

Holographic thermalization and AdS (in)stability

Ben Craps, work with Oleg Evnin and Joris Vanhoof

JHEP 1410 (2014) 48 JHEP 1501 (2015) 108

Holography relates thermalization to black hole formation

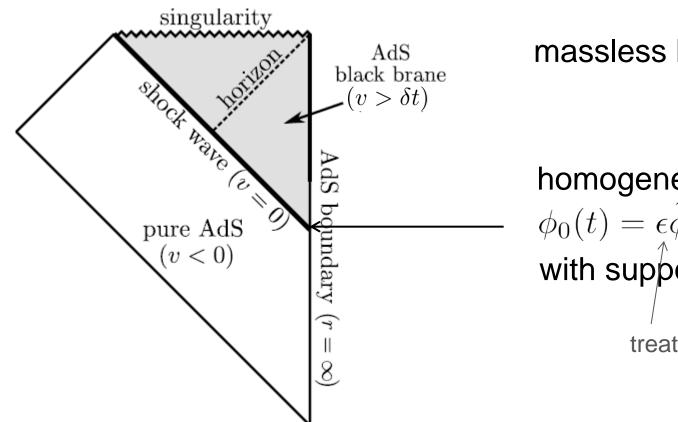
AdS

CFT

- Anti-de Sitter spacetime
- Black hole
- Black hole formation

- Conformal Field Theory
- Thermal state
- Thermalization

Weak-field BH formation in planar AdS_{d+1}



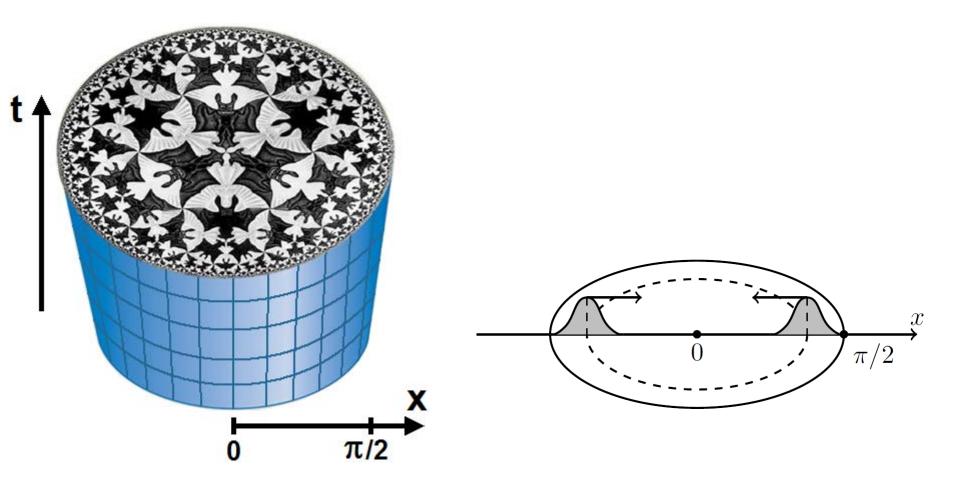
massless bulk scalar ϕ

homogeneous source

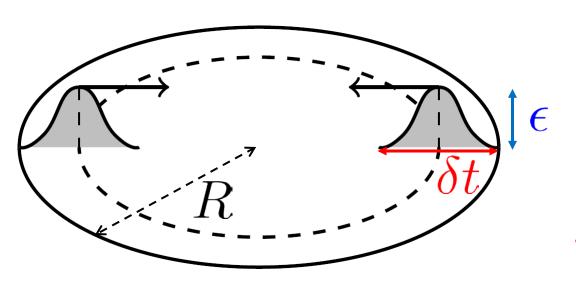
$$\phi_0(t) = \epsilon \tilde{\phi}_0(t)$$
 with support in $t \in [0, \delta t]$ treat as small parameter

results in formation of black brane with temperature $\,T \sim \frac{\epsilon^{2/d}}{\delta t}$

Global AdS: do spherical shells collapse?



It depends on amplitude ϵ and width δt



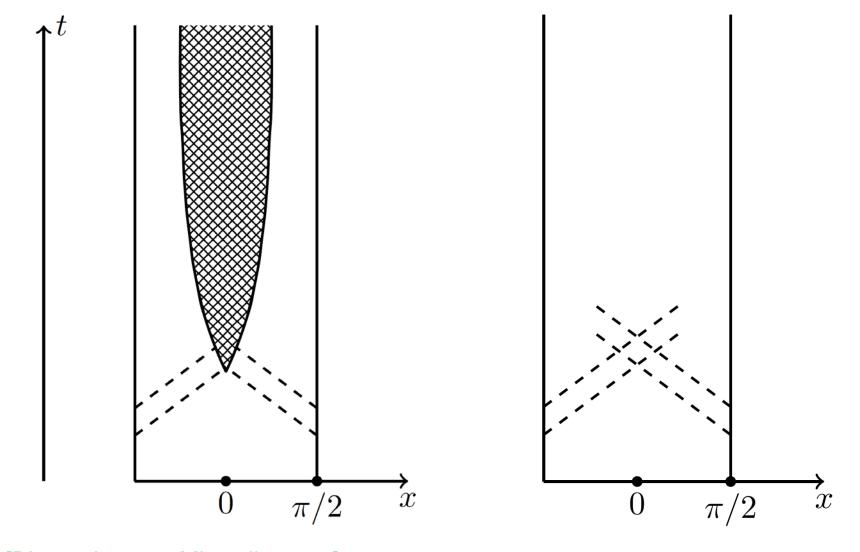
CFT on
$$\mathbb{R} \times S^{d-1}$$
 \uparrow radius R

$$x \equiv \frac{\delta t}{R}$$
 , consider $x \ll 1$

- $x \ll \epsilon^{2/d}$: large BH \longrightarrow cf. planar AdS
- $\epsilon^{2/d} \ll x \ll \epsilon^{\frac{1}{d-1}}$: small BH
- ullet $\epsilon^{rac{1}{d-1}} \ll x$: scattering

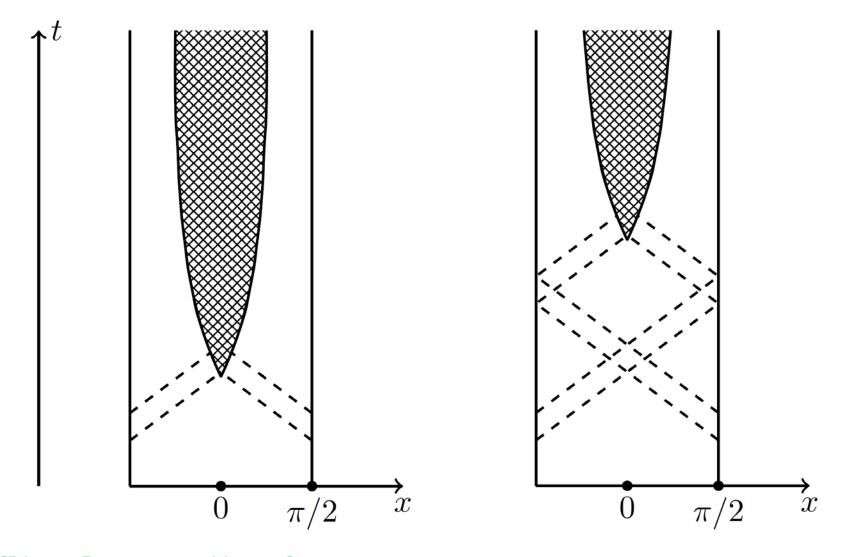
cf. Minkowski

Global AdS: large amplitude shells collapse, small amplitude shells scatter

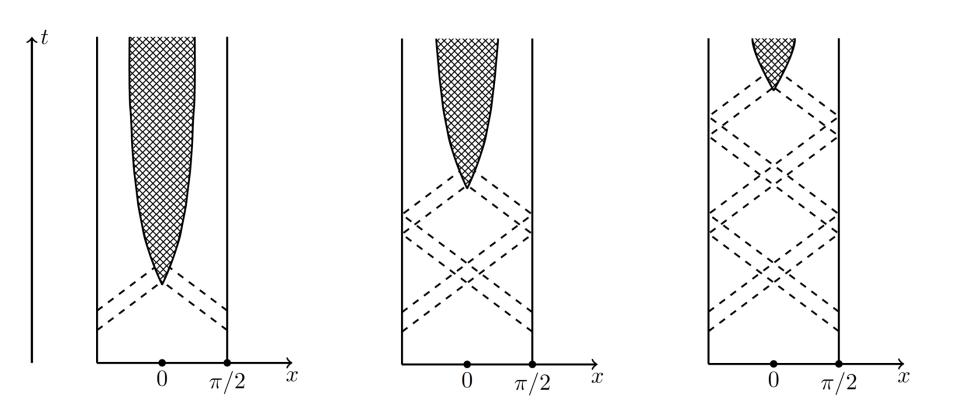


[Bhattacharyya, Minwalla 2009]

Some shells collapse after two attempts

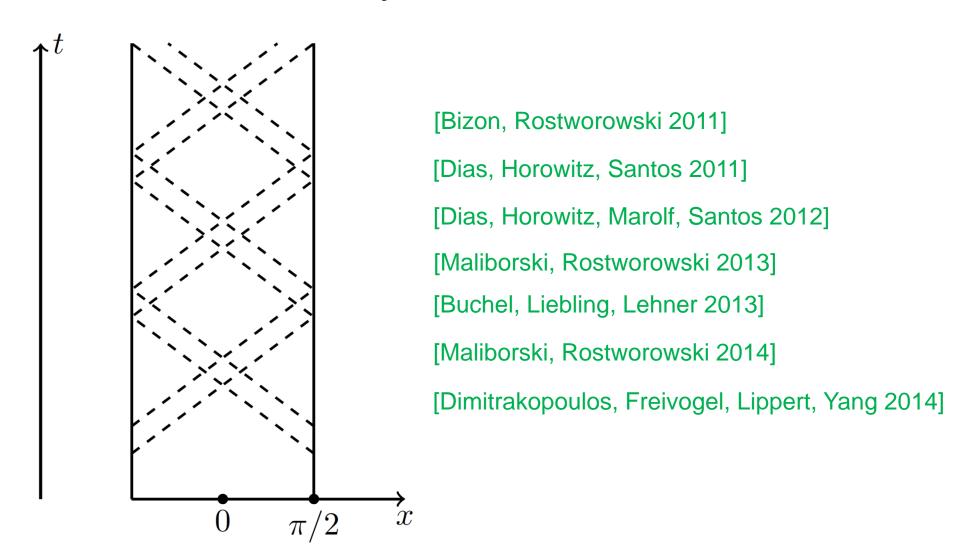


Some shells collapse after many attempts

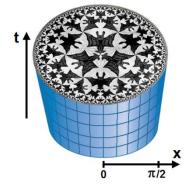


For initial conditions $\phi,\dot{\phi}\sim\epsilon$, time scale for collapse $\sim1/\epsilon^2$

Other shells do not seem to collapse: islands of stability?



Study scalar in AdS perturbatively



Spherically symmetric perturbations $\phi = \phi(x,t)$ and

$$ds^{2} = \frac{L^{2}}{\cos^{2} x} \left(\frac{dx^{2}}{A(x,t)} - A(x,t)e^{-2\delta(x,t)}dt^{2} + \sin^{2} x d\Omega_{d-1}^{2} \right)$$

Metric determined by constraints \rightarrow Solve e.o.m. for ϕ

Perturbative expansion
$$\phi = \epsilon \phi_{(1)} + \epsilon^3 \phi_{(3)} + \dots$$

Expansion in normal modes $e_n(x)$ with $\omega_n = d + 2n$

$$\phi_{(1)}(x,t) = \sum_{n=0}^{\infty} a_n \cos(\omega_n t + b_n) e_n(x), \quad \phi_{(3)}(x,t) = \sum_{n=0}^{\infty} c_n(t) e_n(x)$$

$$\rightarrow \ddot{c}_n + \omega_n^2 c_n = C_{ijkn} a_i a_j a_k \cos((\omega_i \pm \omega_j \pm \omega_k)t + (b_i \pm b_j \pm b_k)) + \dots$$
specific complicated integrals of AdS mode functions

[Bizon, Rostworowski 2011]

Secular terms invalidate perturb. theory

$$\phi(x,t) = \sum_{n=0}^{\infty} \left[\epsilon a_n \cos(\omega_n t + b_n) + \epsilon^3 c_n(t) + \ldots \right] e_n(x)$$

$$\ddot{c}_n + \omega_n^2 c_n = C_{ijkn} a_i a_j a_k \cos((\omega_i \pm \omega_j \pm \omega_k)t + (b_i \pm b_j \pm b_k)) + \ldots$$

Resonant if $\pm \omega_n = \omega_i \pm \omega_j \pm \omega_k$

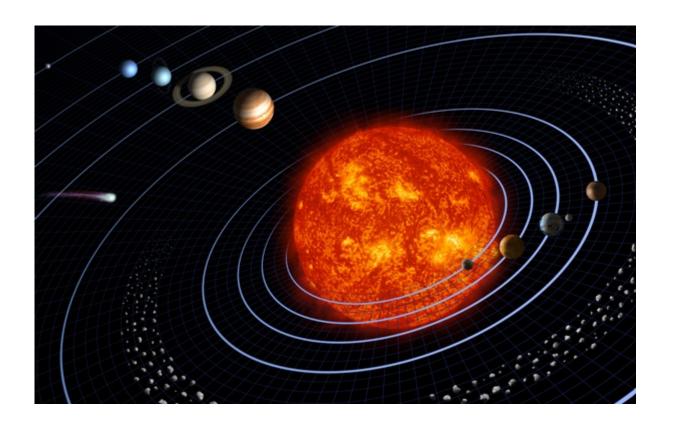
Integer normal mode spectrum $\omega_n = d + 2n \rightarrow$ many resonances!

Resonances lead to secular terms

$$c_n(t) = C_{ijkn}a_ia_ja_k \operatorname{tsin}(\omega_n t + (b_i \pm b_j \pm b_k)) + \dots$$

They become important on time scales $t \sim 1/\epsilon^2$

Secular terms were first studied in celestial mechanics



Stability of solar system: can perturbatively small corrections accumulate to give large effects on very long time scales?

Secular terms invalidate naive perturb. theory and must be resummed

Typical result of time-dependent perturbation theory:

$$x(t) = a\cos(\omega t + b) + (\dots)\epsilon + (\dots)\epsilon t\sin(\omega t + b) + (\dots)\epsilon t\cos(\omega t + b) + \mathcal{O}(\epsilon^2)$$

Resummation is needed:

- Poincaré-Lindstedt
- Multiscale analysis
- Renormalization group
- Averaging

Typical result of resummation:

$$x(t) = a(\epsilon t)\cos(\omega t + b(\epsilon t)) + (...)\epsilon + \mathcal{O}(\epsilon^2)$$

Secular terms invalidate naive perturb. theory for anharmonic oscillator

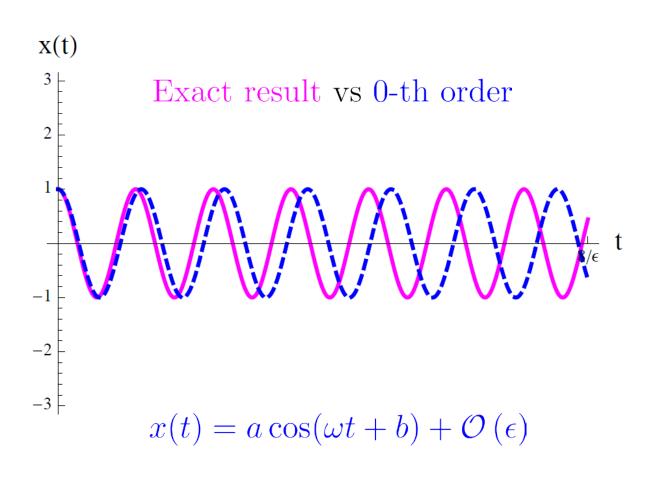
Particle in potential
$$V(x) = \frac{\omega^2}{2}x^2 + \frac{\epsilon}{4}x^4$$

Equation of motion: $\ddot{x} + \omega^2 x + \epsilon x^3 = 0$

$$\ddot{x} + \omega^2 x + \epsilon x^3 = 0$$

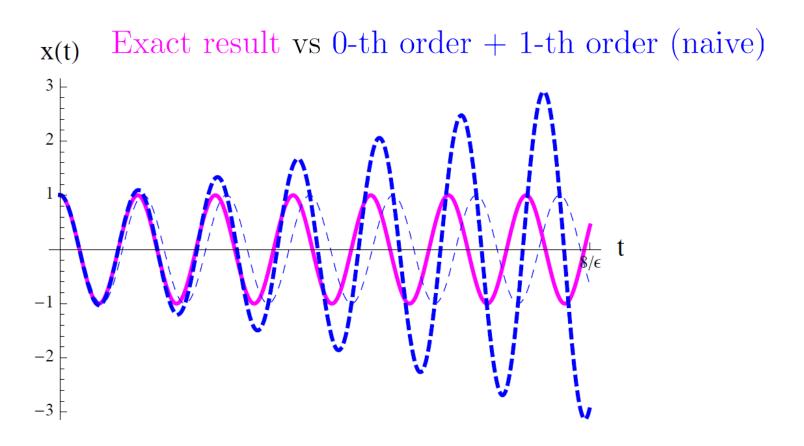
Perturbative expansion: $x(t) = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + \dots$

Secular terms invalidate naive perturb. theory for anharmonic oscillator



Plot: $\omega = 1, \ \epsilon = 0.2, \ a = 1, \ b = 0$

Secular terms invalidate naive perturb. theory for anharmonic oscillator



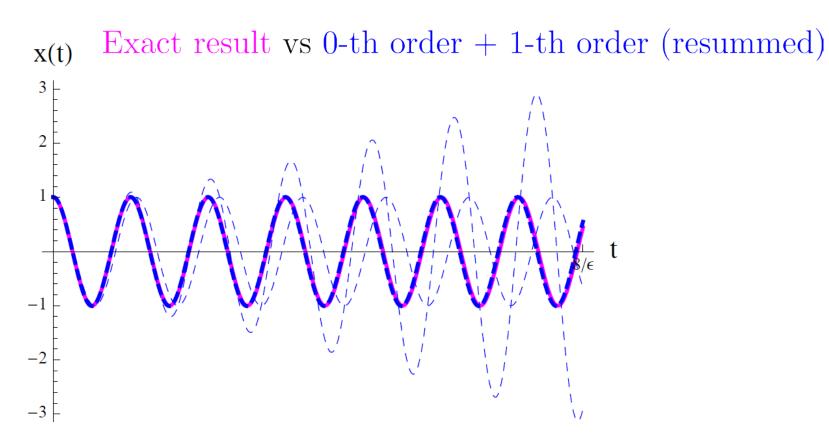
$$x(t) = a\cos(\omega t + b) + \left(\frac{a^3}{32\omega^2}\cos(3\omega t + 3b) - \frac{3a^3}{8\omega}t\sin(\omega t + b)\right)\epsilon + \mathcal{O}\left(\epsilon^2\right)$$

Resummation cures perturbation theory

Exact result vs 0-th order + 1-th order (resummed) x(t)

$$x(t) = a\cos\left(\omega t + b + \frac{3a^2}{8\omega^2}\epsilon t\right) + \frac{a^3}{32\omega^2}\cos\left(3\omega t + 3\left(b + \frac{3a^2}{8\omega^2}\epsilon t\right)\right)\epsilon + \mathcal{O}\left(\epsilon^2\right)$$

The secular term has been resummed into an innocent frequency shift



$$x(t) = a\cos\left(\left(\omega + \frac{3a^2}{8\omega^2}\epsilon\right)t + b\right) + \frac{a^3}{32\omega^2}\cos\left(3\left(\omega + \frac{3a^2}{8\omega^2}\epsilon\right)t + 3b\right)\epsilon + \mathcal{O}\left(\epsilon^2\right)$$

[Poincaré, Lindstedt]

Other secular terms can also be resummed

$$x(t) = a\cos(\omega t + b) + (\dots)\epsilon + (\dots)\epsilon t\sin(\omega t + b) + (\dots)\epsilon t\cos(\omega t + b) + \mathcal{O}(\epsilon^2)$$

Resummation methods used for AdS (in)stability problem:

Poincaré-Lindstedt

[Bizon, Rostworowski 2011; Dias, Horowitz, Santos 2012; Maliborski, Rostworowski 2013]

Multiscale analysis

[Balasubramanian, Buchel, Green, Lehner, Liebling 2014]

Renormalization

[BC, Evnin, Vanhoof 2014]

Averaging

[Basu, Krishnan, Saurabh 2014; BC, Evnin, Vanhoof 2015]

Typical result of resummation:

$$x(t) = a(\epsilon t)\cos(\omega t + b(\epsilon t)) + (...)\epsilon + \mathcal{O}(\epsilon^2)$$

Main features of our approach

• Fully analytic (no numerics, no truncations to finite number of normal modes)

- Uses several resummation methods (equivalent at first order, but yield complementary insights, e.g. accuracy theorem from averaging method)
- All-mode results bring short-wavelength regime within reach
 - → will hopefully be relevant for study of (absence of) turbulence (see [de Oliveira, Pando Zayas, Rodrigues 2013] for numerical results on turbulence)

Renormalization leads to flow equations

Consider naive perturbation series

$$c(t) = a\cos(\omega t + b) + \epsilon^2 D(a, b) t \sin(\omega t + b) + \epsilon^2 E(a, b) t \cos(\omega t + b) + \dots$$

Introduce arbitrary time τ , write $t = (t - \tau) + \tau$, and absorb τ contribution in integration constants:

$$c(t) = a_R \cos(\omega t + b_R) + \epsilon^2 D(a_R, b_R)(t - \tau) \sin(\omega t + b_R)$$
$$+ \epsilon^2 E(a_R, b_R)(t - \tau) \cos(\omega t + b_R) + \dots$$

with

$$a = a_R - \epsilon^2 E(a_R, b_R) \tau + \dots$$
 and $b = b_R + \frac{\epsilon^2}{a_R} D(a_R, b_R) \tau + \dots$

Next impose
$$\frac{\partial c}{\partial \tau} = 0$$
 and set $\tau = t$. (Cf. RG in QFT.)

Renormalization leads to flow equations

$$c(t) = a_R \cos(\omega t + b_R) + \epsilon^2 D(a_R, b_R)(t - \tau) \sin(\omega t + b_R)$$
$$+ \epsilon^2 E(a_R, b_R)(t - \tau) \cos(\omega t + b_R) + \dots$$

with

$$a = a_R - \epsilon^2 E(a_R, b_R) \tau + \dots$$
 and $b = b_R + \frac{\epsilon^2}{a_R} D(a_R, b_R) \tau + \dots$

Next impose $\frac{\partial c}{\partial \tau} = 0$ and set $\tau = t$.

Flow equations:
$$\begin{cases} \frac{da_R}{d\tau} = \epsilon^2 E(a_R, b_R) \\ a_R \frac{db_R}{d\tau} = -\epsilon^2 D(a_R, b_R) \end{cases}$$

Amplitude and phase acquire slow time-dependence.

Averaging method yields precise bounds

Periodic normal form:
$$\frac{d\vec{x}}{dt} = \epsilon \vec{f}(\vec{x},t)$$
 periodic in t with period 2π

Averaged version of
$$\vec{f}$$
: $\vec{f}_{avr} = \frac{1}{2\pi} \int_0^{2\pi} dt \, \vec{f}(\vec{x}, t)$

Averaged equation:
$$\frac{d\vec{x}_{\rm avr}}{dt} = \epsilon \vec{f}_{\rm avr}(\vec{x}_{\rm avr})$$

Accuracy theorem: $\forall T, \exists c, \epsilon_1$ s.t.

$$|\vec{x}(t) - \vec{x}_{\rm avr}(t)| < c\epsilon \qquad \text{for} \qquad \begin{cases} 0 < t < \frac{T}{\epsilon} \\ 0 < \epsilon < \epsilon_1 \end{cases}$$

 \rightarrow Error of order ϵ on time interval of order $1/\epsilon$

Oscillatory system can be converted to periodic normal form __ approximate as cubic

$$\vec{c}_j + \omega_j^2 \, c_j = S_j(c)$$

Hamiltonian form:
$$\dot{c}_j = \pi_j, \quad \dot{\pi}_j = -\omega_j^2 c_j + S_j(c)$$

Introduce new (complex) variables $\alpha_i(t)$:

$$\begin{cases} c_j = \epsilon(\alpha_j e^{-i\omega_j t} + \bar{\alpha}_j e^{i\omega_j t}) \\ \pi_j = -i\epsilon\omega_j(\alpha_j e^{-i\omega_j t} - \bar{\alpha}_j e^{i\omega_j t}) \end{cases}$$

$$\Rightarrow \dot{\alpha}_j = \epsilon^2 S_j(\alpha, \bar{\alpha}, t)$$

- \rightarrow Averaging will give reliable results on time interval of order $1/\epsilon^2$ (unless amplitude growth invalidates cubic approximation)
- → Same for multiscale and RG (equivalent at this order)

Many flow channels are closed

$$\phi(x,t) = \sum_{n=0}^{\infty} \left[\epsilon a_n \cos(\omega_n t + b_n) + \epsilon^3 c_n(t) + \ldots \right] e_n(x)$$

$$\ddot{c}_n + \omega_n^2 c_n = C_{ijkn} a_i a_j a_k \cos((\omega_i \pm \omega_j \pm \omega_k)t + (b_i \pm b_j \pm b_k)) + \dots$$

Normal mode spectrum $\omega_n = d + 2n \rightarrow \text{resonances if}$

- $\omega_i + \omega_j + \omega_k \equiv \omega_n$ (dynamically forbidden)
- $\bullet \quad \omega_i + \omega_j \omega_k = \omega_n$
- $\omega_i \omega_j \omega_k = \omega_n$ (dynamically forbidden)
- $-\omega_i \omega_j \omega_k = \omega_n$ (positivity)

[BC, Evnin, Vanhoof 2014; for lowest modes implicit in earlier work]

Flow equations conserve three charges

Introduce
$$\alpha_k = \frac{a_k}{2} e^{-ib_k} \rightarrow$$
 flow equations: $\frac{d\alpha_j}{d\tau} = \frac{i\epsilon^2}{\omega_j} \frac{\partial W}{\partial \bar{\alpha}_j}$, with

$$W = \sum_{i} T_{i} |\alpha_{i}|^{4} + \sum_{i,j}^{i \neq j} R_{ij}^{S} |\alpha_{i}|^{2} |\alpha_{j}|^{2} + \left(\sum_{i} \omega_{i}^{2} |\alpha_{i}|^{2}\right) \left(\sum_{j} (A_{jj} + \omega_{j}^{2} V_{jj}) |\alpha_{j}|^{2}\right) + \sum_{\substack{i,j,k,l \\ \{i,j\} \, \cap \, \{k,l\} \, = \, \emptyset\\ \omega_{i} + \omega_{j} \, = \, \omega_{k} \, + \, \omega_{l}}} S_{ijkl} \alpha_{i} \alpha_{j} \bar{\alpha}_{k} \bar{\alpha}_{l}$$
(coefficients are specific complicated integrals of AdS mode functions)

Can be obtained from
$$L = \sum_k i\omega_k \left(\bar{\alpha}_k \frac{d\alpha_k}{d\tau} - \alpha_k \frac{d\bar{\alpha}_k}{d\tau}\right) + 2\epsilon^2 W$$

(related to original scalar field Lagrangian by averaging)

Symmetries of this Lagrangian lead to 3 conserved charges

$$\alpha_n \mapsto e^{i\omega_n \theta} \alpha_n \quad \Rightarrow \qquad E = \sum_n \omega_n^2 |\alpha_n|^2 \quad \text{observed previously by [Balasubramanian, Buchel, Green, Lehner, Liebling 2014]}$$

$$\alpha_n \mapsto e^{i\theta} \alpha_n \quad \Rightarrow \quad J = \sum_n \omega_n |\alpha_n|^2 \quad \text{(closed flow channels crucial!)}$$

$$\tau \mapsto \tau + \tau_0 \quad \Rightarrow \quad W \quad \text{(quartic "interaction energy")}$$

[BC, Evnin, Vanhoof 2015; cf. Basu, Krishnan, Saurabh 2014 for probe scalar field]

E and J conservation implies dual cascades

$$J = \sum_{n} \omega_n |\alpha_n|^2 \equiv \sum_{n} N_n$$

$$E = \sum_{n} \omega_n^2 |\alpha_n|^2 = \sum_{n} \omega_n N_n$$

"particle number"

"free motion energy"

Transferring all energy to higher-n modes (which have more energy per particle) would decrease J

→ some of the energy must flow to lower-n modes!

This was indeed observed in [Balasubramanian, Buchel, Green, Lehner, Liebling 2014]

Deeper reason for closed flow channels?

- Channels are open in other models:
 - spherical cavity in 4d Minkowksi space with D boundary conditions [Maliborski 2012]
 - hard wall model in AdS₄ with N boundary conditions
 [BC, Lindgren, Taliotis, Vanhoof, Zhang 2014]
- Toy model: probe self-interacting scalar

[Basu, Krishnan, Saurabh 2014]

> selection rules beyond spherical symmetry [Yang 2015]

Hidden SU(d) symmetry of AdS_{d+1} mode functions

[Evnin, Krishnan 2015]

Holographic thermalization in finite volume

entanglement entropy oscillations

[Abajo-Arrastia, da Silva, Lopez, Mas, Serantes 2014]

revivals of the initial state

[da Silva, Lopez, Mas, Serantes 2014]

pre-thermalization: small BH as intermediate state

[Dimitrakopoulos, Freivogel, Lippert, Yang 2014]

cf. thermalization (or not!) in infinite-volume hard wall model

```
[BC, Kiritsis, Rosen, Taliotis, Vanhoof, Zhang 2014; BC, Lindgren, Taliotis, Vanhoof, Zhang 2014]
```

Conclusions

- We have introduced a fully analytic framework for the study of AdS (in)stability.
- Resummation of secular terms leads to flow equations.
- The first-order flow equations are reliable on the $1/\epsilon^2$ time scale set by gravitational interactions, unless amplitude growth makes higher order corrections important.
- Many flow channels are closed, and the flow equations exhibit three conservation laws which restrict resonant energy transfer.
- Deeper (symmetry) reason for conservation laws?
- Quantitative study of short-wavelength regime?