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Minimal viscosity and AdS/RHIC

• Policastro, Son, Starinets (2001)

• Teaney (2003)
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FIG. 3: Elliptic flow v2 as a function of pT for different values of Γs/τo. The data points are four

particle cummulant data from the STAR collaboration [3]. Only statistical errors are shown. The

difference between the ideal and viscous curves is linearly proportional to Γs/τo.
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as a function of transverse momentum KT . The solid symbols are from the STAR collaboration

[11] and the open symbols are from the PHENIX collaboration [12]. For clarity, the experimental
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Seductivity in AdS/RHIC

• Quark Matter 2006 (McLerran)

• Quark Matter 2012 (Wiedemann)

“AdS/CFT MUST be accountable to the same scientific standards as are 
other computations,  or else it is not science. “  

“It is worth recalling that QCD does not fall into the class of field theories 
with known gravity dual....In the light of this caveat, it is truly remarkable 
to what extent the AdS/CFT correspondence has offered a framework for 
understanding central open questions in the phenomenology of heavy ion 
collisions.”
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Quantum Oscillations

• Sebastian

2

Our results are in good agreement with some of the observed
trends.
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FIG. 1. Spectral functions in the presence of static and fluctuating
order. (a) The color density plot displays the electron spectral func-
tion in the presence of long-range bidirectional bond density wave
(BDW) at zero magnetic field (in the unfolded Brillouin zone). Such
long-ranged BDW is likely to be present only in a strong magnetic
field and will not be seen in ARPES experiments. Annotations are
superimposed to highlight aspects of the spectral density. In black,
the Fermi surface used for our computation. Dashed arrows mark
the wavevectors of the BDW. The BDW causes reconstruction of the
Fermi surface and the formation of an electron-like pocket, marked
in red, and two hole-like pockets, marked in blue. The pocket con-
tours are obtained by semiclassical analysis as described in sec. III A.
The parameters are t1 = 1.0, t2 = �0.33, t3 = 0.03, µ = �0.9604,
p = 10%, Px

0 = Py
0 = 0.15, � = 0.317. (b) Electron spectral func-

tion in the presence of fluctuating superconducting and bond density
wave correlations. The parameters are p = 11%, �0 = Px

0 = Py
0 = 1,

T/t1 = 0.06, g/⇤2 = 0.2, ⇢S = 0.05, ⇤ = 2. The details are dis-
cussed in sec. I C (c) Quantum oscillations in the density of states
induced by an applied magnetic field: red lines mark peaks associ-
ated with the electron pocket (frequency 432 T or 1.55% of Brillouin
zone), and blue lines those from the hole pockets (frequency 90.9 T
or 0.326% of Brillouin zone).

I. RESULTS

A. Model

We base our analysis on the following model hamiltonian

H =
X
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Here r labels the sites of a square lattice and the vector a

runs over first, second and third neighbors, and also on-site
(a = 0). The first term is the usual kinetic term, with hopping
parameters ta.

The second term couples the electron to the superconduct-
ing order parameter. The coe�cient �

a

specifies the super-
conducting form factor and the field  is the superconducting
order parameter: it can be short-ranged or acquire an expecta-
tion value.

The third term couples the fermion to the bond order. The
index i labels di↵erent wavevectors Qi, the coe�cients Pi

a

specify the corresponding form factors and the fields �i are
the order parameters, which can also be long-ranged or fluc-
tuating. Throughout this work we consider a specific form
of a density wave which resides primarily upon the bonds of
the lattice: this is not crucial for the quantum oscillations, but
is important for the electron spectral function at intermediate
temperatures. Building on recent experimental and theoreti-
cal work [34–48] we use a bond density wave (BDW) with a
d-form factor.

Both interaction terms can be obtained by appropriate de-
coupling of the Heisenberg interaction in the particle-hole and
particle-particle channels [35].

We use a d-wave superconducting form factor �±x̂

=
+�0/2,�±ŷ

= ��0/2 and a bond order with the same form
factor Pi

±x̂

= +Pi
0/2, P

i
±ŷ

= �Pi
0/2 [34, 35] which is supported

by recent experimental evidence [47, 48] although a small s-
wave component may also be present [49]. We consider a set
of two wavevectors Q1 = 2⇡(�, 0) and Q2 = 2⇡(0, �), with
� ⇠ 0.3, also based on experimental evidence.

A summary of our main results appears in fig.1, which
shows the electronic spectral functions in the presence of
long-range incommensurate BDW (fig.1a) and in the presence
of fluctuating BDW and superconductivity (fig.1b).

B. Quantum oscillations from density wave order

Fig. 1(a) illustrates Fermi surface reconstruction by a bi-
directional density wave modulation with wavevectors paral-
lel to the Cu-O bonds and period ⇠ 3 lattice spacings. We
constrain the Fermi surface by spectroscopy experiments [50],
and use the remaining freedom in hopping parameters to ob-
tain an electron pocket of about the right size. While our anal-
ysis mainly centers around the experiments on YBCO, which
has a sligthly orthorombic lattice, for simplicity we assume

CDW order in underdoped cuprates “hard” pseudogap at T=0
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Quantum Oscillations

• Sebastian

• Holography 
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Why we can reasonably hope that AdS/CFT is relevant.

• AdS/CFT: new insight into strongly coupled systems at finite 
density:

AdS UV 

Scale invariant hyperscaling 
violating theories

Quantum smectics

AdS2 metals
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Quantum Condensed Matter Physics - Lecture

Notes

Chetan Nayak

November 5, 2004
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Benchmarking AdS/CFT   

• Erdmenger: Kondo effect in Holography
Kondo models from gauge/gravity duality

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Top-down brane realization
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3-7 strings: Chiral fermions  in 1+1 dimensions
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5-7 strings: Scalar (tachyon)
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Kondo models from gauge/gravity duality

Scale generation

Divergence of Kondo coupling determines Kondo temperature TK

Transition temperature to phase with condensed scalar: Tc

Tc < TK

12
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RG flow
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Holography describes new states of matter

• A Holographic superconductor is novel

Non-canonical scaling dimension

Emergence from criticality
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Holography describes new states of matter

• Experimental: Order parameter susceptibility 
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Why we can reasonably hope that AdS/CFT is relevant.

• AdS/CFT: new insight into strongly coupled systems at finite 
density:

AdS UV 

Scale invariant hyperscaling 
violating theories

Quantum smectics

AdS2 metals
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Holography describes new states of matter

• Emergent scale invariant hyperscaling violating theories

\

• Experimental signature: Thermoelectric response

ds
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Supported by an ordered state

• There is invariance under:

xi → λ xi , t → λz t , r → λ r , ds → λ
θ
d ds

• The entropy scales as

S ∼ T
d−θ
z

which gives an interpretation to the hyperscaling violation exponent.

• There is a third exponent, associated with the charge density, the con-
duction exponent ζ:

Gouteraux+Kiritsis, Gouteraux

At = Q rζ−z

• If non-zero it also violates hyperscaling.

Holographic conductivity, Elias Kiritsis

10-

� = �
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Inverse Matthiessen law: two independent sectors
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Thermoelectric response and Momentum relaxation 

• Hall angle in cuprates

• Theory (e.g. Drude, memory matrix)

• Holography 
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T 2
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�
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does not contribute to �
xy

3

trick is to find quantities that are independent of the
bulk radial coordinate. These are provided for us by
the perturbed Maxwell equations, which give us the two
constant fluxes

Jx = �Z(�)U�a

0
x + Q�htx � BZ(�)U�hry

Jy = �Z(�)U�a

0
y + Q�hty + BZ(�)U�hrx (4)

from which we can evaluate the conductivities via the
ratios

�xx =
Jx

Ex
�xy =

Jy

Ex

Since Jx and Jy are constants, we can calculate these
ratios anywhere in the bulk. The simplest place to do
this is at the horizon, where the constraints of regularity
are enough to determine the conductivity. That is, we
demand the smooth behaviour

�axi = � Ei

4⇡T

ln(r � r+) + O(r � r+)

��i = O((r � r+)0)

�htxi = U�hrxi + O(r � r+) (5)

The quickest way to evaluate the conductivity is to plug
these requirements into the t�x component of Einstein’s
equations. This results in a pair of simultaneous equa-
tions for the value of �htxi at the horizon.

(B2
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Inverting these equations gives the values of the graviton
at the horizon, from which we can proceed to extract the
Hall conductivity
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We are now able to turn to the question of ultimate in-
terest, which is to calculate the Hall angle ✓H = �xy/�xx

for holographic theories in a magnetic field. Whilst trans-
port properties in a magnetic field can be unfamiliar, the
Hall angle is especially simple. In many ways it behaves
like the familiar DC conductivity- in the absence of a
lattice it is an infinite delta function, that will now be
resolved via momentum dissipation into a Drude peak.

The holographic results above imply that the Hall an-
gle takes the somewhat clumsy form

✓H =
BQ

e

2V
k

2�


B

2
Z

2 + Q2 + 2Ze

2V
k

2�

B

2
Z

2 + Q2 + Ze

2V
k

2�

�����
r+

(7)

Holes Particles

B

FIG. 2: In the presence of a magnetic field, the particle-hole
pairs responsible for �

ccs

are deflected in the same direction.
They therefore cannot carry a Hall current.

Whilst this formula is complicated, we can extract the
physics by noticing that for all geometries the quantity
in square brackets is simply a number bounded between
one and two. We can therefore deduce that the scaling of
the Hall angle is predominantly controlled by the overall
factor outside the brackets which may be written as

✓H ⇠ 4⇡BQ
k

2�(�)s

����
r+

(8)

Furthermore, for small magnetic fields the thermody-
namic and lattice factors appearing in (1) and (8) must
agree and so we may write

✓H ⇠ B

Q�diss (9)

The central point of this letter is the observation that,
in contrast to the DC conductivity, there is only a single
contribution to the Hall angle.

In particular, there is no additive contribution to the
Hall angle analogous to the ‘charge-conjugation symmet-
ric’ conductivity in �DC . In fact, at least at weak cou-
pling, it is easy to see why this should be the case. Re-
call that this current was carried by particle-hole pairs
moving in opposite directions. Upon adding a magnetic
field, these pairs are deflected in the same direction and
hence they do not contribute to the Hall conductivity �xy

(Fig. 2). This simple observation continues to hold in
strongly coupled theories - �xy is odd under charge con-
jugation symmetry and hence must vanish when Q = 0.

Motivated by the experimental results, our goal is to
understand how we can obtain di↵erent scalings in the
Hall angle and DC conductivity. It is easy to repro-
duce the original puzzle of the Hall angle. For geometries
where the lattice is very small, �diss � 1, then the DC
conductivity is dominated by the second term in (1), and
so scales in the same manner as the Hall angle.

This result should not be a surprise. In this regime, the
correct framework to describe strongly coupled transport
is the memory matrix [9, 19, 20]. Within this framework,
every operator that has a projection onto the momentum
operator, such as the electric and Hall currents, is con-
trolled by the momentum relaxation rate. The physics
is dominated by this single timescale and hence the Hall
angle and DC conductivity must agree.

2

We assume that the geometry has a regular horizon at
r = r+ where the gauge field vanishes a ⇠ (r � r+) and
U ⇠ 4⇡T (r � r+). As the radial coordinate r ! 1 we
assume that the metric approaches anti-de Sitter space
and that the gauge field approaches a constant which is
interpreted as the chemical potential, µ, in the boundary.

Associated to the chemical potential is a constant
charge density, Q, which is identified with the conserved
electric flux of the bulk theory Q = �e

2V
Z(�)a0. In

order to have a finite conductivity at Q 6= 0 we must
break translational invariance. This is done by demand-
ing that the scalar fields are non-vanishing on the bound-
ary �1 ! kx, �2 ! ky as r ! 1. This corresponds to
introducing oscillatory lattices in the scalar fields �i.

DC conductivity Before proceeding to calculate the
Hall conductivity, it will be important to first highlight
some features of the DC conductivity of these holographic
models. There has recently been a large amount of
progress in obtaining analytic expressions for the trans-
port properties of holographic theories [11–16]. The key
idea [11] is that the DC conductivity does not evolve in
the radial direction and hence can be expressed solely in
terms of horizon data. In particular, for the above holo-
graphic models, the resulting expression derived in [13]
is

�DC =


Z(�) +

4⇡Q2

k

2�(�)s

�

r+

(1)

where s = e

2V
/4⇡|r+ is the entropy density.

An important observation is the division of the con-
ductivity into two distinct terms. A precise distinction
can be made by comparison to the electrothermal con-
ductivity, ↵̄, computed in [16]

↵̄ =


4⇡Q

k

2�(�))

�

r+

(2)

from which we can see that the first term in the DC
conductivity, Z(�)|r+ , does not contribute to the elec-
trothermal conductivity. Such a term is already present
at Q = 0, where the theory is charge conjugation sym-
metric. In a weakly coupled system one can understand
this ‘charge conjugation symmetric’ conductivity as aris-
ing from particle hole pairs moving in opposite directions,
as illustrated in Fig. 1. However, we stress that for the
holographic theories discussed here, which are strongly
interacting and contain no quasiparticles, this intuition
is suggestive at best. Nevertheless, since �DC is even
under charge conjugation symmetry, there is a non-zero
conductivity for Q = 0 even at strong coupling.

A more surprising and novel feature of these holo-
graphic theories is that this ‘charge-conjugation symmet-
ric’ conductivity �ccs = Z(�)|r+ remains present even at
finite density. For the case of relativistic free fermions,
for instance in graphene, the addition of a chemical po-
tential would introduce a gap for particle-hole creation

Jx

Px

Holes Particles

FIG. 1: At weak coupling, the conductivity of a
charge-conjugation symmetric theory can be understood as

arising from particle hole pairs of opposite momenta.

proportional to µ and we would expect such a term to be
exponentially suppressed below this scale. In contrast,
for the strongly coupled holographic theories discussed
here, �ccs can have a power-law dependence on T even
at finite density [17].

When Q 6= 0 we also have to consider the second term
in (1). For a translationally invariant theory this term
would diverge, but is rendered finite in our models by
the presence of the lattice. As we outlined in the intro-
duction we will refer to this term, which is associated
with momentum dissipation, as �diss. The key point of
(1) is that the finite density conductivity consists of two
terms added together - that is they follow an ‘inverse-
Matthiessen’ law

�DC = �ccs + �diss (3)

In particular we reiterate that within these holographic
models both of these terms can remain at low energies,
even in the presence of a chemical potential.
Hall conductivity Having explained the salient fea-

tures of the DC conductivity, we now wish to generalise
the techniques of [13] to calculate the Hall conductiv-
ity. In Lorentz invariant theories, the conductivity in the
presence of a magnetic field is constrained to obey the
simple form �xx = 0, �xy = Q/B which was originally
reproduced from holography in [18].

Calculating the Hall conductivity in theories without
translational invariance is more complicated. To do this,
we consider the same class of models as before, but we
add a magnetic field Ay = Bx to the background. In
order to calculate the conductivity, we perturb the back-
ground solution by a constant electric field Ax = �Ext

as performed in [13]. The bulk equations then force us
to turn on other fields, for which a consistent ansatz is

Axi = �Eit + �axi(r)

gtxi = e

2V
�htxi(r)

grxi = e

2V
�hrxi(r)

�i = kxi + ��i(r)

where i runs over (1, 2) and we of course mean that x1 =
x, x2 = y. As is well-known in these calculations, the

�
css

⇠ 1

T
, �

relax

⇠ 1

T 2

Blake, Donos
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Coherent and Incoherent metals

• Gauntlett

Navier-Stokes on the horizon determines holographic 
transport

�
ccs

⇠ �
relax

, ⌧
relax

⇠ ⌧
other

�
ccs

⌧ �
relax

, ⌧
relax

� ⌧
other

Coherent Drude regime Incoherent metals

For small deformations from AdS-RN we find Drude peaks for 
small T corresponding to coherent metals. 

�/µk/µ

AdS2 ⇥ R2

AdS-RN
This can be understood 
by examining T=0 
behaviour of solutions:

For small deformations from AdS-RN we find Drude peaks for 
small T corresponding to coherent metals. 

�/µk/µ

AdS2 ⇥ R2

AdS-RN
This can be understood 
by examining T=0 
behaviour of solutions:

New

For larger deformations, for specific models, we find a transition 
to new behaviour.  The new ground states - which break 
transaltions - can be both insulators and also incoherent metals!

See also: [Gouteraux][Andrade,Withers]

• Evaluate currents on the horizon and examine the linear 
equations of motion satisfied by the perturbation

Define vi ⌘ �g(0)it w ⌘ �a(0)t

p ⌘ 4⇡T
�g(0)rt

G(0)
+ �g(0)it gij(0)rj lnG(0)

Find riv
i = 0

r2w � vi ri(a
(0)
t ) = �riE

i

r2vj +Rjiv
i � a(0)t rjw �rj p = 4⇡T ⇣j + a(0)t Ej

Linear, time-independent, forced Navier-Stokes equations for a 
charged, incompressible fluid on the curved black hole horizon!

Note: no hydrodynamic limit has been taken.
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Coherent and Incoherent metals

• Hartnoll

�
ccs

⇠ �
relax

, ⌧
relax

⇠ ⌧
other

�
ccs

⌧ �
relax

, ⌧
relax

� ⌧
other

Coherent Drude regime Incoherent metals

The Lorenz ratio
✓

j
jQ

◆
=

✓
� T↵
T↵ T

◆✓
E

�(rT )/T

◆
• Matrix of  conductivities:

 = � ↵2T

�

• Thermal conductivity at j = 0.

• Lorenz ratio:

L =


�T

Wiedemann-Franz law
• In a conventional metal (if  you can 

subtract the phonon contribution to 
thermal transport):

/�/�

7

�
, ,, ,,,

L0 =
⇡2

3

Elastic  
disorder scattering

Elastic  
phonon scattering

Fermi Dirac

Scaling in cuprates
• We found that the exponents:

z =
4

3
, ✓ = 0 , � = �2

3
.

Matched multiple scalings in transport 
quantities in the cuprates. The Lorenz 
ratio is particularly interesting:

(Hartnoll-Karch ’15)

L ⇠ T�2�/z

Need a nonzero Φ to get anything other 
than a constant! (cf. Khveshchenko)

The three exponents
• z: dynamical critical exponent  
 

• θ: hyperscaling violation exponent  
 

• Φ: anomalous dimension for charge

⇠ ⇠ 1

T 1/z

f ⇠ T · T (2�✓)/z

n ⇠ T (2�✓+�)/z

(Hartnoll-Karch ’15)
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From metals to insulators

• Kiritsis

Novel insulators: strong dissipation

14-

The conductivity

• The conductivity is obtained by solving for the fluctuations of the gauge
field, δAi = ai(r)eiωt.

1

Z

√
grr
gtt
∂r

(

Z

√
gtt
grr

a′i

)

+

[
grr
gtt
ω2 −

Q2 grr
Zg2xx

]

ai = 0

• By a field and coordinate redefinitions it can be mapped into a Schrödinger
problem

−ψ′′ + Veff ψ = ω2ψ

Veff = V1 +Q2 V2

14� = �
ccs

+ �
relax

�
ccs

⇠ !�↵

�
relax

⇠ 1

T � i!

Scaling in AC conductivity

Van Der Marel et al.

Holographic conductivity, Elias Kiritsis

5-

Van der Marel et al
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From metals to insulators

• Phillips

Mott insulator and doping

Scaling in AC conductivity

Anomalous conductivity requires anomalous physics

optical gap

Ne↵(⌦) =
2mVcell

⇡e2

Z ⌦

0
�(!)d!

Ne↵ / x

}x

Tuesday, May 26, 15

d lnNe↵

d lnx
6= 1

Uchida, et al. Cooper, et al.

Tuesday, May 26, 15

Donos and Gauntlett 
(gravitational crystal)

Drude conductivity

n⌧e2

m

1

1� i!⌧

no power law!!
B!�2/3

Tuesday, May 26, 15
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Re� ⇠ Ld�2QFT Ward-Identity
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From metals to insulators

• Ling

Optical conductivity in a holographic CDW: MIT

MIT in a holographic Lattice

•  Summary��
1�Superconductivity 

3�CDW 

2�Drude law for metals 

1
DC

i
σσ
ωτ

=
−

1( ) ( )K
i ασ ω δ ω
ω

⎛ ⎞∝ −⎜ ⎟⎝ ⎠

2 2
0

( )
1 (1 / )CDW

K
i

τσ ω
ωτ ω ω

=
− −

Theory�The breaking of translational symmetry 
Strategy�Introducing lattice structure 

Theory�The breaking of U(1) gauge symmetry 
Strategy�Introducing a complex scalar field   

Theory�Spontaneously breaking of translational    
               symmetry 
Strategy�Introducing a topological term 

Holographic Charge Density Waves (HCDW) 

3

FIG. 3: Solutions of the scalar field and the time component
of the gauge field � for T = 0.8Tc.
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FIG. 4: The optical conductivity for CDW, where the black
horizontal line denotes the corresponding optical

conductivity for AdS-RN black hole associated with the
second gauge field.

We assume that the fluctuations of all the fields have
a time dependent form as e�i!t but independent of the
coordinate y. To solve the fluctuation equations, gauge
conditions must be imposed for gravity and two gauge
fields. Here we choose the de Donder gauge and Lorentz
gauge condition for them, respectively

r̄µĥ
µ⌫

= 0, r̄µa
µ

= 0, r̄µb
µ

= 0 (8)

where ĥ
µ⌫

= h
µ⌫

� hḡ
µ⌫

/2 is the trace-reversed metric
perturbation.

As usual, we adopt ingoing wave boundary conditions
at the horizon. While at our AdS boundary z = 0,
we consider the following consistent boundary condition
with

b
x

(x, 0) = 1, a
x

(x, 0) = @

z

�(x,0)
µ(1�@

z

 (x,0))

others(x, 0) = 0. (9)

Then by holography, we can extract the homogeneous
part of optical conductivity, the quantity we are inter-
ested in. Namely, given that b

x

= (1+j
x

(x)z+...)e�i!t by
solving the fluctuation equations, the conductivity asso-

ciated with the second gauge field reads �(!/µ) = 4j(0)
x

i!

,
in which a factor four comes from the unusual asymptotic
form of the metric in Eq.(2).

One typical plotting for the real and imaginary parts
of the optical conductivity at various temperatures is
shown in Fig.4. Two fundamental features of CDW are
observed. One is the pinned collective mode, which is re-
flected as the first peak appearing in the real part of the
conductivity. The second is the gapped single-particle
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FIG. 5: The fit of optical conductivity with two Lorentz
oscillators in the low frequency regime for T = 0.6Tc. The
contributions from the individual oscillator are also plotted

with dashed lines.

excitation, which corresponds to the occurrence of the
second peak in the real part of the conductivity.
The pinning is a common phenomenon for CDW on

account of the various interactions with the other compo-
nents of the system, which can be described by a damped
harmonic oscillator with Lorentz resonance

�
CDW

(!) =
K⌧

1� i!⌧(1� !2
0/!

2)
, (10)

where ⌧ is the relaxation constant, K is proportional
to the number density of CDW, and !0 is the average
pinning resonance frequency[3]. This formula has been
widely employed in the analysis of CDW optical response
experiments. Here we also use it to fit our data. In con-
sistent with the fact that our holographic CDW is always
generated with multiple wave vectors, we find in general
our data in the low frequency region of the conductivity
can be well fit with multiple Lorentz oscillators. In par-
ticular, as the temperature is not quite low, for instance
T � 0.6T

c

, it can be fit with only two oscillators, namely
�
tot

(!) = �
CDW1(!) + �

CDW2(!), because in this case
the contribution from those CDW with higher wave vec-
tors is negligible. Fig.5 is such a fit to this formula for
T/T

c

= 0.6. The parameters in the Lorentz formula for
various temperatures are listed in Table I.

T/Tc K1/µ ⌧1µ !01/µ K2/µ ⌧2µ !02/µ

0.6 0.207 6.593 0.452 2.225 0.609 1.629

0.7 0.207 6.327 0.449 2.512 0.498 1.653

0.8 0.188 5.870 0.442 1.587 0.802 1.354

TABLE I: The fit parameters in Lorentz formula at
various temperatures.

Although this pinned collective mode is gapless, our
single-particle excitation is gapped, as clearly evident
from Fig.4. In particular, the magnitude of gap is es-
timated as 2�/T

c

⇡ 20.51 by locating the position of the
second minimum in the imaginary part of the conductiv-
ity, which is obviously much larger than the mean-field
BCS value 2�/T

c

⇡ 3.52. This large gap ratio asso-
ciated with this gap is indicative of a strongly coupled
CDW phase transition in our system as it should be the
case by holography. On the other hand, remarkably, this

•  4D Setup  
Q-lattice and novel MIT 

2 24 21 1[ 6 ]
16 2

ab
abS d x g R F F m

Gπ
= − + − − ∂Φ − Φ∫

Equations of motion: 

3 .... 0ab ab abG R g= + − =

0a
a bF∇ =

(−m2 )Φ = 0

:       scalar Complex field  Φ

A. Donos and J. P. Gauntlett, JHEP 1404, 040 (2014). •  A family of three-parameter black brane solutions:  

Q-lattice and novel MIT 

Boundary condition (0)φ λ=

3/ ,        / ,           /T kµ λ µ µ−Δ
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1 22
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Q-lattice and novel MIT 
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•  Phase Diagram:  

Q-lattice and novel MIT 

( , ) 0T DC kσ λ∂ =

T / µ = 0.001

Question:  
What role can  the holographic entanglement 
entropy play in quantum phase transition? 

Y.Ling, et.al.,arXiv:1502.03661 
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Critical points:  

i)  The zero-frequency limit of AC conducutivity 
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ii)  It is completely determined by the near  
         horizon geometry 
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Homes’ relation in holographic superconductors

Erdmenger, Herwerth, Klug, Meyer, Schalm
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• Holography with Bianchi VII helix geometry

MIT transitions in holography

S =

Z
d

5
x

p
�g

✓
R+ 12� 1

4
Fµ⌫F

µ⌫ � 1

4
Wµ⌫W

µ⌫ � m

2

2
BµB

µ

◆
� 

2

Z
B ^ F ^W

ds2 = �U(r)dt2 +
dr2

U(r)
+ e2v1(r)!2

1 + e2v2(r)!2
2 + e2v3(r)!2

3

Figure 2: Plot of the one-form !2 along the x-axis for one period. Being periodic
with period 2⇡/p, !2 is not translationally invariant for p 6= 0. The vector
field B = w(r)!2 acts as a source for the helix and imprints the helical,
translational symmetry breaking structure on the system.

Furthermore, the metric ansatz

ds2 = �U(r) dt2 +
dr2

U(r)
+ e2v1(r)!2

1 + e2v2(r)!2
2 + e2v3(r)!2

3 (3.5)

is made. Here U is the emblackening factor and the functions v
i

parameterize the

spatial part of the metric. Field theoretically, U is related to the energy density and

v
i

to the pressure of the system. In the finite temperature phase, the metric function

U has a zero at a finite value of r, which defines the thermal horizon radius r
h

,

U(r
h

) = 0. (3.6)

We will consider solutions which, for large values of r, satisfy

U(r) = r2, v
i

(r) = log(r), for i = 1, 2, 3. (3.7)

This guarantees that at the boundary (for r ! 1) the metric is of anti-de Sitter

form, ds2 = dr2/r2 + r2(� dt2 + d~x2). Field theoretically, this means that the

theory has an ultraviolet fixed point.

From a technical point of view, the advantage of this system is that all fields

are functions of r only, yet translational symmetry is broken. All x-dependence is

carried by the one-forms of Eq. (3.3) such that the resulting equations of motion are

ordinary di↵erential equations in the radial coordinate r.

29

period p; strength �

density theory. Our results for the optical (in figure 4) and d.c. (in figure 5) conductivities

capture key qualitative features of the experimental data on metal-insulator transitions,

including bad metallic regimes [4, 5, 6] and spectral weight transfer [3, 4, 10, 11].

The primary obstacle to the realization of a genuine insulating phase in holography has

been the fact that such a phase must break translation invariance. In metallic phases with a

sharp Drude peak, the e↵ects of momentum non-conservation are an irrelevant deformation

of the continuum theory at low energies that may be treated perturbatively [12]. Thus the

e↵ects of irrelevant disorder [13, 14] and lattices [12] on charge transport at low energies and

temperatures are easily incorporated into holographic models. The modeling of bad metals

and insulators, however, requires the breaking of translation invariance to be treated non-

perturbatively at the lowest energy scales. Recent impressive steps in this direction have

been taken in [15, 16], where a lattice was fully incorporated into holographic models.

However, the regimes studied thus far have all exhibited a conventional Drude peak.

Helical

lattices

An important technical innovation of our work will be to break translation invariance

while retaining homogeneity of the system.1 This will enable our holographic study of local-

ization physics to operate at the level of ODEs in the bulk, while remaining nonperturbative

in the lattice strength, as opposed to the technically involved PDEs that are typically nec-

essary once boundary translation invariance is broken. Specifically, we turn on the following

boundary background fields (couplings)

A(0) = µdt , B(0) = �!2 . (1)

Here µ is the chemical potential for the electric charge while B(0) is a source for a vectorial

operator that describes the lattice. The strength of the lattice is given by � while !2 is one

of the three Bianchi VII0 invariant one-forms

!1 = dx1 , !2 + i!3 = eipx1(dx2 + idx3) . (2)

We see that p is the pitch of the helical structure of B(0). The helix rotates in the x2-x3

plane as a function of the x1 direction. This helical lattice breaks translation invariance in

the x1 direction while remaining invariant under the non-abelian Bianchi VII0 symmetry

algebra. Our discussions of metallic and insulating behavior in the following will always

refer to currents in the x1 direction. Currents in the x2 and x3 directions are not relaxed.

This extreme anisotropy is a consequence of the symmetries of our microscopic lattice. We

1David Vegh has independently studied the conductivity in homogeneous systems that are not translation

invariant.

2
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However, the regimes studied thus far have all exhibited a conventional Drude peak.

Helical

lattices

An important technical innovation of our work will be to break translation invariance

while retaining homogeneity of the system.1 This will enable our holographic study of local-

ization physics to operate at the level of ODEs in the bulk, while remaining nonperturbative

in the lattice strength, as opposed to the technically involved PDEs that are typically nec-

essary once boundary translation invariance is broken. Specifically, we turn on the following

boundary background fields (couplings)

A(0) = µdt , B(0) = �!2 . (1)

Here µ is the chemical potential for the electric charge while B(0) is a source for a vectorial

operator that describes the lattice. The strength of the lattice is given by � while !2 is one

of the three Bianchi VII0 invariant one-forms

!1 = dx1 , !2 + i!3 = eipx1(dx2 + idx3) . (2)

We see that p is the pitch of the helical structure of B(0). The helix rotates in the x2-x3

plane as a function of the x1 direction. This helical lattice breaks translation invariance in

the x1 direction while remaining invariant under the non-abelian Bianchi VII0 symmetry

algebra. Our discussions of metallic and insulating behavior in the following will always

refer to currents in the x1 direction. Currents in the x2 and x3 directions are not relaxed.

This extreme anisotropy is a consequence of the symmetries of our microscopic lattice. We

1David Vegh has independently studied the conductivity in homogeneous systems that are not translation

invariant.

2
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• Holography with Bianchi VII helix geometry

• The ground state is a quantum smectic

MIT transitions in holography

S =

Z
d

5
x

p
�g

✓
R+ 12� 1

4
Fµ⌫F

µ⌫ � 1

4
Wµ⌫W

µ⌫ � m

2

2
BµB

µ

◆
� 

2

Z
B ^ F ^W

89

,QVXODWRU8QVWDEOH
IL[HG�SRLQW

0HWDOOLF
$G6��[�5�

�

89

,QVXODWRU

0HWDOOLF
$G6��[�5�

�

Figure 2: Two renormalization group flow scenarios that arise in our theories, mediating

quantum phase transitions between metallic and insulating phases. In the left plot, the

phase transition is mediated by an unstable fixed point, which has relevant operators (that

may in addition have complex scaling dimensions). In the right plot, the phase transition

occurs when the metallic fixed point itself develops a relevant deformation. One of these

two possibilities must occur for the metallic phase to become unstable.

Bifuraction

geometry

A second way that the IR can be distinct from the translation invariant solution (6) is

if there is a bifurcation in the RG flow as a function of the UV parameters of the system

such as the lattice strength. This is the scenario that was found to mediate holographic

fractionalization quantum phase transitions in [23]. The bifurcation fixed point should have

a relevant deformation and thus be unstable under RG flow. If the fixed point mediating

the bifurcation is furthermore dynamically unstable (that is, with deformations that have

complex scaling dimension), then the metal-insulator quantum phase transition will be first

order, otherwise it will be continuous [23]. The required unstable fixed points are similar to

those constructed in [22]; we are able to charge up those solutions using the Chern-Simons

term. The Chern-Simons coupling allows the ‘magnetic’ B field to generate an electric A

field with a minimal back reaction on the solution. It is simple to see that our theory admits

the scaling solution

U = u
o

r2 , v1 = v1o , ev2 = ev2or↵ , ev3 = ev3or↵ , a = a
o

r , w = w
o

r↵ . (9)

Plugging this ansatz into the equations of motion, the exponent ↵ and the various prefactors

can be determined numerically by solving algebraic equations, and depend upon the pitch

5

�
DC,xx

= 0 , �
DC,yy

= 1

Donos, Hartnoll
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Universal relations in strange metals

• An analog of 

• Homes’ relation

⌘

s
=

1

4⇡

that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.
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⇢s(0) = C�DC(Tc)Tc

Homes et al
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Homes’ relation in holographic superconductors

• Homes’ relation

Naively

Homes’ relation in the Dirty BCS
I Dirty BCS Very broad Drude peak (⌧�1 > 2�)

⇢s ⇡ 2�DC(Tc)�

I BCS relates the gap with critical temperature

� ⇠ Tc ) ⇢s ⇠ �DCTc

I Similar derivation in clean limit BCS [Homes etal 2005]

⇢s(0) = C�DC(Tc)Tc

⇢s(0) = �DC ·�gap

�gap = Tc
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Homes’ relation in holographic superconductors

• Homes’ relation

Standard laws

Tanner’s law                                                   (empirical)

Critical scaling                                 gives

• Observed

⇢s(0) = C�DC(Tc)Tc

⇢s ⇠ !2
p,s

�DC ⇠ !2
p,n⌧

!2
p,s ⇠ !2

p,n

⌧ ⇠ ~
kT

C ⇠ 1

C
exp

⇠ 4.4
Homes et al

Zaanen
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Homes’ relation in holographic superconductors

• Canonical holographic superconductor: Two problems

Translation invariance

Scale invariant hyperscaling violating sector

     not all charge carriers are condensed at finite T

Goldstone                                 Geometry 

Needed:  insulator with broken translation invariance

�SC ⇠ ⇢s
�i!

� =
⇢s +K

�i!

Translation Invariance & Momentum Conservation

Re�n = K �(!) + . . . , Re�s = (K 0 + ⇢s)�(!) + . . .

[Erdmenger metal 1206.5305] rewrote Homes’ Law by sum
rules, ⌧ / D / 1/T from diffusion in the Probe Limit

⇠ O(1) ⇠ O(N2)
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Homes’ relation in holographic superconductors

• Donos Hartnoll plus charged scalar Erdmenger, Herwerth, Klug, Meyer, Schalm
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µ
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/

p
2 & q = 10

Figure 5. The superfluid phase diagram computed for  = 0 and scalar charge (or inverse back-
reaction) q = 6 in the top panel and for  =

1/
p
2 and q = 5, 10 in the lower panel. Below the

respective Tc-curve, the condensate is non-zero indicating a superfluid phase. Different colored
curves correspond to different values of �/µ with the following color coding: 0, 0.3, 0.6, 0.9, 1.2,
1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. Note that the case of  = 0 the
minimum of the critical temperature is moving from p/µ = 1.8 at �/µ = 1.2 over p/µ = 2 at �/µ = 3

to p/µ = 2.4 at �/µ = 6, whereas in the case of  =

1/
p
2 the minimum is fixed respect to �. However

for different values of the scalar charge q = 4, . . . , 10 we find a slight increase starting from p/µ = 1.2
and ending at p/µ = 1.6.

more interesting structure as shown for q = 5 and q = 10 in Figure 5. In the case of  = 0

the critical temperature is observed to decrease monotonously as a function of �/µ. As a
function of p/µ, it first decreases for small p/µ, then assumes a minimum at p/µ ⇡ 1.7, which
is slightly shifted towards larger values i.e. p/µ ⇡ 2.3 for increasing �/µ  10, and then
returns again to the homogeneous value T

c

(

p/µ = 0) for large values of p/µ. This minimum
is more pronounced for larger values of �/µ which shows that larger values for the source of
the helix field indeed increases the effect of the lattice on the system, while the helix mo-
mentum dependence has a smaller effect on the transition temperature. This is consistent
with the expectation that generally, it is the depth of a lattice of potential valleys which
influences the physical behaviour more than the lattice constant or spacing between the
individual potential depths. However, for large values of p/µ the critical temperature seems
to, at least for  = 0, asymptotically approach the p = 0 value which might imply that

– 17 –
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Homes’ relation in holographic superconductors

• All d.o.f. condense

Extracted from matching the optical conductivity to a two-fluid model

Sum rule holds

T

/Tc

⇢

s

|n

 = 0, q = 6, p

/µ = 3 & �

/µ = 0.3

T

/Tc

⇢

s

|n

 = 0, q = 6, p

/µ = 3 & �

/µ = 1.5

T

/Tc
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s

|n

 = 1

/

p
2, q = 5, p

/µ = 0.2 & �

/µ = 0.3

T

/Tc
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|n

 = 1

/

p
2, q = 5, p

/µ = 0.2 & �

/µ = 1.2

Figure 10. The superfluid density ⇢s and the normalized17 charge density n as a function of T/Tc.
For T > Tc, the superfluid density vanishes, i.e. the DC conductivity is finite. As T is lowered,
the superfluid density ⇢s increases, similar to the order parameter, c.f. Figure 3, and curiously the
normalized charge density ns as well. The gap between ⇢s and ns is independent of the value of
p/µ, but increases with increasing �/µ. For small �/µ, it is suggestive that at T = 0 the superfluid
density and the condensed phase charge density coincide. Thus, the longitudinal response i.e. the
plasma frequency in the superconducting phase is sufficient to determine the superfluid strength.

agrees with n
s

for T = 0, as the extrapolation of our data suggests, we need to carefully an-
alyze the zero temperature transport properties, which we are planning to do in future work
[37]. Nonetheless, for small p/µ and �/µ the difference becomes sufficiently small already at
finite temperatures about T ⇡ 0.6T

c

. The difference between ⇢
s

and n
s

at this temperature
seems to be independent of the helix pitch18, parametrizing the helical lattice constant, but
grows with increasing �/µ. This difference may be accounted for by the residual contribution
in the condensed phase for ! ! 0, which is not added to the zero mode delta peak. The
optical conductivity of high T

c

superconductors is known [50] to feature residual absorption
at very small frequencies, which gives rise to an additional contribution to the imaginary
part of �(!, T < T

c

). For small helix strengths �/µ ⌧ 1, this residual part can be read off
by a simple Drude-fit inside the superconducting gap as shown in Figure 8. The spectral

18Technical problems arise for p
/µ � 1 due to numerical instabilities.
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Figure 8. The small-frequency behavior of the optical conductivity in the metallic phase for
q = 6,  = 0, p/µ = 2.4 and �/µ = 1. The solid lines are fits of the Drude model (3.10) to the
numerically determined optical conductivity. The normal phase solution is given by �DC = 13.6873
and ⌧ = 17.4352. In the superconducting phase the 1/! pole has been subtracted from Im� and
there is a remaining “residual” Drude-like peak �reg as shown in the left panel. As explained in
the main text and in Figure 13, this residual contribution to the two-fluid model (3.14) shows the
coexistence of the superconducting phase and a “normal” holographic metal.

As shown in Figure 9, a small Drude peak remains present in the superconducting phase. To
describe the system, it is thus necessary to apply the two-fluid model [4], which supplements
(3.13) with the metallic Drude model defined in (3.10),

Re�(!) = �reg
(!) + ⇢

s

�(!) =

✓
�
n

(T )
⌧

1 + !2⌧2
+

⇡

2

�
s

(T )�(!)

◆
, (3.14)

where �
n

(T ) describes the Drude-like contribution resembling a normal fluid and �
s

(T ) the
superconducting contribution. In the normal state, we have �

n

(T > T
c

) = n
n

and �
s

(T >

T
c

) = 0, whereas a pure superconducting state would be described by �
n

(T < T
c

) = 0 and
�
s

(T < T
c

) = ⇢
s

.15 Due to charge conservation �
n

(T ) + �
s

(T ) = n.16

Moreover, from Figure 9 we observe that the conductivity in the superconducting state
develops a gap at low frequencies, i.e. Re(�) is significantly suppressed. This gap is a
characteristic of a superconducting system; it indicates that low-energy charged degrees of
freedom have condensed into the delta function at ! = 0. An important issue is whether
�reg

(!) in (3.14) vanishes in the limit T ! 0 for frequencies below !
gap

. This would imply
n
s

= ⇢
s

at T = 0, with n
s

the thermodynamic density. In general, the following scenarios
are possible. One possibility is the presence of a hard gap, in which at low frequencies
0 < ! < !

gap

we have an exponential suppression �(!, T ) ⇠ exp((! � !
gap

)/T ). On the
other hand, for a soft gap there is an algebraic (power law) scaling �(!, T ) ⇠ T c1!c2 . In

15In order to restore the proper units of the two-fluid model, the charge density is given in units of e2
/m⇤,

i.e. the number density and the charge density are related by ncharge = e

2
nnumber/m

⇤. Note that we work
with charge densities and not number densities throughout the paper, as the quantities e and m

⇤ are not
directly accessible in holographic models. Furthermore, this choice of dimensions has the advantage that
the superfluid strength ⇢s and the charge density n have the same units (in natural units).

16Throughout the paper n denotes a general charge density, while nn denotes the charge density in the
normal phase, and ns the charge density in the superfluid phase.
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Figure 13. Visualization of the FGT sum
rule as explained in the text. The blue
area indicates the spectral weight which is
transferred into the zero mode. Note the
tiny regular contribution which resembles
a key property of high-temperature super-
conductivity and might be responsible for
the small possible offset in the computa-
tion of ⇢s, in particular it might account
for the missing charge density in the super-
fluid phase, i.e. the offset between ns and
⇢s displayed in Figure 10.
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Figure 14. The Ferrell-Glover-Tinkham sum rule holds in the condensed phase for different values
of �/µ color coded as in Figure 5. The left panel displays the FGT sum rule in the case  = 0 at
the temperature T/µ = 0.1 and �/µ (p/µ) = 0.3 (0.4, 1), 1.5 (0.2, 1.4), 3.3 (0.2, 1), 6 (2.4), where the
numbers in brackets denote the corresponding values of p/µ. The right panel shows the FGT sum
rule for  =

1/
p
2, T/µ = 0.05 and �/µ (p/µ) = 0.3 (0.3, 1), 1.2 (0.2), 3 (0.2, 1, 1.4), 6 (1.4). The integral

I(!c) defined in (3.18) measures the missing spectral weight up to the cutoff !c and is normalized
so that, if the sum rule is satisfied, I(1) = 1. As can be seen e.g. from Figure 6 for !/µ > 8 the
optical conductivity enters the conformal regime, i.e. for d = 3 + 1, �(!) ⇠ !, irrespective of the
existence of the “superconducting gap”. In the conformal regime the normal phase and condensed
phase optical conductivity becomes identical and thus will not contribute to I(!). Note that the
thick black line in the left panel represents the translationally invariant case, p/µ =

�/µ = 0, and
as expected the FGT sum rule fails spectacularly, owing to the coexistence of a ideal metal and
a superconductor. Thus, in this case the diamagnetic pole in the imaginary part of the optical
conductivity includes not only the missing spectral weight, but also the ideal metal contribution.

for the system under consideration and can be seen as a powerful consistency check of the
holographic model and of the calculation including the numerics. Physically, it shows that
the charged degrees of freedom of the system are conserved. In particular, it uncovers
the main obstacle in defining a proper superfluid density in the translational invariant
system, since the FGT sum-rule as defined in (3.18) does not hold due to the coexistence
of the normal state ideal metal contributing to the diamagnetic pole, c.f . the black line
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Homes’ relation in holographic superconductors

• Testing Homes’ relation

Careful: never works with weak momentum relaxation

There is another scale; nothing universal

Careful: Bianchi VII model has some peculiarities

⇢s(0) = C�DC(Tc)Tc
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DC
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Figure 16. The nature of the zero-temperature ground state from the finite temperature conduc-
tivity. The surprise is that for fixed helix amplitude � the system transitions from an insulating to
a metallic and then back to an insulating phase. For p/µ ⌧ 1 and �/µ ⌧ 1, we expect a metallic
phase designated by the shaded green area due to the fact that momentum relaxation is removed
in the limit where either of these parameters vanishes. This part of the metallic phase could not
be distinguished from the insulating phase since we are using very coarse measure to determine
the nature of the ground state i.e. a qualitative measure of the conductivity. The thick blue line
denotes the location of the minimal critical temperature Tmin

c extracted from Figure 5. In the case
 = 0, shown in the left panel, this minimum tracks qualitatively the metallic phase inferred from
the conductivity, whereas for  =

1/
p
2 the minimal critical temperature Tmin

c is invariant under
changes in p/µ and �/µ. Note that at high values for �/µ the critical temperature is very low and
thus our numerical code cannot reach Tmin

c anymore. Homes’ relation holds in the region marked
by the white dashed box.

nicely stable, indicating that it is the true ground state [26]. The insulating IR geometry is
indeed unstable towards superconductivity, but curiously not for the mass of the scalar field
considered here. We suspect, however, that in this case the superconducting IR geometry,
is still the thermodynamically preferred ground state, i.e. the state of lowest free energy.
The insulating but not superconducting geometry of [26] is hence dynamically stable, but
thermodynamically unstable. This would indicate that they are separated by a first order
transition. We will support this claim by an analysis of the thermodynamics and transport
at zero temperature in a forthcoming work [37].

5.2 Transport

In our system, the linear momentum relaxation introduced by the Bianchi VII
0

structure of
the geometry allows us to reliably analyse the physics behind the low-frequency transport
properties of our system. Our computation reveals that the superconducting system is well
described by a two-fluid Drude model at small frequencies in the regime of weak momentum
relaxation �/µ ⌧ 1, a fact also observed in the models of [29, 30]. On the other hand, in
the regime of stronger momentum relaxation, �/µ ⇡ 1, the two-fluid Drude model seems to
work less and less well, again similar to [29, 30].
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Homes’ relation in holographic superconductors

• For a certain parameter regime Homes’ relation holds

�DCTc

⇢
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Homes’ relation for q = 6 &  = 0
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Figure 15. A log-log-plot of the superfluid density ⇢s with respect to �DC(Tc)Tc. The color coding
for �/µ is identical to the phase-diagram plots presented in Figure 5, �/µ = 4.5, 4.8, 5.1, 5.4, 5.7
, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is
explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line
with a slope of unity, according to log(⇢s) = logC + log(�DCTc) denoted by the black line. The
inset shows the value of Homes’ constant C for �/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not
expected to hold in the limits of p/µ ! 0 and p/µ ! 1. There the constant approaches zero due to
the absence of momentum relaxation and the corresponding divergence of �DC. These data points
may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ 2 [1, 2]
Homes’ relation seems to hold within the dashed lines given by C ⇡ 6.17± 0.31. This value for the
constant is extracted from a least-squares fit represented by the thick black line in the main figure.

be almost the arithmetic mean of the two experimentally determined values. Additionally,
one may compare to the most recent results found for organic superconductors in [57], i.e.
C = (110 ± 60)

cm�1/⌦�1K, again in dimensionful units. Converting to our dimensionless
Homes’ constant and including the additional factor of 8, we find C = 4±2.1, which is very
close to the original result in [33].

constants, e.g . for the conversion of the temperature we have

T [K] =
c · h
KB

· 100 T

⇥
cm�1⇤

,

which amounts to 1K = 0.695 cm�1. Similarly, 1⌦�1cm�1 = 4.935 cm�1 and our final conversion factor
reads 1⌦�1K = 3.42983 cm�1. Thus, the values given in [33] are converted by

(120± 25)
cm�1

⌦�1K
=

120± 25
3.43

⇡ 35± 7.3.

Taking into account the correction factor for our different definition of ⇢s we arrive at C = 35±7.3
/8 ⇡

4.4± 0.9.
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Figure 16. The nature of the zero-temperature ground state from the finite temperature conduc-
tivity. The surprise is that for fixed helix amplitude � the system transitions from an insulating to
a metallic and then back to an insulating phase. For p/µ ⌧ 1 and �/µ ⌧ 1, we expect a metallic
phase designated by the shaded green area due to the fact that momentum relaxation is removed
in the limit where either of these parameters vanishes. This part of the metallic phase could not
be distinguished from the insulating phase since we are using very coarse measure to determine
the nature of the ground state i.e. a qualitative measure of the conductivity. The thick blue line
denotes the location of the minimal critical temperature Tmin

c extracted from Figure 5. In the case
 = 0, shown in the left panel, this minimum tracks qualitatively the metallic phase inferred from
the conductivity, whereas for  =

1/
p
2 the minimal critical temperature Tmin

c is invariant under
changes in p/µ and �/µ. Note that at high values for �/µ the critical temperature is very low and
thus our numerical code cannot reach Tmin

c anymore. Homes’ relation holds in the region marked
by the white dashed box.

nicely stable, indicating that it is the true ground state [26]. The insulating IR geometry is
indeed unstable towards superconductivity, but curiously not for the mass of the scalar field
considered here. We suspect, however, that in this case the superconducting IR geometry,
is still the thermodynamically preferred ground state, i.e. the state of lowest free energy.
The insulating but not superconducting geometry of [26] is hence dynamically stable, but
thermodynamically unstable. This would indicate that they are separated by a first order
transition. We will support this claim by an analysis of the thermodynamics and transport
at zero temperature in a forthcoming work [37].

5.2 Transport

In our system, the linear momentum relaxation introduced by the Bianchi VII
0

structure of
the geometry allows us to reliably analyse the physics behind the low-frequency transport
properties of our system. Our computation reveals that the superconducting system is well
described by a two-fluid Drude model at small frequencies in the regime of weak momentum
relaxation �/µ ⌧ 1, a fact also observed in the models of [29, 30]. On the other hand, in
the regime of stronger momentum relaxation, �/µ ⇡ 1, the two-fluid Drude model seems to
work less and less well, again similar to [29, 30].
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Figure 16. The nature of the zero-temperature ground state from the finite temperature conduc-
tivity. The surprise is that for fixed helix amplitude � the system transitions from an insulating to
a metallic and then back to an insulating phase. For p/µ ⌧ 1 and �/µ ⌧ 1, we expect a metallic
phase designated by the shaded green area due to the fact that momentum relaxation is removed
in the limit where either of these parameters vanishes. This part of the metallic phase could not
be distinguished from the insulating phase since we are using very coarse measure to determine
the nature of the ground state i.e. a qualitative measure of the conductivity. The thick blue line
denotes the location of the minimal critical temperature Tmin

c extracted from Figure 5. In the case
 = 0, shown in the left panel, this minimum tracks qualitatively the metallic phase inferred from
the conductivity, whereas for  =

1/
p
2 the minimal critical temperature Tmin

c is invariant under
changes in p/µ and �/µ. Note that at high values for �/µ the critical temperature is very low and
thus our numerical code cannot reach Tmin

c anymore. Homes’ relation holds in the region marked
by the white dashed box.

nicely stable, indicating that it is the true ground state [26]. The insulating IR geometry is
indeed unstable towards superconductivity, but curiously not for the mass of the scalar field
considered here. We suspect, however, that in this case the superconducting IR geometry,
is still the thermodynamically preferred ground state, i.e. the state of lowest free energy.
The insulating but not superconducting geometry of [26] is hence dynamically stable, but
thermodynamically unstable. This would indicate that they are separated by a first order
transition. We will support this claim by an analysis of the thermodynamics and transport
at zero temperature in a forthcoming work [37].

5.2 Transport

In our system, the linear momentum relaxation introduced by the Bianchi VII
0

structure of
the geometry allows us to reliably analyse the physics behind the low-frequency transport
properties of our system. Our computation reveals that the superconducting system is well
described by a two-fluid Drude model at small frequencies in the regime of weak momentum
relaxation �/µ ⌧ 1, a fact also observed in the models of [29, 30]. On the other hand, in
the regime of stronger momentum relaxation, �/µ ⇡ 1, the two-fluid Drude model seems to
work less and less well, again similar to [29, 30].
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Figure 5. The superfluid phase diagram computed for  = 0 and scalar charge (or inverse back-
reaction) q = 6 in the top panel and for  =

1/
p
2 and q = 5, 10 in the lower panel. Below the

respective Tc-curve, the condensate is non-zero indicating a superfluid phase. Different colored
curves correspond to different values of �/µ with the following color coding: 0, 0.3, 0.6, 0.9, 1.2,
1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. Note that the case of  = 0 the
minimum of the critical temperature is moving from p/µ = 1.8 at �/µ = 1.2 over p/µ = 2 at �/µ = 3

to p/µ = 2.4 at �/µ = 6, whereas in the case of  =

1/
p
2 the minimum is fixed respect to �. However

for different values of the scalar charge q = 4, . . . , 10 we find a slight increase starting from p/µ = 1.2
and ending at p/µ = 1.6.

more interesting structure as shown for q = 5 and q = 10 in Figure 5. In the case of  = 0

the critical temperature is observed to decrease monotonously as a function of �/µ. As a
function of p/µ, it first decreases for small p/µ, then assumes a minimum at p/µ ⇡ 1.7, which
is slightly shifted towards larger values i.e. p/µ ⇡ 2.3 for increasing �/µ  10, and then
returns again to the homogeneous value T

c

(

p/µ = 0) for large values of p/µ. This minimum
is more pronounced for larger values of �/µ which shows that larger values for the source of
the helix field indeed increases the effect of the lattice on the system, while the helix mo-
mentum dependence has a smaller effect on the transition temperature. This is consistent
with the expectation that generally, it is the depth of a lattice of potential valleys which
influences the physical behaviour more than the lattice constant or spacing between the
individual potential depths. However, for large values of p/µ the critical temperature seems
to, at least for  = 0, asymptotically approach the p = 0 value which might imply that

– 17 –
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Homes’ relation in holographic superconductors

• Conclusion

Homes’ relation appears to hold in the regime of strong momentum relaxation 
(with some caveats)

Holographic evidence for universal physics?

Tuesday, June 2, 15



• Increasing 

J
exp

= �E
theor

� : seductivity

⇢ : resistance
� =

1

⇢

E
theor
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What is a holographic state of matter

• Finite density holographic matter: Generalization of a Fermi liquid 

Compressible 

Exhibits Fermi Surfaces G ⇠ 1

! � vF k + !2⌫

@µF ⇠ µ↵

Screening in RN

• Turn on a background chemical potential

µ = µ0 + Ce�r2/2R2

T/µ0 � 1• At high              the induced charge density 
falls off exponentially as in Schwarzchild.         

Tc ⇡ 0.33µ0

• Remarkably there is a phase transition at          

T < Tc• For            we begin to see oscillations in 
the charge density
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�·r

eI
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(C

·�
)

�⇢ ⇠ e�r/�

p
r

cos(r/⇠) r � R, T�1, µ�1

Holographic Charge Oscillations Blake, Donos, Tong 

Tuesday, June 2, 15



What is a holographic state of matter

• Finite density holographic matter: Generalization of a Fermi liquid 

Long range entangled

SEE ⇠ (LkF )
d�1 ln(LkF )

Regular Fermi Liquid Holography with ✓ = d� 1

S = Q
d�1
d A ln(Q

d�1
d A)

Huijse, Sachdev, Swingle
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What is a holographic state of matter

• Finite density holographic matter: Generalization of a Fermi liquid 

Long range entangled

• Takayanagi

SEE ⇠ (LkF )
d�1 ln(LkF )

Regular Fermi Liquid Holography with ✓ = d� 1

S = Q
d�1
d A ln(Q

d�1
d A)

Huijse, Sachdev, Swingle

Quantum Many-body Systems
(Cond-mat,  QFTs,  CFTs,  …..)

Quantum gravity
String theory

Quantum 
Information 
(Stat.Mech)

AdS/CFT
(Holography)

HEE, BH info.
``AdS/QI’’

EE, ES, Top EE,
Tensor networks,    

etc.

Current Status

NG



Bk
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Entanglement and holography

• Ooguri

Tomography�from�Entanglement

The�Structure�of�Holographic�Entropy

����Entropy�Inequalities�in�CFT�
��Energy�Conditions�in�Gravityܒ����

����Smooth�Holographic�Dual�
��Entropy�Inequalities�in�CFTܒ����

42/42

Tomography�from�Entanglement

The�Structure�of�Holographic�Entropy

����Entropy�Inequalities�in�CFT�
��Energy�Conditions�in�Gravityܒ����

����Smooth�Holographic�Dual�
��Entropy�Inequalities�in�CFTܒ����

42/42

New�holographic�entanglement�inequalities:

For�n=2,�this�gives�the�subadditivity.
For�n=3,�this�gives�the�monogamy�of�mutual�information.
For�n�>�3,�this�gives�an�infinite�family�of�new�inequalities.�

40/42

Holographic�Entropy�Cone

Entanglement�entropies�for�n�regions
make�a�vector�in�(2^n�Ͳ�1)�dimensions.

䖪 We�have�developed�a�combinatorial�method�to�prove
�����inequalities�for�holographic�entanglement�entropies.

䖪�These�inequalities�make�a�complete�set�if�all�extremal
�����rays�are�realized�by�holographic�construction.�

30/42

Radon�Transform:

ܒ

Inverse�Radon�transform:

ܒ
18/42

Summary

�㻌Bulk�stress�tensor�near�boundary�can�beٱ
�����diagnosed�by�boundary�entanglement�entropy.

�Entanglement�inequalities�on�the�boundary�areٱ
�����(integrated)�positive�energy�conditions�in�the�bulk.��

�.�To�do:����Go�deeper�in�the�bulk�interiorٱ
19/42
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• Ryu

Entanglement is a measure of a SPT

Entanglement spectrum

- (2+1)d Topologically ordered states

Physical spectrum     v.s.      (single-particle) ES

[SR-Hatsugai(06)]
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• Ryu

Entanglement is a measure of a SPT

Entanglement spectrum and hidden susy

- (2+1)d Topologically ordered states

- 

- Introduce

- SUSY algebra:

[Turner-Zhang-Vishwanath,
 Hughes-Prodan-Bervevig
 Chang-Mudry-SR]
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• Fang

!"#$%&'#(&)*#+,("&)-,-"./&0"#%1,234&

!"#"

&&

:F=&
:FK&

!"#$ !%#$

FIG. 7: Weyl semimetal a)The Fermi arc surface states of a Weyl semimetal. b) The bulk

dispersion (red and blue cones) resolve the paradoxes associated with having a Fermi arc

states (shown in pink) [146]. Therefore Fermi arcs are allowed as surface states of a

topological semi-metal, but are not possible in free Fermion band structures in 2D.

Weyl semimetal

Magnetic monopole 
in momentum space

2. Topological Metals�Massless Dirac & Weyl Fermion�

Massless Dirac (4x4): 
    ( Reducible !! ) �

H (
!
k ) = ±

!
k ⋅
!
σ = ±

k z kx − iky
kx + iky −kz

#

$

%
%

&

'

(
(

(1)  Topological Objects 

(2)  Gapless, no mass term 

(3)  Chirality ± (left or right-hand) 

(4)  Protected by translation 

     (k must be well defined)�

Magnetic Monopoles: 
!
Ω(k) =

!
∇k ×

!
A(k) = ±

!
k

2 | k |3

1
2π

!
Ω(k) ⋅dS(k)

S
"∫ =Q magnetic Charge�

Fang, Science (2003).�

Weyl nodes: 

N� S�

!
∇⋅
!
Ω≠ 0

H =
−cσ̂ ⋅ p̂ 0
0 cσ̂ ⋅ p̂

#

$
%
%

&

'
(
(

Weyl representation (2x2): 
    ( Irreducible !! ) 
Left-hand  +  right-hand  
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• Ryu

Entanglement is a measure of a SPT

Entanglement spectrum and hidden susy

- (2+1)d Topologically ordered states

- Ideal lead obeys B.C. set by SPT

- Symmetry G acts on fundamental fields

- B.C. is invariant under G:

- But boundary state may not be:  

[Work in progress with Gil Young Cho and Andreas Ludwig]

SPT

lead (CFT)
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• Takayanagi
(2-3) cMERA [Haegeman-Osborne-Verschelde-Verstraete 11

reformulation and  AdS/CFT interpretation: Nozaki-Ryu-TT 12]

To remove lattice artifacts,  take a continuum limit of MERA:


.Ω)(ˆ exp)(

state IR  u scaleat  State






 

u

uIR
sKdsiPu



.any for   0     

space realin  state dunentangle:

ASA 



ueuK ~ scalelength at gler (dis)entan:)(ˆ

What is this state ?
Our next topic !

IRu

④ Surface/State Correspondence  [Miyaji-TT 15]

(4-1) Basic Principle

Consider Einstein gravity on a d+2 dim. spacetime M.

We argue the following correspondence: 

MH )( Gravity
Md+2

Σ :  an d dim. convex space-like surface in M
which is closed and  homologically trivial

Σd

A pure state
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• Takayanagi

(2-3) cMERA [Haegeman-Osborne-Verschelde-Verstraete 11
reformulation and  AdS/CFT interpretation: Nozaki-Ryu-TT 12]

To remove lattice artifacts,  take a continuum limit of MERA:
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What is this state ?
Our next topic !

IRu

Now we apply the idea of quantum quenches. 

⇒ For t<0,  we assume the ground state of the massive 
Hamiltonian Hm. Then at t=0, we suddenly change the 
Hamiltonian into HCFT as in [Calabrese-Cardy 05].

In this setup, the state at t=0 is identified 
with the boundary state:

We may introduce the UV cut off like

.)0( Btm 
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Now we apply the idea of quantum quenches. 

⇒ For t<0,  we assume the ground state of the massive 
Hamiltonian Hm. Then at t=0, we suddenly change the 
Hamiltonian into HCFT as in [Calabrese-Cardy 05].

In this setup, the state at t=0 is identified 
with the boundary state:

We may introduce the UV cut off like
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Remember the correspondence:                               . 
The information metric is given by 

Define the Hamiltonian H(u) s.t. is its ground state.
Then the standard perturbation theory leads to   
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How does                            looks like ? 

Our conjecture:

This reproduces the correct scalar field wave function 
(or the EOM of a scalar field) in AdS3. 

We can compute the information metric:

CFT
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   .,),(
offcut   UVsome
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2 00
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CFT
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Applied to AdS/CFT
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• Takayanagi

⑥ Conclusions
• Quantum entanglement represents a geometry 

of quantum state in many-body systems.

Ex.1   HEE ⇒ EE probes the metric of  hol. geometry
Ex.2   AdS/TN(MERA,…)    ⇒ Entanglement = geometry
Ex.3   Boundary state ⇔ trivial (point-like) space

• This gravity/entanglement duality looks
more general than AdS/CFT and even than holography.                 
⇒ We proposed the surface/state correspondence. 

⑥ Conclusions
• Quantum entanglement represents a geometry 

of quantum state in many-body systems.

Ex.1   HEE ⇒ EE probes the metric of  hol. geometry
Ex.2   AdS/TN(MERA,…)    ⇒ Entanglement = geometry
Ex.3   Boundary state ⇔ trivial (point-like) space

• This gravity/entanglement duality looks
more general than AdS/CFT and even than holography.                 
⇒ We proposed the surface/state correspondence. 
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• Takayanagi

Quantum Many-body Systems
(Cond-mat,  QFTs,  CFTs,  …..)

Quantum gravity
String theory

Quantum 
Information 
(Stat.Mech)

AdS/CFT
(Holography)

HEE, BH info.
``AdS/QI’’

EE, ES, Top EE,
Tensor networks,    

etc.

Current Status

NG
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Entanglement in gauge theories

• Trivedi

Can be readily extended to (non)-Abelian gauge theories

Entanglement Entropy In A    
Gauge Theory :  

Z2

Entanglement In A Gauge Theory 

Not as simple to define.  
Because there are non-local degrees 
of freedom, e.g., Wilson loops, or 
loops of electric flux.  
 
Hilbert space of states does not 
admit a tensor product 
decomposition between  H

in

,H
out

Follows that: 
 
 
 
 
 
 
 
 

⇢ =
X

k

⇢k

⇢k = TrHk
ginv,out

| ><  |

SEE = �
X

k

TrHk
ginv,in

⇢k log(⇢k)

k sums all possible flux configurations across the surface
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Analogue spacetimes

• Visser
Surface wave spacetimes:

The black hole of Montecello:

Matt Visser (VUW) Analogue spacetimes... 28 / 56

Information puzzle/Unitarity:

Key point:

Event horizons are not physically observable...

Apparent/trapping horizons are physically observable...

Physical observability of horizons
Physical Review D90 (2014) 127502
e-Print: arXiv:1407.7295 [gr-qc]

Matt Visser (VUW) Analogue spacetimes... 52 / 56
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• More seduction

J
exp

= �E
theor

� : seductivity

⇢ : resistance
� =

1

⇢
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Holography for non-equilibrium physics

Tuesday, June 2, 15



AdS/CFT has a unique ability to compute real-time physics 
(at finite temperature/density)

                 -   Real-time dynamics
- Full non-equilibrium and transition to hydro
- Strongly coupled systems, especially critical theories

New organizing principles out of equilibrium
Tuesday, June 2, 15



Cold Atom Experiments 

• Takahashi 

Superfluid-Insulator transition

Bloch et al
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Cold Atom Experiments

• Phase quenches in a BEC Schmiedmayer et al
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Cold Atom Experiments

• Phase quenches in a BEC Schmiedmayer et al
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Cold Atom Experiments

• Phase quenches in a BEC Schmiedmayer et al
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Universal results in quench dynamics

• Das

slow (Kibble-Zurek) vs instantaneous (Calabrese Cardy) quench

fast quench has universal scaling

First obtained in holography, now proven for general theories

Universal scaling regime should be detectable in correlation 
functions

Tuesday, June 2, 15



Tracking thermalization

• Craps

BH instabilities in AdS

Secular terms invalidate perturbation expansion

Resummation leads to a controlled analytic framework

Answer the question of BH formation (or not!)

Some shells collapse after two attempts 

[Bizon, Rostworowski 2011] 

Some shells collapse after many attempts 

[Bizon, Rostworowski 2011] 

For initial conditions              , time scale for collapse    
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Universal results in far-from-equilibrium

• Bhaseen

Universal non-equilibrium steady state 

Separated by non-linear sound waves with speeds

� =

✓
TL

TR

◆ d+1
2

uL =
1

d

s
�+ d

�+ d�1
uR =

s
�+ d�1

�+ d
Tss =

p
TLTR

⌘ss =
�� 1p

(�+ d�1)(�+ d)

hT txi = a
d

 
T d+1
L

� TR

d+1

u
L

+ u
R

!

uL, uR
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Universal results in far-from-equilibrium

• Bhaseen

Universal Fluctuations

hJn+1i = dn

dµn
J(�L � µ,�R + µ)

����
µ=0
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Universal results in far-from-equilibrium

• Sasa

Large fluctuation theorem (beyond hydrodynamics)

Application to Stokes Law

Symmetry�

���

Fluctua5on!Theorem!!

Symmetry�

���

Fluctua5on!Theorem!!

Summary"of"the"result"�

�
�

hydrodynamic!equa5ons!!
Green.Kubo!!
!!formula!!
!!(1954)!

Stress!fluctua5on!
!!!!in!the!bulk!!

Stress!fluctua5on!
!!!!at!the!surface!!

Kirkwood’s!!
!!formula!!
!!!(1946)!

Stokes!!!!!(1851)!
Formulate'the'connecIon''
between''bulk'and'surface'
Itami.Sasa!(2015)!
!!Arxiv:1505.01691!

We!have!re.derived!Stokes’!law!!from!Kirkwood’s!formula!and!!
Green.Kubo!formula!!with!the!aid!of!large!devia5on!theory.!!�
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Non-equilibrium holography as the benchmark

• Witczak-KrempaConclusions

❖ Corner entanglement is a useful measure of dof

❖ In smooth limit, fixed by Tμν central charge

❖ Does pure Einstein holography give a
 lower bound for a(θ)/CT?

a(✓ ! ⇡) = � (✓ � ⇡)2 � =
⇡2

24
CT

Conclusions

❖ Quantum critical dynamics (CFTs) in 2+1D

❖ OPE to constrain short time physics

❖ large ω conductivity

❖ Input OPE data of CFT into simple holographic ansatz

❖ Can match Monte Carlo data of O(2) CFT w/out unphysical 
tweaks
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= �1 + b1
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FIG. 4. a) Holographic fit (line) to Quantum Monte Carlo data for the conductivity of a model in
its O(2) quantum critical regime (dots). The holographic parameters are: � = 3/2, a↵ = 0.6. b)
The corresponding conductivity on the real (Minkowski) frequency axis (solid line). The dashed line
corresponds to the holographic fit obtained in Ref. [2], where an ad hoc rescaling of temperature was
needed.

damped pole for �(!/T ) was found in the O(N) CFT at large-N by including 1/N e↵ects [19, 36].

In contrast, a vortex-like response would have a zero on the imaginary axis; see Fig. 7 for two

explicit examples. This purely damped pole dictates the “topology” of the full pole/zero spectrum

as the poles and zeros appear in an alternating fashion. Mathematically, it follows because the

sign of the scalar coupling ↵ dictates the presence of a particle-like (↵ > 0) or vortex-like (↵ < 0)

conductivity for any allowed �.
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FIG. 5. The location of the small-frequency poles (crosses) and zeros (circles) of the holographic
conductivity �(!) in the complex frequency plane. The parameters used are the same as those use to fit
the O(2) QCP, see Fig. 4. The dominant, purely damped pole is denoted by D-QNM, where QNM stands
for quasinormal mode.

V. FERMIONIC CFTS

We briefly discuss extension to CFTs with Dirac fermions. A large class of such CFTs di↵er

crucially from the O(N) CFT by the absence of any scalar operator O in the JJ OPE with scaling

dimension � < 3. Consequently, the leading term in the large ! dependence of the conductivity

in Eqs. 3 and (4) is just given by that from the OPE with the energy-momentum tensor. And such

terms were implicitly accounted for in the previous holographic studies [2, 14].

The basic point is already evident from the CFT of free (two-component) Dirac fermions. The

Lagrangian is

L =  ̄i�
µ

@
µ

 , (58)

where �
⌫

are the Euclidean gamma matrices �†
⌫

= �
⌫

satisfying the Cli↵ord algebra {�
µ

, �
⌫

} = 2�
µ⌫

.

The conserved U(1) current is J
µ

=  ̄�
µ

 . The integral expression for the finite-T conductivity

can be simply obtained:
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Universality of corner entanglement in conformal field theories

Pablo Bueno,1 Robert C. Myers,2 and William Witczak-Krempa2

1Instituto de F́ısica Teórica UAM/CSIC, Nicolás Cabrera,
13-15, C.U. Cantoblanco, E-28049 Madrid, Spain

2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

We study the contribution to the entanglement entropy of (2+1)-dimensional conformal field
theories coming from a sharp corner in the entangling surface. This contribution is encoded in a
function a(✓) of the corner opening angle, and was recently proposed as a measure of the degrees of
freedom in the underlying CFT. We show that the ratio a(✓)/CT , where CT is the central charge in
the stress tensor correlator, is an almost universal quantity for a broad class of theories including
various higher-curvature holographic models, free scalars and fermions, and Wilson-Fisher fixed
points of the O(N) models with N = 1, 2, 3. Strikingly, the agreement between these di↵erent
theories becomes exact in the limit ✓!⇡, where the entangling surface approaches a smooth curve.
We thus conjecture that the corresponding ratio is universal for general CFTs in three dimensions.

Many interacting gapless quantum systems do not pos-
sess simple particle-like excitations, making it di�cult
to quantify their e↵ective number of degrees of freedom
(dof) at low-energy. Conformal field theories (CFTs)
constitute an important example. For CFTs in two
spacetime dimensions (2d), the Virasoro central charge
is a good measure of the dof. It appears in many quan-
tities, such as the thermal free energy and the entan-
glement entropy (EE), and decreases under RG [1]. In
higher dimensions, the concept of quantum entanglement
is emerging as a fundamental diagnostic for such mea-
sures [2, 3]. E.g., it was instrumental in finding an anal-
ogous RG monotone for 3d CFTs, with the EE of a disk-
shaped region [4]. We shall study another measure of
recent interest [5–16]: the coe�cient capturing the con-
tribution of sharp corners to spatial entanglement.

In the context of quantum field theory, the EE is de-
fined for a spatial region V as: S=�Tr (⇢V ln ⇢V ), where
⇢V is the reduced density matrix produced by integrat-
ing out the dof in the complementary region V . In the
groundstate of a 3d CFT, the EE takes the form:

S = B (`/�)� a(✓) ln(`/�) +O(1) , (1)

where � is a short-distance cuto↵, e.g., the lattice spacing,
and `, a length scale associated with the size of V . The
first, ‘area law’, term is non-universal and scales with the
size of the boundary. The second one appears only when
V has a sharp corner with opening angle ✓2 [0, 2⇡), Fig. 1.
Crucially, a(✓) is a universal coe�cient that characterizes
the underlying CFT. It is positive and satisfies a(2⇡�✓)=
a(✓) [5], and behaves as follows:

a(✓ ! ⇡) ' � (⇡ � ✓)2 ; a(✓ ! 0) ' /✓ (2)

in the limits of a nearly smooth entangling surface and
a very sharp corner, respectively. It has been studied
for a variety of systems: free scalars and fermions [5–7],
interacting scalar theories via numerical simulations [8–
10], Lifshitz quantum critical points [11], and holographic
models [12]. The results suggest that a(✓) is an e↵ective
measure of the dof in the underlying CFT [7, 10].

ℓ

θ
V

CFT3

z
AdS4 γ

θ

V

a) b)

FIG. 1: a) An entangling region V of size ` with a corner;
b) The holographic entangling surface � for a region on the
boundary of AdS

4

with a corner.

Another quantity measuring dof is the central charge
CT , associated with the stress tensor Tµ⌫ of the CFT. It
characterizes the vacuum two-point function:

hTµ⌫(x)T�⇢(0)i = CT

|x|2d Iµ⌫,�⇢(x) , (3)

where Iµ⌫,�⇢ is a dimensionless tensor structure fixed by
symmetry [17]. In the following, we will show that the
ratio a(✓)/CT is almost universal for a broad class of
theories. In fact, we find that this agreement becomes
exact in the limit ✓ ! ⇡. Hence, using (2) we conjecture
there is a universal ratio in general 3d CFTs:

�/CT = ⇡2/24 . (4)

This is a striking result since the EE can generally be
regarded as a nonlocal quantity but our analysis indi-
cates that the universal corner contribution to the EE is
controlled by a local correlation function (3).
Holographic calculations: The AdS/CFT cor-

respondence posits that the physics of certain d-
dimensional CFTs has an equivalent description in terms
of gravity coupled to a negative cosmological constant in
d+1 dimensions. In such holographic CFTs, EE is com-
puted using the Ryu-Takayanagi prescription [18, 19]:

S(V ) = ext
�⇠V

A(�)

4G

�
. (5)

That is, given a region V in the boundary CFT, we
consider all codimension-2 surfaces � in the dual AdS
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• Physics Today 2013 (Anderson)

“As a very general problem with the AdS/CFT approach in condensed-matter 
theory, we can point to those telltale initials “CFT”—conformal field theory. 
Condensed-matter problems are, in general, neither relativistic nor conformal. 
Near a quantum critical point, both time and space may be scaling, but even 
there we still have a preferred coordinate system and, usually, a lattice. There is 
some evidence of other linear-T phases to the left of the strange metal about 
which they are welcome to speculate, but again in this case the condensed-
matter problem is overdetermined by experimental facts.”

0. Linear-in-T resistivity

1. Power law in AC conductivity

2. Hall angle vs conductivity scaling

3. Inverse Matthiessen law

4. Lots of power law scaling
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• Physics Today 2013 (Anderson)

• IPMU 2015 (you)

“[Where AdS/CFT fails]”

0. Linear-in-T resistivity

1. Power law in AC conductivity

2. Hall angle vs conductivity scaling

3. Inverse Matthiessen law

4. Lots of power law scaling

5. Holographic states as an extension of topological states:
   Strange metals, black holes, long range entanglement

6. Holography: a unique window on non-equilibrium physics 

� = �
ccs

+ �
relax
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Thank you

and especially the organizers:
Rene Meyer, Shin Nakamura, Hirosi Ooguri, Masaki Oshikawa, Masahito Yamazaki, Hongbao Zhang
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