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The Quantum Theory of Inflation

e Quantum fluctuations stretching to superhorizon scales are what seed
the structure of our Universe through their coupling to metric
perturbations

e The superhorizon dynamics are predominantly classical with small
quantum corrections.

e These quantum corrections leave imprints on observables and provide
a probe of physics at inflationary energy scales.
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Previous Works and their Limitations



Previous Approaches and Their Limitations

Boyanovsky et al. (2005)
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Boyanovsky et al. “Quantum corrections to slow roll inflation and new scaling of superhorizon fluctuations”, arXiv:astro-ph/0503669 (2005)

e Semi-classical approach
e Limitations:

o Mean-field QFT approximation
o Leading order in fluctuations

o Ignores metric perturbations

1 : ‘
Slol = [ dev=g 3007 - V(o)
1 split into background + fluctuations
O(Z,t) = Po(t) + (@, t) , Py = ()
| quantize fluctuations only
=P
|l vary action w.r.t. ®,
.. . 1 ‘
Dy + 3HD, + V(Do) + 5\/”’(@0)@2 b =0
|l take expectation value

. . 1 )
Oy +3HDy + V'(Dy) + §V”’(<I>(_))<v"> =0
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Herranen et al. (2015)

Herranen et al. “Quantum corrections to inflaton dynamics, the semi-classical approach and the semi-classical limit”, arXiv:2011.12030 (2015)

e Tests validity of semi-classical approach
e Includes scalar metric perturbations
e Limitations:

o Mean-field QFT approximation

o Limited to leading order radiative corrections
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My Work

Cerne, W. and Suyama, T. “Nonlocal Corrections to Scalar Field Effective Action in de Sitter spacetime”, arXiv:2601.22644 (2026)

e Derives the full quantum-corrected mean field dynamics
through the Effective Action formalism

e Includes higher order radiative corrections which generate
nonlocal structure and dissipative effects

e Limitation: neglects metric perturbations
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Main Results:

The renormalized one loop effective action for the
quantum expectation value of a test scalar field in
the de Sitter spacetime and the basic properties of

the resultant equation of motion
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Computation of the Effective Action

Action of a real scalar field in the de Sitter spacetime:

1

(6] = [[ate @) |50 0,00,0 - 6~ V(o)

Separate into mean field and fluctuations:
p=2+x; =(0), (x) =0

Compute effective action using the in-in formalism:

1PI
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After perturbative expansion about the interaction: g+ = V" (®+(z))

Zero-th order: Classical equation of motion

First order: Local correction to the effective potential (same as Boyanovsky
(2005))

Second order: Non-local, quantum corrections to mean field behavior

iFl—loop [(I)-i-a @_] :/ DX+DX_eiSO[X+]—’iSO[X—]
1PI—connected

b (1 — %/d‘lx a® () gz X2 (z) + % /d4x a®(t)g_o x> ()
— % / d*zd'y a®(tz)a’ (ty) (942X3 () — 9—aX® (@) (944x5% (¥) — 9—yXx° (y))>
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Second order in the interaction is complex valued

Switch Variables: P.i(z) = Blz)E %(I)A(x)
oT
EOM Condition: N =0
AldA=0

0 [20] = [ dhadly o*(2.)a(0,)0 (B)g(@ )OI, — 1,05 () x T (x(2)x0)?)

+ % / dzdy a®(t;)a’(t,)g'(P(2))g' (B(y))Pa(2)Pa(y) X Re((x(w)x(y)>2)

Imaginary part can be interpreted as
noise with Gaussian correlation 12
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Renormalized Effective Action

Tree level

Le[®(), a(2)] = + / d'za (1) 82&)‘1’]

OINES
A( ) Local term New higher order correction
(Boyanovsky (2005)) (Cerne (2026))

+3 [ a0 @a) x [VH@@) 0¢@)m + (Vi©@)) (1)~ Ln(2)]
v [dwate) [ ate ) V@) x Vi) - Vi@ ()] Im((x)x@))?)

L 3 New, fully renormalized memory
d'za’(t) Pa(z) £(7). term (Cerne (2026))

Noise term (Cerne (2026))
(E@)E(y) = %a?’(tx)a3(ty)V’"(@(ﬂﬁ))V”'(@(y))Re((X(ﬂ?)x(y)>2)

— —

I(z) = / d'z’ @ () Im ((x(2)x(@))?) 13
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Assumptions made:

1. The scalar field’s energy density is small enough to not
influence the evolution of the background spacetime. In this
sense, it is treated as a “test field” evolving on a fixed
background.

2. The self-interactions of the field are sufficiently weak to

justify a perturbative treatment of the effective action.
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Localization of Equation of Motion

e Non-local nature of equation of motion makes it difficult to analyze.

e The field is assumed to vary slowly over time.

(D+m2)¢(w)+Vé(£€)+%Vé"(@(ﬂ:))fl + VR (2(2) R (2(2)B + (V§'(®(2)))" &(2)C = &(x)
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~ U. X 5
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2 2
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Comparison to Stochastic Inflation

Stochastic Inflation:

a. calculates probability distribution of super-horizon modes by treating the
contribution from sub-horizon modes as a classical random walk problem.

My work:

a. Calculates the behavior of the quantum expectation value of the background field on

all scales

In order to compare the two, | make some modifications to my work. It is

important to note that these were not derived from first principles.
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Comparison to Stochastic Inflation

Changes: restrict quantum corrections to only subhorizon contributions and
artificially inject standard S.| noise. The dissipative noise can be neglected

compared to the standard noise.

Result: Equation that governs the probability distribution of the field value

(Fokker-Planck equation)

oP(®) 1 0 o H3 92P(®)
— . 11\2 A P((I)) T 2 2
ot 3HO® |1+ -2 (V) &r2 0D
Vig = 2m202 4V + Asay v B (V") 18
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Case Study: Massive Quartic Potential

P(nonlocal)(q)) X exp _87r2 ,uln(l + 7@2) + ﬂ 2
o 3H* 2y

—miﬁ'y —p
22

.C

H

m : B=-)\—18)\?B, v =12)*(1 4 18B))

Equilibrium probability distributions (’:—f =02,A=0.1)
1.2 B= 0.257, C = _0.583

— —— Tree level: Peg,tree(®)

N
/./,,\o\ ~ = Local 1-100p: Peg, iocal(®)
ot b

\ — =+ Full 1-loop (nonlocal): Peq(®)
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Summary of physical consequences

Reduction of field friction
o Independent of potential shape
For a quartic potential:

o Decrease of variance
o Friction is still reduced, implying the second order effects are dominated by

local contributions

21



References

Baumann (2009)

Boyanovsky et al. (2006)
Glavan & Prokopec (2023)
Vicentini et al. (2019)
Markkanen et al. (2018, 2012)
Herranen et al. (2014, 2015)
Janssen et al. (2009)
Starobinsky & Yokoyama (1994)
Coleman & Weinberg (1973)

Institute of

SCIENCE TOKYO

22



Calculations / Appendix

Institute of
: SCIENCE TOKYO

23



One-loop Effective Action in de Sitter Spacetime Institute of

SCIENCE TOKYO
Computation of the Effective Action

Expand about the fluctuations:

1 il 1 1
S = /d4az a®(t) {aau (@ + %) 9 (P +x) — §m2¢2 —V(®) - V'(®)x — 5v”(<1>)><2 - 6V’”(<1>)X3 + .. ]
Put into effective action:
exp (iT 1-100p [P, D_]) = Dy 4 Dy _eSolx+]-iSolx-1-3 [ d'z a®($)g(2+(@)x] (@) +5 [ d'z a®(£)9(2-(@)x% (=)

1PI

ol = [ d'a a¥(0)| 5000,0 - gmie?

Key Idea: | assume that the potential - 9(®(2)) = V" (d())
follows the slow-roll conditions, enabling a
perturbative expansion of the above action.
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Computation of the Effective Action

Attach path integrations to fluctuation fields:

First Order:

D [@1,8] = =3 [ @' (O @) (912 — 9-2)

Second Order:

2
g l)oop [(I)-l- ]

é / d'zd'yad’(t,) a’(t,) (g+mg+y (T @)X (Y)Y + 9-wg—y (TX*(@)X*(Y)) — 20-2Gy (xg(x)XQ(y»)

:/DX+DX— (...)eiSO[XH—iSO[X—] J+p = g((I)j: (CC))
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Computation of the Effective Action

Use Wick’s Theorem on the Second Order Term:

i _
T oy [@4, -] = : / d*zd'y o’ (tz)a’ (ty) (9+x9—+—y (TxXzXy)? + 9-29—y{TXaXy)? — 2g—wg+y<Xny>2)

Issue: This Action is Complex-valued

The complex value of the action comes from

dissipative effects -
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Computation of the Effective Action

i
Switch Variables:  ®+(x) = ®(z) £ -Pa(x)

2
oI

_ — 0
0PA |, —g

EOM Condition:

0 [20] = [ dhadly o*(2.)a(0,)0 (B)g(@ )OI, — 1,05 () x T (x(2)x0)?)

+ % / d zdy a®(t,)a’(t,)g (B(x))g (B(y))Pa(z)Baly) x Re((x(x)x(y)>2>,

Imaginary part can be interpreted as
noise with Gaussian correlation 27
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Renormalization of the Effective Action
Renormalize UV divergences
Flat Space Divergence Divergence unique to curved space
[0, 88] = =5 [ 2OV @) 0 @hintale) - 5 [ AoV (@) (g0 ) 2ale)

N~ DN

/ d*z a®(t)V" (®(x))A(z)Pa(x).

Remainder
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Renormalization of the Effective Action

Renormalize UV divergences

Local Contribution to Effective Potential

P10(0). Ba(@)) = 5 [ dloa () 0ala) x [(VA@@)* (1) - Ln(o))]

= [dtzae) [ d @) V@) x (Vi) - Vi@@)] (o @)?)

Finite non-local contribution
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