"International Workshop on Condensed Matter Physics AdS/CFT" 29 May 2015 Kavli IPMU, The University of Tokyo (Kashiwa campus)

Exploring quantum many-body physics using ultracold atoms in an optical lattice

NOTE:

This is a review talk on recent experimental progress in the study of condensed matter physics using ultracold atoms.

No discussion related with AdS/CFT correspondence

In (Near) Future, consider ultracold atoms for AdS/CFT correspondence

Outline of This Talk

I) Preparation of Quantum Gas

Laser cooling and trapping, evaporative cooling, Bose-Einstein condensate, Fermi Degenerate Gas

II) Ultracold Atoms in a Harmonic Trap

Feshbach resonance, Cooper paring, BEC-BCS crossover, unitary gas, pre-thermalization, quantum transport

III) Ultracold Atoms in an Optical Lattice

Superfluid-Mott insulator transition, quantum-gas-microscope, Higgs mode, frustrated magnetism

IV) (our recent work) Ultraold Atoms in a Flat Band localization/delocalization on flat band

Outline of This Talk

I) Preparation of Quantum Gas

Laser cooling and trapping, evaporative cooling, Bose-Einstein condensate, Fermi Degenerate Gas

II) Ultracold Atoms in a Harmonic Trap

Feshbach resonance, Cooper paring, BEC-BCS crossover, unitary gas, pre-thermalization, quantum transport

III) Ultracold Atoms in an Optical Lattice

Superfluid-Mott insulator transition, quantum-gas-microscope, Higgs mode, frustrated magnetism

IV) (our recent work) Ultraold Atoms in a Flat Band localization/delocalization on flat band

Laser Cooling and Trapping

Cooling to Quantum Degeneracy

"Boson versus Fermion"

Momentum Distribution [E. Cornell et al, (1995)]

Spatial Distribution [R. Hulet et al, (2000)]

Experimental Setup for Cold Atom

Outline of This Talk

I) Preparation of Quantum Gas

Laser cooling and trapping, evaporative cooling, Bose-Einstein condensate, Fermi Degenerate Gas

II) Ultracold Atoms in a Harmonic Trap

Feshbach resonance, Cooper paring, BEC-BCS crossover, unitary gas, pre-thermalization, quantum transport

III) Ultracold Atoms in an Optical Lattice

Superfluid-Mott insulator transition, quantum-gas-microscope, Higgs mode, frustrated magnetism

IV) (our recent work) Ultraold Atoms in a Flat Band localization/delocalization on flat band

Feshbach Resonance:

ability to tune an inter-atomic interaction

3000

Collision is in Quantum Regime

It is described by s-wave scattering length a_{c}

$$a_s = -O_l / \kappa$$
$$\sigma_0 = 4\pi |f_0|^2 = 4\pi |a_s|^2$$

/ 1_

Coupling between "Open Channel" and "Closed Channel"

Control of Interaction(a_s)

BEC – BCS Crossover

BEC – BCS Crossover: experiments

0.2

Equation of State for Unitary Gas

M. J. H. Ku et al, (2011): MIT Zwierlein Group

EoS
$$n(\mu, T) \equiv \frac{1}{\lambda^3} f_n(\beta \mu)$$
 $P(\mu, T) \equiv \frac{k_B T}{\lambda^3} f_P(\beta \mu)$
de Broglie wavelength $\lambda = \sqrt{\frac{2\pi\hbar^2}{mk_B T}}$

- : experimental EoS
- : Monte Carlo
- -: 3rd order Virial expansion
- □ : self-consistent T-matrix
- ENS experiment
- Tokyo experiment

6**L**i

 "A system of ultracold atoms provides unique opportunity to experimentally study non-equilibrium dynamics because of the almost perfect isolation from the environment"
 Pre-thermalization in an Isolated Quantum System (J. Schmiedmayer Group, Science(2012))

Relaxation and Pre-thermalization in an Isolated Quantum System (J. Schmiedmayer Group, Science(2012))

Relaxation and Pre-thermalization in an Isolated Quantum System (J. Schmiedmayer Group, Science(2012))

ETH group Study of Quantum Transport Using Cold Atoms "observation of quantized conductance"

⁶Li

Outline of This Talk

I) Preparation of Quantum Gas

Laser cooling and trapping, evaporative cooling, Bose-Einstein condensate, Fermi Degenerate Gas

II) Ultracold Atoms in a Harmonic Trap

Feshbach resonance, Cooper paring, BEC-BCS crossover, unitary gas, pre-thermalization, quantum transport

III) Ultracold Atoms in an Optical Lattice

Superfluid-Mott insulator transition, quantum-gas-microscope, Higgs mode, frustrated magnetism

IV) (our recent work) Ultraold Atoms in a Flat Band localization/delocalization on flat band

Quantum Simulation of Strongly Correlated Electron System

"ultracold atoms in an optical lattice"

ideal Quantum Simulator of Hubbard Model:

$$H = -J \sum_{\langle i,j \rangle} C_i^+ C_j + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

One motivation of the quantum simulation of Hubbard Model is To get deeper understanding of

Cuprate High-T_c Superconductor: strongly correlated electron system

After about 30 years of discovery, "Still Controversy on Behaviors of High-T_c Materials"

Bosons in a 3D optical lattice

$$H = -J\sum_{\langle i,j \rangle} a_{i}^{+}a_{j} + \frac{U}{2}\sum_{i} n_{i}(n_{i}-1) + \sum_{i} \mathcal{E}_{i}n_{i}$$

$$H = -J \sum_{\langle i,j \rangle} a_i^+ a_j$$
$$+ \frac{U}{2} \sum_i n_i (n_i - 1)$$
$$+ \sum_i \mathcal{E}_i n_i$$

"An interference fringe is e direct signature of the phase coherence"

$$H = -J \sum_{\langle i,j \rangle} a_i^+ a_j$$
$$+ \frac{U}{2} \sum_i n_i (n_i - 1)$$
$$+ \sum_i \mathcal{E}_i n_i$$
Theory (n=1):

Theory (n=1):
mean-field cal.
$$\rightarrow$$
(U/J)_c=6×5.8
QMC
 \rightarrow (U/J)_c=29.36

$$U/J = a_s k_L \sqrt{2} \exp(+2\sqrt{V_0/E_R})$$

$$H = -J \sum_{\langle i,j \rangle} a_i^+ a_j$$
$$+ \frac{U}{2} \sum_i n_i (n_i - 1)$$
$$+ \sum_i \mathcal{E}_i n_i$$

"An interference fringe is the direct signature of the phase coherence"

Nature Physics 6, 998(2010)

$$H = -J \sum_{\langle i,j \rangle} a_i^+ a_j$$
$$+ \frac{U}{2} \sum_i n_i (n_i - 1)$$
$$+ \sum_i \mathcal{E}_i n_i$$

"An interference fringe is the direct signature of the phase coherence"

Nature Physics 6, 998(2010)

Quantum Gas Microscope : Observation of Atom Distribution in an Optical lattice with Single Site Resolution [WS. Bakr, I. Gillen, A. Peng, S. Folling, and M. Greiner, Nature 462(426), 74-77(2009)]

Fluorescence Imaging

Single Site Resolved Detection of SF-MI Transition

[WS Bakr, et al., Science 329, 547(2010)]

"amplitude-(Higgs-)mode"

The `Higgs' Amplitude Mode at the Two-Dimensional Supefruid-Mott Insulator Transition M. Endres *et al* (2012)

Quantum Simulation of Frustrated Magnetism in a Triangular Lattice

[Sengstock Group(2011)]

Outline of This Talk

I) Preparation of Quantum Gas

Laser cooling and trapping, evaporative cooling, Bose-Einstein condensate, Fermi Degenerate Gas

II) Ultracold Atoms in a Harmonic Trap

Feshbach resonance, Cooper paring, BEC-BCS crossover, unitary gas, pre-thermalization, quantum transport

III) Ultracold Atoms in an Optical Lattice

Superfluid-Mott insulator transition, quantum-gas-microscope, Higgs mode, frustrated magnetism

IV) (our recent work) Ultraold Atoms in a Flat Band

localization/delocalization on flat band

http://en.wikipedia.org/w

Several Non-Standard Optical Lattices are realized

Triangular

http://hiroi.issp.u-tokyo.ac.jp/data/crystal_gallery/crystal_gallery-Pages/Image31.html

Kagome

Lieb

Study of Hubbard Model with Lieb Lattice

More realistic lattice model of High-Tc Cuprate than square lattice : d-p Model(=Lieb lattice)

"Boson in a flat band"

 $\nu > \nu_{\rm c}$

Exotic strongly correlated state: Super-Solid !?

[discussion with S. Furukawa]

Prediction of super-solid for Kagome lattice

Huber & Altman PRB 82, 184502 (2010)

What is Super-Solid ?

"superfluid"

(Off-Diagonal Long-Range Order)

$$G^{(1)}(\mathbf{x}, \mathbf{x}') = \langle \mathbf{x}' | \hat{\rho}_1 | \mathbf{x} \rangle = \langle \hat{\psi}^{\dagger}(\mathbf{x}) \, \hat{\psi}(\mathbf{x}') \rangle$$

$$\rightarrow n_0$$

"Solid order" (Diagonal Long-Range Order / density wave) $\langle n(\mathbf{x})n(\mathbf{x}') \rangle \neq 0$

Optical Lieb Lattice

"Laser Configuration"

(I) 532 nm square lattice

(I) + (II) 532 nm diagonal lattice

(I)+ (II) + (III)1064 nm square lattice (V₁₀₆₄)

In order to study interesting physics of flat band, we need to load ultracold atoms into flat band.

-12.4

-12.6

-12.8-13

-13.2-13.4-13.6-13.8-14-14.2 -14.4

flat band:
$$|\mathbf{B}\rangle - |\mathbf{C}\rangle$$
 (q=0)
 $|q, X\rangle = \frac{1}{\sqrt{N}} \sum_{i \in X} e^{iq \cdot x_i} c_i^{\dagger} |0\rangle$ X=A, B, C

after Phase Imprinting

initially

 $|\mathbf{B}\rangle + |\mathbf{C}\rangle$ (q=0)

Brillouin Zones

"Non-equilibrium Dynamics after Loading into Flat Band" Hold "quasi-momentum distribution"

"Relaxation Dynamics after Loading into Flat Band"

Group Members

Summary

I) Preparation of Quantum Gas

Laser cooling and trapping, evaporative cooling, Bose-Einstein condensate, Fermi Degenerate Gas

II) Ultracold Atoms in a Harmonic Trap

Feshbach resonance, Cooper paring, BEC-BCS crossover, unitary gas, pre-thermalization, quantum transport

III) Ultracold Atoms in an Optical Lattice

Superfluid-Mott insulator transition, quantum-gas-microscope, Higgs mode, frustrated magnetism

IV) (our recent work) Ultraold Atoms in a Flat Band localization/delocalization on flat band

Thank you very much for attention

16 August Mount Daimonji at Kyoto