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Figure 3. a) Normalized flourescence[53] yield at the O K edge of La2−xSrxCuO4+δ.
In the undoped sample, the only absorption occurs at 530eV, indicated by B. Upon
doping the intensity at B is transferred to the feature at A, located at 528eV. b)
Gaussian fits to the absorption features at A and B with the background subtracted.
Reprinted from Chen, et al. Phys. Rev. Lett. 66, 104 (1991).

can be understood simply by turning on the hopping[4]. When the hopping is non-zero,

empty sites are created as a result of the creation of double occupancy. Such events

increase the number of available states for particle addition and as a consequence the

LESW increases faster than 2x. It is important to recall that the argument leading to

the LESW exceeding 2x relies on the strong coupling limit. If this limit is not relevant

to the ground state at a particular filling, the previous argument fails.

2.2. Breakdown of Fermi Liquid Theory: More than just Electrons

A natural question arises. Is spectral weight transfer important? A way of gauging

importance is to determine if spectral weight transfer plays any role in a low-energy

theory. A low-energy theory is properly considered to be natural if there are no relevant

perturbations. Several years ago, Polchinski[42] and others[43, 44, 45] considered Fermi

liquid theory from the standpoint of renormalisation. They found[42, 43, 44, 45] that as

long as one posits that the charge carriers are electrons, there are no relevant interactions

(except for pairing) that destroy the Fermi liquid state. The setup[42] is as follows.

Decompose the momenta into the Fermi momentum and a component orthogonal to

chen/Batlogg, 1990
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G. Horowitz et al., Journal of High Energy Physics, 2012
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gab = ḡab + hab

Aa = Āa + ba
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phenomenology

(p2)dU�d/2

scale-invariant propagators

no well-defined mass

Le↵ =

Z 1

0
L(x,m2)dm2

incoherent stuff (all energies)
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S =
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 gauge unparticles

S =

Z
d

d+1
xd

d+1
y �

†
U (x)F (x� y)W (x, y)�U (y),

 Wilson line

 vertices

g�µ(p, q) =
�3S

�Aµ(q)��†(p+ q)��(p)

g2�µ⌫(p, q1, q2) =
�4S

�Aµ(q1)�A⌫(q2)��†(p+ q1 + q2)��(p)
2-gauge

1-gauge
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�µ⌫(i!n) = lim
q!0

1
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Kµ⌫

n (q)!

 compute conductivity

�(i!n) = (
d+ 1

2
� dU )�0(i!n)

no power law
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