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Motivation: Primordial Curvature Perturbations
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Motivation: Primordial Curvature Perturbations
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Motivation: Scalar-Induced Gravitational Waves
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Motivation: SIGW & PNG
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Motivation: Statistics of SIGW Energy-Density
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Diagrammatic Approach
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Diagrammatic Approach
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Diagrammatic Approach: Feynman-like Rules
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Diagrammatic Approach: Feynman-like Rules
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Diagrammatic Approach: Diagrams

JL, S. Wang, Z.-C. Zhao, and K. Kohri, arXiv:2309.07792
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Diagrammatic Approach: “Renormalized” Feynman-like Rules
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Diagrammatic Approach: “Renormalized” Feynman-like Rules
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Diagrammatic Approach: “Renormalized” Diagrams
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Isotropic Background: Energy-Density Fraction Spectrum
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Isotropic Background: Energy-Density Fraction Spectrum
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Isotropic Background: Energy-Density Fraction Spectrum
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Isotropic Background: Energy-Density Fraction Spectrum
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Isotropic Background: Energy-Density Fraction Spectrum
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Anisotropic and Non-Gaussian Background

Angular Resolution: numerous of Hubble-horizon patches ignoring initial anisotropies
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Anisotropic and Non-Gaussian Background

Angular Resolution: numerous of Hubble-horizon patches ignoring initial anisotropies
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Anisotropic and Non-Gaussian Background

Angular Resolution: numerous of Hubble-horizon patches ignoring initial anisotropies
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Anisotropic and Non-Gaussian Background

Angular Resolution: numerous of Hubble-horizon patches ignoring initial anisotropies
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Anisotropic Background: Initial Inhomogeneities
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Anisotropic Background: Initial Inhomogeneities
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Anisotropic Background: Initial Inhomogeneities
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Anisotropic Background: Two-point Angular Correlator
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Anisotropic Background: Two-point Angular Correlator
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Anisotropic Background: Reduced Angular Power Spectrum
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Non-Gaussian Background: Angular Bispectrum and Trispectrum
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Non-Gaussian Background: Angular Bispectrum
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Non-Gaussian Background: Angular Trispectrum
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Summary

Summary

T ireadbor -

What Have We Done?

® Developed a “renormalized” diagrammatic approach to compute the energy-
density spectrum, angular power spectrum, bispectrum, and trispectrum of
SIGWs for primordial non-Gaussianity up to arbitrary order, which enables the
direct, automated generation of all necessary integrals for these spectra with
only simple Python/Mathematica codes;

® Computed the numerical results for these observables for PNG up to /,, order.

Scientific Implications & Future Prospects

® A supplementary probe for physics in the early universe that surpasses the
reach of measurements from CMB and LSS;

® A promising tool for the search for PBHs;

® Extraction of SIGW signals from the stochastic background and inference of

model parameters;




