perp}$.
- We have done detector-level Monte Carlo simulations of $p p \rightarrow W^+(\mu^+, \nu_\mu) + \text{jet}\, \text{ process for 8 TeV LHC},$ and shown that T-odd asymmetry is observable with negligible statistical error with 20 fb^{-1} of data.