Jet Radiation

Tilman Plehn

WBF

Catpiss

Tagging jets

Tops

Making Sense of Jet Radiation A Series of Great Lessons

Tilman Plehn

Universität Heidelberg

IPMU 3/2015

WBF

- Catpiss
- Tagging jets
- Tops

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- the Pheno team (1997)

WBF

Catpiss

Tagging jet

Tops

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- first paper to use WBF forward jets for light Higgs [ask Dieter and Dave how it all happened] Searching for $H \rightarrow \tau \tau$ in weak boson fusion at the LHC

D. Rainwater and D. Zeppenfeld

Department of Physics, University of Wisconsin, Madison, WI 53706

K. Hagiwara

Theory Group, KEK, Tsukuba, Ibaraki 305-0801, Japan

WBF

Catpiss

Tagging jets

Tops

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- first paper to use WBF forward jets for light Higgs [ask Dieter and Dave how it all happened]
- technical advances crucial [jet veto from 3j T T process]
- detector simulations by hand [correct is what experimentalists can reproduce]
- b and τ decays fully simulated

We would like to thank Tao Han for useful discussions and use of his programs for b decay simulations. This research was supported in part by the University of Wisconsin Research

WBF

Catpiss

Tagging jets

Tops

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- first paper to use WBF forward jets for light Higgs [ask Dieter and Dave how it all happened]
- technical advances crucial [jet veto from 3j T T process]
- detector simulations by hand [correct is what experimentalists can reproduce]
- b and τ decays fully simulated
- ⇒ Great LHC ideas also need hard work

WBF

Catpiss Tagging j --

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- first paper to use WBF forward jets for light Higgs [ask Dieter and Dave how it all happened]
- technical advances crucial [jet veto from 3/7 T process]
- detector simulations by hand [correct is what experimentalists can reproduce]
- b and τ decays fully simulated
- ⇒ Great LHC ideas also need hard work

What to do with jets

- background control makes the difference
- tagging jets as compared to the Higgs signal: Z and γ bremsstrahlung occur at small angles with respect to the parent quarks, producing r's forward of the jets. Thus, at the second level of cuts we require both r's to lie between the jets with a separation in pseudorapidity $\Delta \eta_{j,\tau} > 0.7$, and the jets to occupy opposite hemispheres:

$$\eta_{j,min} + 0.7 < \eta_{\tau_{1,2}} < \eta_{j,max} - 0.7$$
, $\eta_{j_1} \cdot \eta_{j_2} < 0$ (17)

At the third level of cuts, which is also the starting point for our consideration of the various backgrounds, a wide separation in pseudorapidity is required between the two forward tagging jets,

$$\Delta \eta_{tags} = |\eta_{j_1} - \eta_{j_2}| \ge 4.4$$
, (18)

leaving a gap of at least 3 units of pseudorapidity in which the τ 's can be observed. This technique

WBF

Catpiss Tagging j

Tops

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- first paper to use WBF forward jets for light Higgs [ask Dieter and Dave how it all happened]
- technical advances crucial [jet veto from 3j T T process]
- detector simulations by hand [correct is what experimentalists can reproduce]
- b and τ decays fully simulated
- ⇒ Great LHC ideas also need hard work

What to do with jets

- background control makes the difference
- tagging jets

Invariant mass distribution of the two tagging jets for the Hjj signal (

WBF

Catpiss

- Tagging je
- Tops

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- first paper to use WBF forward jets for light Higgs [ask Dieter and Dave how it all happened]
- technical advances crucial [jet veto from 3j T T process]
- detector simulations by hand [correct is what experimentalists can reproduce]
- b and τ decays fully simulated
- ⇒ Great LHC ideas also need hard work

What to do with jets

- background control makes the difference
- tagging jets
- central (mini-) jet veto

	H_{jj}	QCD Zjj	EW Z j j	Wj + jj	bījj	σ_{Gauss}
Psurv	0.71	0.14	0.48	0.15	0.15	
no. events	10.4	0.61	0.46	0.11	0.24	5.2

WBF

Catpiss

Tagging je

Tops

WBF Higgs production

Higgs production with jets [w/ Rainwater, Zeppenfeld (1998)]

- first paper to use WBF forward jets for light Higgs [ask Dieter and Dave how it all happened]
- technical advances crucial [jet veto from 3j T T process]
- detector simulations by hand [correct is what experimentalists can reproduce]
- b and τ decays fully simulated
- ⇒ Great LHC ideas also need hard work

What to do with jets

- background control makes the difference
- tagging jets
- central (mini-) jet veto
- \Rightarrow Jets are your friends

WBF

Catpiss

Tagging jets

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams... ...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production...
 - ...plus reference tables...
 - ...15 pages of them ...

Catpiss collaboration

Catpiss collaboration

WBF

Catpiss

Tagging jets

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams... ...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production... ...plus reference tables...

...15 pages of them ...

B.16	$uar{u}$ proce	esses							
$u\bar{u} \rightarrow X$									
Final	MADGRAI	PH/HELAS	O'MEGA/	WHIZARD	AMEGIC++/SHERPA				
state	0.5 TeV	2 TeV	0.5 TeV	2 TeV	0.5 TeV	2 TeV			
ĝĝ		1.1377(2)e3	-	1.1378(2)e3		1.1377(1)e3			
eLeL	5.169(1)	1.5467(3)	5.1698(9)	1.5469(2)	5.1700(3)	1.54698(8)			
$\tilde{e}_R \tilde{e}_R^*$	6.538(1)	0.7318(1)	6.538(1)	0.7318(1)	6.5379(3)	0.73179(4)			
$\bar{\mu}_L \bar{\mu}_L^*$	5.169(1)	1.5467(3)	5.1687(9)	1.5466(3)	5.1693(3)	1.54679(8)			
$\tilde{\mu}_R \tilde{\mu}_R^*$	6.538(1)	0.7318(1)	6.536(1)	0.7316(1)	6.5387(3)	0.73189(4)			
$\bar{\tau}_1 \bar{\tau}_1^*$	6.993(1)	0.7195(1)	6.992(1)	0.7194(1)	6.9935(3)	0.71949(4)			
$\tau_{2}\tau_{2}^{*}$	4.1263(7)	1.3962(2)	4.1246(7)	1.3957(2)	4.1269(2)	1.39617(7)			
$\bar{\tau}_1 \bar{\tau}_2^*$	0.5420(1)	0.08218(1)	0.54193(9)	0.08217(1)	0.54199(3)	0.082184(4)			
$\tilde{\nu}_c \tilde{\nu}_c^*$	5.7063(5)	1.1222(2)	5.706(1)	1.1222(2)	5.7064(3)	1.12224(6)			
$\tilde{\nu}_{\mu}\tilde{\nu}_{\mu}^{*}$	5.7063(5)	1.1222(2)	5.704(1)	1.1217(2)	5.7070(3)	1.12237(6)			
$\tilde{\nu}_{\tau}\tilde{\nu}_{\tau}^{*}$	5.812(1)	1.1228(2)	5.813(1)	1.1229(2)	5.8126(3)	1.12282(6)			
$\tilde{u}_L \tilde{u}_L^*$		799.6(1)	-	799.6(1)	_	799.63(4)			
$\tilde{u}_R \tilde{u}_R^*$		879.7(1)	-	879.7(1)	_	879.75(4)			
$\tilde{u}_L \tilde{u}_R^*$		784.1(2)	-	784.16(3)		784.15(4)			
$\tilde{c}_L \tilde{c}_L^*$	-	178.39(1)	-	178.39(2)	_	178.398(9)			
$\tilde{c}_R \tilde{c}_R^*$	-	185.63(2)	-	185.62(2)	-	185.655(9)			
$t_1t_1^*$	_	245.12(2)	-	245.11(3)	_	245.10(1)			
$\tilde{t}_2 \tilde{t}_2^*$	-	169.22(1)	-	169.22(2)	-	169.223(8)			
$\tilde{t}_1 \tilde{t}_2$	_	0.47708(4)	-	0.47714(8)	_	0.47712(2)			
$d_L d_L^*$	-	166.63(2)	-	166.60(2)	-	166.621(8)			
$d_R d_R^*$	_	185.58(2)	_	185.56(3)	_	185.60(1)			
SLST.	_	175.69(1)	_	175.68(2)	_	175.686(9)			
$\tilde{s}_R \tilde{s}_R^*$	_	185.58(2)	-	185.58(2)	_	185.578(9)			
$b_1b_1^*$	-	200.37(2)	-	200.364(8)		200.38(1)			
b2b3	_	186.50(2)	_	186.500(7)		186.51(1)			
b1b2	_	0.19827(2)	_	0.198272(8)	_	0.19827(1)			
$\tilde{x}_{1}^{0}\tilde{x}_{1}^{0}$	2.2483(1)	1.2164(1)	2.24829(2)	1.2165(1)	2.2483(1)	1.2165(2)			
$\tilde{x}^{0} \tilde{x}^{0}$	0.053855(3)	0.10850(1)	0.0538560(9)	0.10850(1)	0.053855(3)	0.108493(5)			
$\tilde{x}_{1}^{0}\tilde{x}_{1}^{0}$	0.524518(4)	0.096758(1)	0.524526(3)	0.096752(5)	0.52450(3)	0.096763(5)			
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{4}^{0}$	9.8233(3)e-3	0.067303(3)	9.82339(8)e-3	0.067293(6)	9.8238(5)e-3	0.067308(3)			
$\bar{x}_{2}^{0}\bar{x}_{2}^{0}$	3.66463(5)	4.2298(3)	3.66472(3)	4.2296(4)	3.6646(2)	4.2298(3)			
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}$		0.21148(3)		0.211458(8)		0.21147(1)			
$\bar{\chi}_{2}^{0}\bar{\chi}_{4}^{0}$	_	0.55025(5)	-	0.55025(8)	_	0.55028(3)			
$\tilde{\chi}_{3}^{0}\tilde{\chi}_{3}^{0}$	_	3.3843(1)e-4	-	3.3843(1)e-4	_	3.3844(2)e-4			
$\tilde{\chi}_{3}^{0} \tilde{\chi}_{4}^{0}$		4.4435(3)	-	4.4433(2)	_	4.4436(2)			
$\tilde{\chi}_{4}^{0}\tilde{\chi}_{4}^{0}$	_	0.016385(3)	-	0.016389(3)	_	0.016386(1)			
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	153.97(2)	10.732(5)	153.977(2)	10.734(2)	153.964(8)	10.7329(5)			
X 2 X 2	1 <u> </u>	5.0402(5)		5.0401(2)		5.0400(3)			
X1 X2	l —	1.5363(2)		1.5362(2)	_	1.5363(1)			
Zh^0	22.795(2)	1.1958(1)	22.797(2)	1.1960(2)	22.798(1)	1.19582(6)			
ZH^0	2.37220(1)e-4	2.1138(2)e-4	2.37224(1)e-4	2.1142(4)e-4	2.3723(1)e-4	2.1141(1)e-4			

WBF

Catpiss

Tagging jets

Catpiss collaboration

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams...
 - ...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production...
 - ...plus reference tables ...
 - ...15 pages of them ...
- \Rightarrow BSM physics deserves proper simulation

WBF

Catpiss

Tagging jets

Catpiss collaboration

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams...
 - ...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production...
 - ...plus reference tables ...
 - ...15 pages of them ...
- \Rightarrow BSM physics deserves proper simulation

SUSY in weak boson fusion [w/ Cho, Kanzai, TP, Rainwater, Stelzer (2006)]

WBF

Catpiss

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams...
 - ...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production...
 - ...plus reference tables...
 - ...15 pages of them ...

Catpiss collaboration

⇒ BSM physics deserves proper simulation

SUSY in weak boson fusion [w/ Cho, Kanzai, TP, Rainwater, Stelzer (2006)]

- meant to test SUSY properties
- Maiorana property in $\chi^{\pm}\chi^{\pm}$ production
- first task: huge squark/gluino background
- second task: proper UV behavior

WBF

Catpiss

Tagging jets

Catpiss collaboration

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams...

...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production...

- ...plus reference tables...
- ...15 pages of them ...
- ⇒ BSM physics deserves proper simulation

SUSY in weak boson fusion [w/ Cho, Kanzai, TP, Rainwater, Stelzer (2006)]

- meant to test SUSY properties
- Majorana property in $\chi^{\pm}\chi^{\pm}$ production
- first task: huge squark/gluino background
- second task: proper UV behavior

SPS	la	1b	2	3	4	5	6	7	8	9
$\chi_1^0\chi_1^0$	0.003	0	0	0	0	0.001	0	0.001	0	0.46
$\chi_{1}^{0}\chi_{2}^{0}$	0.018	0.001	0.002	0.001	0.004	0.003	0.003	0.008	0.003	0
$\chi_{1}^{0}\chi_{3}^{0}$	0.002	0	0	0	0.001	0	0.001	0.003	0.001	0.002
$\chi_{1}^{0}\chi_{4}^{0}$	0.002	0	0	0	0.001	0	0.001	0.001	0.001	0.002
$\chi^{0}_{2}\chi^{0}_{2}$	0.52	0.10	0.24	0.10	0.26	0.29	0.039	0.057	0.15	0
$\chi^{0}_{2}\chi^{0}_{2}$	0.049	0.008	0.009	0.008	0.026	0.008	0.009	0.017	0.016	0
$\chi^{0}_{2}\chi^{0}_{4}$	0.065	0.011	0.011	0.011	0.034	0.009	0.023	0.045	0.022	0
$\chi^{0}_{3}\chi^{0}_{3}$	0.006	0.001	0.001	0.001	0.004	0.001	0.004	0.009	0.003	0
$\chi^{0}_{3}\chi^{0}_{4}$	0.008	0.001	0.001	0.001	0.004	0.001	0.005	0.013	0.003	0
$\chi_{4}^{0}\chi_{4}^{0}$	0.007	0.001	0.001	0.001	0.004	0.001	0.008	0.020	0.003	0

TABLE I: Cross sections [fb] for WBF neutralino pair production at LHC, for all MSSM benchmark SPS points, using the kinematic cuts of Eqs. (14) and (15). Cross sections are shown to two

Catpiss collaboration

WBF

Catpiss

Tagging jets Tops

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams...
 - ...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production...
 - ...plus reference tables ...
 - ...15 pages of them ...
- \Rightarrow BSM physics deserves proper simulation

SUSY in weak boson fusion [w/ Cho, Kanzai, TP, Rainwater, Stelzer (2006)]

- meant to test SUSY properties
- Majorana property in $\chi^{\pm}\chi^{\pm}$ production
- first task: huge squark/gluino background
- second task: proper UV behavior
- at 100 TeV? [Takeuchi etal, Wang etal]

Catpiss collaboration

WBF

Catpiss

Tagging jets Tops

SUSY off-shell diagrams [w/ Kilian, Krauss, Ohl, TP, Rainwater, Reuter, Schumann (2005)]

- from Madgraph to SMadgraph also Sherpa \rightarrow Sherpino, Whizard \rightarrow SWhizard
- including off-shell diagrams... ...up to $b\bar{b}b\bar{b}\chi^0\chi^0$ production...
 - ...plus reference tables...
 - ...15 pages of them ...
- \Rightarrow BSM physics deserves proper simulation

SUSY in weak boson fusion [w/ Cho, Kanzai, TP, Rainwater, Stelzer (2006)]

- meant to test SUSY properties
- Majorana property in $\chi^{\pm}\chi^{\pm}$ production
- first task: huge squark/gluino background
- second task: proper UV behavior
- at 100 TeV? [Takeuchi etal, Wang etal]
- ⇒ Attobarn is a unit for LHC rates

WBF

Catpiss

Tagging jets

Tops

WBF

outpieo

Tagging jets

Tops

Tagging jet correlations

Mother of tagging jet analyses [w/ Mawatari, Li (2009)]

- one of my most fun papers... [TP, Rainwater, Zeppenfeld (2001)] ...but not the proper job...
- $\Delta \phi_{jj}$ sensitive to vertex structure
 - $\phi_1 + \phi_2$ sensitive to spin-2
- UV sensitivity: p_T^{max} cut, form factor, model at face value?

Figure 2: Schematic view of the subprocesses for (a) the X production with 2 jets via VBF, and (b) the X decay to 4 jets via a vector-boson pair. The four-momentum and the helicity of each particle are shown. The solid lines show either fermions or gluons.

The helicity amplitudes for the VBF processes (2.1) can generally be expressed as

$$\begin{aligned} \mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda} &= \sum_{V_{1,2}} J_{V_{1}a_{1}a_{3}}^{\mu_{1}'}(k_{1},k_{3};\sigma_{1},\sigma_{3}) J_{V_{2}a_{2}a_{4}}^{\nu_{2}'}(k_{2},k_{4};\sigma_{2},\sigma_{4}) \\ &\times D_{\mu_{1}\mu_{1}}^{V_{1}'}(q_{1}) D_{\mu_{2}'\mu_{2}}^{V_{2}'}(q_{2}) \Gamma_{XV_{1}V_{2}}^{\mu_{1}\mu_{2}}(q_{1},q_{2};\lambda)^{*}, \end{aligned}$$
(2.3)

where $J^{\mu}_{V_1a_1a_3}$ and $J^{\mu}_{V_2a_2a_4}$ are the external fermion or gluon currents, and the vector-boson propagators are

$$D_{\mu'\mu}^{V_i}(q_i) = \begin{cases} \left(-g_{\mu'\mu} + \frac{q_{i\mu'}q_{i\mu}}{m_{V_i}^2}\right) D_{V_i}(q_i^2) & \text{for } V_i = W, Z, \\ -g_{\mu'\mu} D_{V_i}(q_i^2) & \text{for } V_i = \gamma, g, \end{cases}$$
(2.4)

WBF

Tagging jets

Tops

Tagging jet correlations

Mother of tagging jet analyses [w/ Mawatari, Li (2009)]

- one of my most fun papers... [TP, Rainwater, Zeppenfeld (2001)] ...but not the proper job...
- $\Delta \phi_{jj}$ sensitive to vertex structure $\phi_1 + \phi_2$ sensitive to spin-2
- UV sensitivity: p_T^{max} cut, form factor, model at face value?

Figure 3: The momentum and angular configuration of the particles in the q_1 and q_2 Breit frame, (I) and (II), and the VBF frame (III) for the production; in the q'_1 and q'_2 rest frame, (I') and (II'), and the X rest frame (III') for the decay.

- WBF
- Galpiss
- Tagging jets
- Tops

Tagging jet correlations

Mother of tagging jet analyses [w/ Mawatari, Li (2009)]

- one of my most fun papers... [TP, Rainwater, Zeppenfeld (2001)] ...but not the proper job...
- $\Delta \phi_{jj}$ sensitive to vertex structure $\phi_1 + \phi_2$ sensitive to spin-2
- UV sensitivity: p_T^{max} cut, form factor, model at face value?
- I am too stupid for this paper

- WBF
- Tagging jets
- Tons

Tagging jet correlations

- Mother of tagging jet analyses [w/ Mawatari, Li (2009)]
 - one of my most fun papers... [TP, Rainwater, Zeppenfeld (2001)] ...but not the proper job...
 - $\Delta \phi_{jj}$ sensitive to vertex structure $\phi_1 + \phi_2$ sensitive to spin-2
 - UV sensitivity: p_T^{max} cut, form factor, model at face value?
 - I am too stupid for this paper

Going slowly [Englert, Goncalves, Mawatari, TP (2012), Godbole... (2013), Maltoni, Mawatari... (2013)]

- step back: it's just Cabibbo angles

WBF

Tagging jets

Tops

Tagging jet correlations

Mother of tagging jet analyses [w/ Mawatari, Li (2009)]

- one of my most fun papers... [TP, Rainwater, Zeppenfeld (2001)] ...but not the proper job...
- $\Delta \phi_{jj}$ sensitive to vertex structure
 - $\phi_1 + \phi_2$ sensitive to spin-2
- UV sensitivity: p_T^{max} cut, form factor, model at face value?
- I am too stupid for this paper

Going slowly [Englert, Goncalves, Mawatari, TP (2012), Godbole... (2013), Maltoni, Mawatari... (2013)]

- step back: it's just Cabibbo angles

WBF

Tagging jets

Tops

Tagging jet correlations

Mother of tagging jet analyses [w/ Mawatari, Li (2009)]

- one of my most fun papers... [TP, Rainwater, Zeppenfeld (2001)] ...but not the proper job...
- $\Delta \phi_{jj}$ sensitive to vertex structure
 - $\phi_1 + \phi_2$ sensitive to spin-2
- UV sensitivity: p_T^{max} cut, form factor, model at face value?
- I am too stupid for this paper

Going slowly [Englert, Goncalves, Mawatari, TP (2012), Godbole... (2013), Maltoni, Mawatari... (2013)]

- step back: it's just Cabibbo angles
- few observables key...

WBF

Catpiss

- Tagging jets
- Tops

Tops plus jets

Heavy quarks plus jets [w/ Mukhopadhyay (2013)]

- $t\bar{t}$ and $b\bar{b}$ + 2 QCD jets
- threshold production necessary

WBF

Catpiss

Tagging jets

Tops

Heavy quarks plus jets [w/ Mukhopadhyay (2013)]

 $- t\bar{t}$ and $b\bar{b}$ + 2 QCD jets

Tops plus jets

- threshold production necessary

WBF

Catpiss

Tagging j

Tops

Tops plus jets

Heavy quarks plus jets [w/ Mukhopadhyay (2013)]

- $t\bar{t}$ and $b\bar{b}$ + 2 QCD jets
- threshold production necessary
- series in $\Delta \phi$ truncated by available helicities [Buckley, TP, Ramsey-Musolf]

$$\frac{d\sigma}{d\Delta\phi} = A_0 + A_1 \cos \Delta\phi + A_2 \cos(2\Delta\phi)$$

- sign of A₂ set by spin of (s)tops
- 3-jet merged stronger correlated than 2-jets exclusive
- \Rightarrow The fun will start with Run2

WBF

- Catpiss
- Tagging j
- Tops

Tops plus jets

Heavy quarks plus jets [w/ Mukhopadhyay (2013)]

- $t\bar{t}$ and $b\bar{b}$ + 2 QCD jets
- threshold production necessary
- series in $\Delta \phi$ truncated by available helicities [Buckley, TP, Ramsey-Musolf]

$$\frac{d\sigma}{d\Delta\phi} = A_0 + A_1 \cos \Delta\phi + A_2 \cos(2\Delta\phi)$$

- sign of A₂ set by spin of (s)tops
- 3-jet merged stronger correlated than 2-jets exclusive
- \Rightarrow The fun will start with Run2

- CKKW-L merging up to 3 jets [MLM too time consuming]
- comparison of 1,2,3 hard jets

WBF

Catpiss

Tagging je

Tops

Tops plus jets

Heavy quarks plus jets [w/ Mukhopadhyay (2013)]

- $t\bar{t}$ and $b\bar{b}$ + 2 QCD jets
- threshold production necessary
- series in $\Delta \phi$ truncated by available helicities [Buckley, TP, Ramsey-Musolf]

$$\frac{d\sigma}{d\Delta\phi} = A_0 + A_1 \cos \Delta\phi + A_2 \cos(2\Delta\phi)$$

- sign of A₂ set by spin of (s)tops
- 3-jet merged stronger correlated than 2-jets exclusive
- \Rightarrow The fun will start with Run2

- CKKW-L merging up to 3 jets [MLM too time consuming]
- comparison of 1,2,3 hard jets

WBF

Catpiss

Tagging je

Tops

Tops plus jets

Heavy quarks plus jets [w/ Mukhopadhyay (2013)]

- $t\bar{t}$ and $b\bar{b}$ + 2 QCD jets
- threshold production necessary
- series in $\Delta \phi$ truncated by available helicities [Buckley, TP, Ramsey-Musolf]

$$\frac{d\sigma}{d\Delta\phi} = A_0 + A_1 \cos \Delta\phi + A_2 \cos(2\Delta\phi)$$

- sign of A₂ set by spin of (s)tops
- 3-jet merged stronger correlated than 2-jets exclusive
- \Rightarrow The fun will start with Run2

- CKKW-L merging up to 3 jets [MLM too time consuming]
- comparison of 1,2,3 hard jets
- \Rightarrow It helps to get your LHC tools right

WBF

Catpiss

- Tagging je
- Tops

Tops plus jets

Heavy quarks plus jets [w/ Mukhopadhyay (2013)]

- $t\bar{t}$ and $b\bar{b}$ + 2 QCD jets
- threshold production necessary
- series in $\Delta \phi$ truncated by available helicities [Buckley, TP, Ramsey-Musolf]

$$\frac{d\sigma}{d\Delta\phi} = A_0 + A_1 \cos \Delta\phi + A_2 \cos(2\Delta\phi)$$

- sign of A₂ set by spin of (s)tops
- 3-jet merged stronger correlated than 2-jets exclusive
- \Rightarrow The fun will start with Run2

- CKKW-L merging up to 3 jets [MLM too time consuming]
- comparison of 1,2,3 hard jets
- ⇒ It helps to get your LHC tools right

WBF Catpiss

_

Tops

Outlook

Thank you, Kaoru!

Great LHC ideas also beed hard work Jets are your friends BSM physics deserves proper simulation Attobarn is a unit for LHC rates I am too stupid for this paper The fun will start with Run2 It helps to get your LHC tools right

