Optical Conductivity in the Cuprates: from Mottness to Scale Invariance

Thanks to: NSF, EFRC (DOE)

Brandon Langley

Garrett Vanacore

Kridsangaphong Limtragool

Optical spectra of $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4}$: Effect of carrier doping on the electronic structure of the CuO_{2} plane
S. Uchida

Engineering Research Institute, University of Tokyo, Yayoi, Tokyo 113, Japan
T. Ido and H. Takagi

Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113, Japan
T. Arima and Y. Tokura

Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan
S. Tajima

Superconducting Research Laboratory, International Superconductivity Technology Center, Shinonome, Tokyo, Japan
(Received 30 August 1990)

Optical spectra of $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4}$: Effect of carrier doping on the electronic structure of the CuO_{2} plane
S. Uchida

Engineering Research Institute, University of Tokyo, Yayoi, Tokyo 113, Japan
T. Ido and H. Takagi

Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113, Japan
T. Arima and Y. Tokura

Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan
S. Tajima

Superconducting Research Laboratory, International Superconductivity Technology Center, Shinonome, Tokyo, Japan
(Received 30 August 1990)

Growth of the optical conductivity in the $\mathbf{C u}-\mathbf{O}$ planes

S. L. Cooper, G. A. Thomas, J. Orenstein, D. H. Rapkine, A. J. Millis, S-W. Cheong, and A. S. Cooper AT\&T Bell Laboratories, Murray Hill, New Jersey 07974
Z. Fisk

Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 7 March 1990)

$$
N_{\mathrm{eff}}(\Omega)=\frac{2 m V_{\mathrm{cell}}}{\pi e^{2}} \int_{0}^{\Omega} \sigma(\omega) d \omega
$$

$$
N_{\text {eff }}(\Omega)=\frac{2 m V_{\text {cell }}}{\pi e^{2}} \int_{0}^{\Omega} \sigma(\omega) d \omega
$$

optical gap

$$
N_{\text {eff }}(\Omega)=\frac{2 m V_{\text {cell }}}{\pi e^{2}} \int_{0}^{\Omega(\omega) d \omega}
$$

$$
\begin{gathered}
N_{\text {eff }}(\Omega)=\frac{2 m V_{\text {cell }}}{\pi e^{2}} \int_{0}^{\Omega(\omega) d \omega} \\
\square \xrightarrow{\Omega_{\text {eff }} \propto x} \begin{array}{l}
\square \\
\square
\end{array}
\end{gathered}
$$

Uchida, et al.

Cooper, et al.

Uchida, et al.

excess carriers?

Mottness

으 으 으 으 으 으

으 으 으 으 으 으

classical (atomic) limit

\therefore - - - - - - - -

classical (atomic) limit

- - - - - - - - -

classical (atomic) limit

number of empty sites=x

- - - - - - - -

classical (atomic) limit

number of empty sites $=\mathrm{x} \leadsto N_{\text {eff }} \propto x$

classical (atomic) limit

2 states

number of empty sites $=\mathrm{x} \leadsto N_{\text {eff }} \propto x$

ㅇ ㅇ 으 으 으 ㅇ

Mott insulator

으 으 으 으 으 으 으 ㅇ

Mott insulator

$$
U=\infty
$$

Sawatzky
atomic limit: x holes

atomic limit: x holes

atomic limit: x holes

2
U finite $U \gg t$

U finite $U \gg t$

double occupancy in ground state!!
U finite $U \gg t$

double occupancy in ground state!!

U finite $U \gg t$

$N_{\text {eff }} \neq \# x$
double occupancy in ground state!!

why is this a problem?

counting electron states

- ○ - - - - - -

need to know: N (number of sites)

counting electron states

으 으 으 으 으 $x=n_{h} / N$

need to know: N (number of sites)

counting electron states

need to know: N (number of sites)

counting electron states

need to know: N (number of sites)

need to know: N (number of sites)

low-energy electron states
need to know: N (number of sites)

low-energy electron states

$$
1-x+2 x=1+x
$$

need to know: N (number of sites)

low-energy electron states

$$
1-x+2 x=1+x
$$

high energy
$1-x$
need to know: N (number of sites)
spectral function (dynamics)

not exhausted by counting electrons alone

determination of $N_{\text {eff }}$

determination of $N_{\text {eff }}$

chen/Batlogg, 1990

DMFT on Hubbard model

Flgure 3 Comparison of measured and calculated optical spectral weight. Filled symbols: spectral weight obtained by integrating experimental conductivity up to 0.8 eV from references given. Open symbols: theoretically calculated spectral weight, integrated up to $W / 4$. For $U=0.85 U_{2}$ and $U=0.9 U_{2}$, the band-theory estimate $W=3 \mathrm{eV}$ is used to convert the calculation to physical units; for $U=1.02 U_{2}$, the value $W=2.25 \mathrm{eV}$ which reproduces the insulating gap is used.

Millis, 2008

chakraborty \& Phillips, 2007

spectral weight transfer

is there anything else?

yes

Quantum critical behaviour in

 a high- T_{c} superconductorD. van der Marel ${ }^{1}$, H. J. A. Molegraaf ${ }^{1}$, J. Zaanen ${ }^{2}$, Z. Nussinov ${ }^{2}$, F. Carbone ${ }^{1 *}$, A. Damascellil ${ }^{3 *}$, H. Elsakl ${ }^{3}$, M. Greven ${ }^{3}$, P. H. Kes ${ }^{2} \&$ M. 2
${ }^{1}$ Materials Science Centre, University of Groningen, 9747 AG Groningen, The Netherlands
${ }^{2}$ Leiden Institute of Physics, Leiden University, 2300 RA Leiden, The Netherlands ${ }^{3}$ Department of Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, California 94305, USA

Drude conductivity

yes

Quantum critical behaviour in a high- T_{c} superconductor

D. van der Marel ${ }^{1 \times}$, H. J. A. Molegraaf ${ }^{1}$, J. Zaanen ${ }^{2}$, Z. Nussinov ${ }^{2}$, F. Carbone ${ }^{1 *}$, A. Damascelli ${ }^{3 *}$, H. Elsakk ${ }^{3 *}$, M. Greven ${ }^{3}$, P. H. Kes ${ }^{2} \&$ M. 2
${ }^{1}$ Materials Science Centre, University of Groningen, 9747 AG Groningen, The Netherlands
${ }^{2}$ Leiden Institute of Physics, Leiden University 2300 RA Leiden, The Netherlands ${ }^{3}$ Department of Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, California 94305, USA

Drude conductivity

$\frac{n \tau e^{2}}{m} \frac{1}{1-i \omega \tau}$

$$
O(\omega)=\circlearrowleft \omega-\frac{2}{3}
$$

criticality

scale-invariant propagators

$$
\left(\frac{1}{p^{2}}\right)^{\alpha}
$$

scale-invariant

 propagators$$
\left(\frac{1}{p^{2}}\right)^{\alpha}
$$

Anderson: use Luttinger Liquid propagators

$$
G^{R} \propto \frac{1}{\left(\omega-v_{s} k\right)^{\eta}}
$$

compute conductivity without vertex corrections (PWA)

is flawed. In fact, in the Luttinger liquid such direct calculations are not to be trusted very firmly, since it is the nature of the Luttinger liquid that vertex corrections, if they must be included, will be singular; conventional transport theory is not applicable, and special methods such as the above are necessary.

$$
\sigma(\omega) \propto \frac{1}{\omega} \int d x \int d t G^{e}(x, t) G^{h}(x, t) e^{i \omega t} \propto(i \omega)^{-1+2 \eta}
$$

problems

problems

1.) cuprates are not 1 dimensional

problems

1.) cuprates are not 1 dimensional

2.) vertex corrections matter

problems

1.) curates are not 1dimensional

2.) vertex corrections matter

$$
\begin{gathered}
\begin{array}{c}
\sigma \propto G^{2} \Gamma^{\mu} \Gamma^{\mu \nu} \\
{[G]=L^{d+1-d_{U}}} \\
{\left[\Gamma^{\mu}\right]=L^{2 d_{U}-d}} \\
{\left[\Gamma^{\mu \nu}\right]=L^{2 d_{U}-d+1}}
\end{array}
\end{gathered} \begin{gathered}
{[\sigma]=L^{3-d}} \\
\begin{array}{c}
\text { independent } \\
\text { of } d_{U}
\end{array} \\
\hline
\end{gathered}
$$

power law?

power law?

Could string theory be the answer?

cannot describe systems at $g=0$!

optical conductivity from a gravitational lattice

G. Horowitz et al., Journal of High Energy Physics, 2012

optical conductivity from a gravitational lattice

G. Horowitz et al., Journal of High Energy Physics, 2012

optical conductivity from a gravitational lattice

log-log plots for various parameters

G. Horowitz et al., Journal of High Energy Physics, 2012

optical conductivity from a gravitational lattice

G. Horowitz et al., Journal of High Energy Physics, 2012

optical conductivity from a gravitational lattice

log-log plots for various parameters
$|\sigma(\omega)|=\frac{B}{\omega^{2 / 3}}+C$
for $0.2 \lesssim \omega \tau \lesssim 0.8$
a remarkable claim!
replicates features of the strange metal? how?
G. Horowitz et al., Journal of High Energy Physics, 2012

EinsteinMaxwell equations

$十 \begin{gathered}\text { non-uniform } \\ =B \omega^{-2 / 3}\end{gathered}$

not so fast!

Donos and Gauntlett (gravitational crystal)

Drude conductivity

$$
\frac{n \tau e^{2}}{m} \frac{1}{1-i \omega \tau}
$$

Donos and Gauntlett (gravitational crystal)

Drude conductivity

$$
\frac{n \tau e^{2}}{m} \frac{1}{1-i \omega \tau}
$$

no power law!!

Donos and Gauntlett (gravitational crystal)

Drude conductivity

$$
\frac{n \tau e^{2}}{m} \frac{1}{1-i \omega \tau}
$$

no power law!!

1

who is correct?

who is correct?

let's redo the calculation

conductivity within AdS

$\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)$

(metric, potential, gaugefield)

conductivity within AdS

$\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)$

(metric, potential, gaugefield)

$$
\begin{aligned}
& A_{t}=\mu(1-z) d t \\
& \rho=\lim _{z \rightarrow 0} \sqrt{g} F^{t z}
\end{aligned}
$$

conductivity within AdS

$\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)$

(metric, potential, gaugefield)

conductivity within AdS

$\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)$

(metric, potential, gaugefield)
perturb with electric field

conductivity within AdS

$\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)$

(metric, potential, gaugefield)
perturb with electric field

$$
\begin{array}{r}
g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} \\
A_{a}=\bar{A}_{a}+b_{a} \\
\Phi_{i}=\bar{\Phi}_{i}+\eta_{i}
\end{array}
$$

conductivity within AdS

$\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)$

(metric, potential, gaugefield)
perturb with electric field

$$
\begin{array}{r}
g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} \\
A_{a}=\bar{A}_{a}+b_{a} \\
\Phi_{i}=\bar{\Phi}_{i}+\eta_{i}
\end{array}
$$

$$
\delta A_{x}=\frac{E}{i \omega}+J_{x}(x, \omega) z+O\left(z^{2}\right)
$$

conductivity within AdS

$\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)$

(metric, potential, gaugefield)
perturb with electric field

$$
\begin{aligned}
g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} & \\
A_{a}=\bar{A}_{a}+b_{a} & \delta A_{x}=\frac{E}{i \omega}+J_{x}(x, \omega) z+O\left(z^{2}\right) \\
\Phi_{i}=\bar{\Phi}_{i}+\eta_{i} &
\end{aligned}
$$

solve equations of motion with gauge invariance

conductivity within AdS

$$
\left(g_{\mathrm{ab}}, V(\Phi), A_{t}\right)
$$

(metric, potential, gaugefield)
perturb with electric field

$$
\begin{aligned}
g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} & \\
A_{a}=\bar{A}_{a}+b_{a} & \delta A_{x}=\frac{E}{i \omega}+J_{x}(x, \omega) z+O\left(z^{2}\right) \\
\Phi_{i}=\bar{\Phi}_{i}+\eta_{i} &
\end{aligned}
$$

solve equations of motion

$$
\sigma=J_{x}(x, \omega) / E
$$

with gauge invariance

model

RNAdS $d s^{2}=\frac{L^{2}}{r^{2} f\left(\frac{r_{H}}{r}\right)} d r^{2}+\frac{r^{2}}{L^{2}}\left(-f\left(\frac{r_{H}}{r}\right) d t^{2}+d x^{2}+d y^{2}\right)$,

model

RNAdS $d s^{2}=\frac{L^{2}}{r^{2} f\left(\frac{r_{H}}{r}\right)} d r^{2}+\frac{r^{2}}{L^{2}}\left(-f\left(\frac{r_{H}}{r}\right) d t^{2}+d x^{2}+d y^{2}\right)$,
action $=$ gravity + EM + lattice

model

RNAdS $d s^{2}=\frac{L^{2}}{r^{2} f\left(\frac{r_{H}}{r}\right)} d r^{2}+\frac{r^{2}}{L^{2}}\left(-f\left(\frac{r_{H}}{r}\right) d t^{2}+d x^{2}+d y^{2}\right)$,

model

RNAdS $d s^{2}=\frac{L^{2}}{r^{2} f\left(\frac{r_{H}}{r}\right)} d r^{2}+\frac{r^{2}}{L^{2}}\left(-f\left(\frac{r_{H}}{r}\right) d t^{2}+d x^{2}+d y^{2}\right)$,

model

RNAdS $d s^{2}=\frac{L^{2}}{r^{2} f\left(\frac{r_{H}}{r}\right)} d r^{2}+\frac{r^{2}}{L^{2}}\left(-f\left(\frac{r_{H}}{r}\right) d t^{2}+d x^{2}+d y^{2}\right)$,

$$
\begin{aligned}
& \text { action }=\frac{\text { gravity }}{\uparrow}+\frac{\text { EM }}{\text { Iattice }} \\
& S=\frac{1}{16 \pi G_{N}} \int d^{4} x \sqrt{-g}\left(\sqrt{R-2 \Lambda}-\frac{1}{2} F^{2}\right), \quad \text { L } \\
& \\
& \mathcal{L}(\phi)=\sqrt{-g}\left[-|\partial \phi|^{2}-V(|\phi|)\right]
\end{aligned}
$$

HST vs. DG

Horowitz, Santos, Tong (HST)

$$
V(\Phi)=-\Phi^{2} / L^{2}
$$

$$
\begin{array}{r}
\Phi=z \Phi^{(1)}+z^{2} \Phi^{(2)}+\cdots, \\
\Phi^{(1)}(x)=A_{0} \cos (k x)
\end{array}
$$

inhomogeneous in x

$$
m^{2}=-2 / L^{2}
$$

Horowitz, Santos, Tong (HST)

$$
V(\Phi)=-\Phi^{2} / L^{2}
$$

$$
\begin{array}{r}
\Phi=z \Phi^{(1)}+z^{2} \Phi^{(2)}+\cdots, \\
\Phi^{(1)}(x)=A_{0} \cos (k x)
\end{array}
$$

inhomogeneous in x

$$
m^{2}=-2 / L^{2}
$$

de Donder gauge

Horowitz, Santos, Tong (HST)

$$
V(\Phi)=-\Phi^{2} / L^{2}
$$

DG

$$
V\left(|\Phi|^{2}\right)
$$

$$
\Phi=z \Phi^{(1)}+z^{2} \Phi^{(2)}+\cdots,
$$

$$
\Phi(z, x)=\phi(z) e^{i k x}
$$

$$
\Phi^{(1)}(x)=A_{0} \cos (k x)
$$

inhomogeneous in x

$$
m^{2}=-2 / L^{2}
$$

de Donder gauge

Horowitz, Santos, Tong (HST)

$$
V(\Phi)=-\Phi^{2} / L^{2}
$$

DG

$$
V\left(|\Phi|^{2}\right)
$$

$$
\Phi(z, x)=\phi(z) e^{i k x}
$$

no
inhomogeneity in
x

$$
m^{2}=-3 /\left(2 L^{2}\right)
$$

$$
m^{2}=-2 / L^{2}
$$

de Donder gauge

Our Model

$$
\mathcal{L}_{\Phi}=\left(\nabla \Phi_{1}\right)^{2}+\left(\nabla \Phi_{2}\right)^{2}+2 V\left(\Phi_{1}\right)+2 V\left(\Phi_{2}\right)
$$

Our Model

$$
\begin{array}{lll}
\mathcal{L}_{\Phi}=\left(\nabla \Phi_{1}\right)^{2}+\left(\nabla \Phi_{2}\right)^{2}+2 V\left(\Phi_{1}\right)+2 V\left(\Phi_{2}\right) \\
\Phi_{1}= & z \Phi_{1}^{(1)}+z^{2} \Phi_{1}^{(2)}+\cdots, & \Phi_{1}^{(1)}(x)=A_{0} \cos \left(k x-\frac{\theta}{2}\right), \\
\Phi_{2}= & z \Phi_{2}^{(1)}+z^{2} \Phi_{2}^{(2)}+\cdots, & \Phi_{2}^{(1)}(x)=A_{0} \cos \left(k x+\frac{\theta}{2}\right) .
\end{array}
$$

Our Model

$$
\mathcal{L}_{\Phi}=\left(\nabla \Phi_{1}\right)^{2}+\left(\nabla \Phi_{2}\right)^{2}+2 V\left(\Phi_{1}\right)+2 V\left(\Phi_{2}\right)
$$

$$
\begin{array}{ll}
\Phi_{1}= & z \Phi_{1}^{(1)}+z^{2} \Phi_{1}^{(2)}+\cdots, \\
\Phi_{2}= & z \Phi_{2}^{(1)}(x)=A_{0} \cos \left(k x-\frac{\theta}{2}\right), \\
& z^{2} \Phi_{2}^{(2)}+\cdots, \\
\hline & \Phi_{2}^{(1)}(x)=A_{0} \cos \left(k x+\frac{\theta}{2}\right) . \\
& \text { HST }
\end{array}
$$

Our Model

$$
\mathcal{L}_{\Phi}=\left(\nabla \Phi_{1}\right)^{2}+\left(\nabla \Phi_{2}\right)^{2}+2 V\left(\Phi_{1}\right)+2 V\left(\Phi_{2}\right)
$$

$$
\begin{array}{lll}
\Phi_{1}= & z \Phi_{1}^{(1)}+z^{2} \Phi_{1}^{(2)}+\cdots, & \Phi_{1}^{(1)}(x)=A_{0} \cos \left(k x-\frac{\theta}{2}\right), \\
\Phi_{2}= & \Phi_{2}^{(1)}+z^{2} \Phi_{2}^{(2)}+\cdots, & \Phi_{2}^{(1)}(x)=A_{0} \cos \left(k x+\frac{\theta}{2}\right) . \\
\theta=0
\end{array}
$$

Einstein-De Turck EOM

$$
\begin{array}{r}
G_{a b}^{H}=G_{a b}-\nabla_{(a} \xi_{b)} \\
\xi^{a}=g^{c d}\left(\Gamma_{c d}^{a}(g)-\Gamma_{c d}^{a}(\bar{g})\right)
\end{array}
$$

Einstein-De Turck EOM

$$
\begin{aligned}
G_{a b}^{H}=G_{a b}-\nabla_{(a} \xi_{b)} \\
\xi^{a}=g^{c d}\left(\Gamma_{c d}^{a}(g)-\Gamma_{c d}^{a}(\bar{g})\right)
\end{aligned}
$$

Einstein-De Turck EOM

$$
\begin{array}{r}
G_{a b}^{H}=G_{a b}-\nabla_{(a} \xi_{b}, \\
\xi^{a}=g^{c d}\left(\Gamma_{c d}^{a}(g)-\Gamma_{c d}^{a}(\bar{g})\right) .
\end{array}
$$

metric ansatz

reference metric

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-(1-z) P(z) Q_{t t} d t^{2}+\frac{Q_{z z} d z^{2}}{(1-z) P(z)}+Q_{x x}\left(d x+z^{2} Q_{z x} d z\right)^{2}+Q_{y y} d y^{2}\right] \\
& P(z)=1+z+z^{2}-\frac{\mu_{1}^{2}}{2} z^{3}
\end{aligned}
$$

Einstein-De Turck EOM

$$
\begin{array}{r}
G_{a b}^{H}=G_{a b}-\nabla_{(a} \xi_{b)}, \\
\xi^{a}=g^{c d}\left(\Gamma_{c d}^{a}(g)-\Gamma_{c d}^{a}(\bar{g})\right) .
\end{array}
$$

metric ansatz

reference metric

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-(1-z) P(z) Q_{t t} d t^{2}+\frac{Q_{z z} d z^{2}}{(1-z) P(z)}+Q_{x x}\left(d x+z^{2} Q_{z x} d z\right)^{2}+Q_{y y} d y^{2}\right], \\
& P(z)=1+z+z^{2}-\frac{\mu_{1}^{2}}{2} z^{3} .
\end{aligned}
$$

RN-AdS when

$$
Q_{t t}=Q_{z z}=Q_{y y}=1 \quad \Phi=0 \quad a_{t}=\mu_{1}=\mu
$$

Dirchlet boundary conditions

$$
\begin{aligned}
& Q_{t t}(0, x)=Q_{z z}(0, x)=Q_{x x}(0, x)=Q_{y y}(0, x)=1 \\
& Q_{z x}(0, x)=0 \quad a_{t}(0, x)=\mu \quad \Phi(0, x)=\Phi^{(1)}(x)
\end{aligned}
$$

Dirchlet boundary conditions

$$
\begin{aligned}
& Q_{t t}(0, x)=Q_{z z}(0, x)=Q_{x x}(0, x)=Q_{y y}(0, x)=1 \\
& Q_{z x}(0, x)=0 \quad a_{t}(0, x)=\mu \quad \Phi(0, x)=\Phi^{(1)}(x)
\end{aligned}
$$

regularity at $z=1$

Dirchlet boundary conditions

$$
\begin{aligned}
& Q_{t t}(0, x)=Q_{z z}(0, x)=Q_{x x}(0, x)=Q_{y y}(0, x)=1 \\
& Q_{z x}(0, x)=0 \quad a_{t}(0, x)=\mu \quad \Phi(0, x)=\Phi^{(1)}(x)
\end{aligned}
$$

regularity at $z=1$

Newton-Raphson on grid

Dirchlet boundary conditions

$$
\begin{aligned}
& Q_{t t}(0, x)=Q_{z z}(0, x)=Q_{x x}(0, x)=Q_{y y}(0, x)=1 \\
& Q_{z x}(0, x)=0 \quad a_{t}(0, x)=\mu \quad \Phi(0, x)=\Phi^{(1)}(x)
\end{aligned}
$$

regularity at $\mathrm{z}=1$

Newton-Raphson on grid

$$
A_{0}=0.75, k=1, \mu=1.4, T / \mu=0.115
$$

$$
A_{0}=0.75, k=1, \mu=1.4, T / \mu=0.115
$$

translational invariance is broken in metric in multiples of $2 k$

charge density

$$
\rho=\lim _{z \rightarrow 0} \sqrt{-g} F^{t z}
$$

perturb with electric field

$$
\begin{array}{r}
g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} \\
A_{a}=\bar{A}_{a}+b_{a} \\
\Phi_{i}=\bar{\Phi}_{i}+\eta_{i}
\end{array}
$$

perturb with electric field

$$
\begin{aligned}
& g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} \\
& A_{a}=\bar{A}_{a}+b_{a} \\
& \Phi_{i}=\bar{\Phi}_{i}+\eta_{i} \\
& \text { gauge invariance } \\
& \delta g_{a b}+\mathcal{L}_{\zeta} \bar{g}_{a b}=0, \\
& \delta A_{a}+\mathcal{L}_{\zeta} \bar{A}_{a}+\nabla_{a} \Lambda=e^{-i \omega t} \mu_{x}^{J} \\
& \delta \Phi+\mathcal{L}_{\zeta} \bar{\Phi}=0,
\end{aligned}
$$

perturb with electric field

$$
\begin{aligned}
& g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} \\
& A_{a}=\bar{A}_{a}+b_{a} \\
& \Phi_{i}=\bar{\Phi}_{i}+\eta_{i} \\
& \text { gauge invariance } \\
& \delta g_{a b}+\mathcal{L}_{\zeta} \bar{g}_{a b}=0, \\
& \delta A_{a}+\mathcal{L}_{\zeta} \bar{A}_{a}+\nabla_{a} \Lambda=e^{-i \omega t} \mu_{x}^{J}, \\
& \delta \Phi+\mathcal{L}_{\zeta} \bar{\Phi}=0, \\
& \quad \text { solve equations without mistakes!! }
\end{aligned}
$$

perturb with electric field

$$
\begin{aligned}
& g_{\mathrm{ab}}=\bar{g}_{\mathrm{ab}}+h_{\mathrm{ab}} \\
& A_{a}=\bar{A}_{a}+b_{a} \\
& \Phi_{i}=\bar{\Phi}_{i}+\eta_{i} \\
& \\
& \\
& \\
& \text { gauge invariance } \\
& \delta g_{a b} \\
& \\
& \delta A_{a}+\mathcal{L}_{\zeta} \overline{\mathcal{L}}_{a b}=0, \\
& \delta \Phi \\
& \delta \bar{A}_{a}+\nabla_{a} \Lambda=e^{-i \omega t} \mu_{x}^{J}, \\
& \bar{\Phi}=0,
\end{aligned}
$$

- high-frequency behavior is identical
- low-frequency RN has $\operatorname{Re}(\sigma) \sim \delta(\omega), \operatorname{Im}(\sigma) \sim 1 / \omega$
- low-frequency lattice has Drude form
sample conductivity plots

- high-frequency behavior is identical
- low-frequency RN has $\operatorname{Re}(\sigma) \sim \delta(\omega), \operatorname{Im}(\sigma) \sim 1 / \omega$
- low-frequency lattice has Drude form

$k=1, A=0.75 / \sqrt{2}, T / \mu=0.115, \mu=1.4$

Results

$k=1, A=0.75 / \sqrt{2}, T / \mu=0.115, \mu=1.4$

Results

Results

$$
k=1, A=0.75 / \sqrt{2}, T / \mu=0.115, \mu=1.4
$$

Results

$$
\left.\begin{array}{rl}
k=1, & A=0.75 / \sqrt{2}, T / \mu=0.115, \mu=1.4 \\
& \\
1.5
\end{array}\right)
$$

$$
\phi_{i}=A_{i} \cos \left(k_{i} x\right), A_{1}=0.75, k_{1}=1, k_{2}=2
$$

Results $\quad \phi_{i}=A_{i} \cos \left(k_{i} x\right), A_{1}=0.75, k_{1}=1, k_{2}=2$

origin of power law?

origin of power law?

phenomenology

origin of power law?

phenomenology

scale-invariant propagators

$$
\left(p^{2}\right)^{d_{U}-d / 2}
$$

origin of power law?

phenomenology

scale-invariant propagators

$$
\left(p^{2}\right)^{d_{U}-d / 2}
$$

no well-defined mass

$$
\mathcal{L}_{\mathrm{eff}}=\int_{0}^{\infty} \mathcal{L}\left(x, m^{2}\right) d m^{2}
$$

origin of power law?

phenomenology
scale-invariant propagators

$$
\left(p^{2}\right)^{d_{U}-d / 2}
$$

no well-defined mass

$$
\mathcal{L}_{\mathrm{eff}}=\int_{0}^{\infty} \mathcal{L}\left(x, m^{2}\right) d m^{2}
$$

incoherent stuff (all energies)

massive free theory

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi+m^{2} \phi^{2}
$$

massive free theory

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi+m^{2} \phi^{2} \\
x \rightarrow x / \Lambda \\
\phi(x) \rightarrow \phi(x)
\end{gathered}
$$

massive free theory
$\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi+m^{2} \phi^{2}$

no scale invariance

$$
\mathcal{L}=\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right)
$$

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2}
\end{gathered}
$$

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2} \\
\mathcal{L} \rightarrow \Lambda^{4} \mathcal{L}
\end{gathered}
$$

scale invariance is restored!!

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2} \\
\mathcal{L} \rightarrow \Lambda^{4} \mathcal{L}
\end{gathered}
$$

scale invariance is restored!!
not particles

unparticles

$$
\mathcal{L}=\int_{0}^{\infty}\left(\partial^{\mu} \phi(x, m) \partial_{\mu} \phi(x, m)+m^{2} \phi^{2}(x, m)\right) d m^{2}
$$

theory with all possible mass!

$$
\begin{gathered}
\phi \rightarrow \phi\left(x, m^{2} / \Lambda^{2}\right) \\
x \rightarrow x / \Lambda \\
m^{2} / \Lambda^{2} \rightarrow m^{2} \\
\mathcal{L} \rightarrow \Lambda^{4} \mathcal{L}
\end{gathered}
$$

scale invariance is restored!!
not particles

propagator

$$
\left(\int_{0}^{\infty} d m^{2} m^{2 \gamma} \frac{i}{p^{2}-m^{2}+i \epsilon}\right)^{-1} \propto p^{2|\gamma|}
$$

propagator

$$
\left(\int_{0}^{\infty} d m^{2} m^{2 \gamma} \frac{i}{p^{2}-m^{2}+i \epsilon}\right)^{-1} \propto p^{2|\gamma|} \overbrace{}^{d_{U}-2}
$$

propagator

$$
\left(\int_{0}^{\infty} d m^{2} m^{2 \gamma} \frac{i}{p^{2}-m^{2}+i \epsilon}\right)^{-1} \propto p^{2|\gamma|} \overbrace{d_{U} \downarrow 2}^{\downarrow}
$$

continuous mass

$\phi\left(x, m^{2}\right)$
flavors

propagator

$$
\left(\int_{0}^{\infty} d m^{2} m^{2 \gamma} \frac{i}{p^{2}-m^{2}+i \epsilon}\right)^{-1} \propto p^{2 \mid \gamma}{ }^{d_{U} \downarrow}{ }^{\downarrow}
$$

continuous mass

$\phi\left(x, m^{2}\right)$	$e^{2}(m)$ Karch, 2005
flavors	multi-bands

propagator

$$
\left(\int_{0}^{\infty} d m^{2} m^{2 \gamma} \frac{i}{p^{2}-m^{2}+i \epsilon}\right)^{-1} \propto p^{2|\gamma|} \underbrace{\downarrow}{ }^{\downarrow}-2
$$

continuous mass

use unparticle propagators to calculate conductivity

use unparticle propagators to calculate conductivity

assume Gaussian action

$$
S=\int d^{d+1} p \phi_{U}^{\dagger}(p) i G^{-1}(p) \phi_{U}(p)
$$

use unparticle propagators to calculate conductivity

assume Gaussian action

$$
\begin{aligned}
& S=\int d^{d+1} p \phi_{U}^{\dagger}(p) i G^{-1}(p) \phi_{U}(p) \\
& \phi_{U}(x)=\int_{0}^{\infty} d m^{2} f\left(m^{2}\right) \phi\left(x, m^{2}\right)
\end{aligned}
$$

use unparticle propagators to calculate conductivity

assume Gaussian action

$$
\begin{gathered}
S=\int d^{d+1} p \phi_{U}^{\dagger}(p) i G^{-1}(p) \phi_{U}(p) \\
\phi_{U}(x)=\int_{0}^{\infty} d m^{2} f\left(m^{2}\right) \phi\left(x, m^{2}\right) \\
G(p) \sim \frac{i}{\left(-p^{2}+i \epsilon\right)^{\frac{d+1}{2}-d_{U}}}
\end{gathered}
$$

gauge unparticles

vertices

vertices

$$
\begin{array}{cc}
g \Gamma^{\mu}(p, q)=\frac{\delta^{3} S}{\delta A^{\mu}(q) \delta \phi^{\dagger}(p+q) \delta \phi(p)} & \boxed{1 \text {-gauge }} \\
g^{2} \Gamma^{\mu \nu}\left(p, q_{1}, q_{2}\right)=\frac{\delta^{4} S}{\delta A^{\mu}\left(q_{1}\right) \delta A^{\nu}\left(q_{2}\right) \delta \phi^{\dagger}\left(p+q_{1}+q_{2}\right) \delta \phi(p)} \text { 2-gauge }
\end{array}
$$

use Ward-Takahashi identities to simplify vertices

$$
\begin{gathered}
-i q_{\mu} \Gamma^{\mu}(p, q)=G^{-1}(p+q)-G^{-1}(p) \\
q_{1 \mu} \Gamma^{\mu \nu}\left(p, q_{1}, q_{2}\right)=\Gamma^{\nu}\left(p+q_{1}, q_{2}\right)-\Gamma^{\nu}\left(p, q_{2}\right)
\end{gathered}
$$

use Ward-Takahashi identities to simplify vertices

$$
\begin{gathered}
-i q_{\mu} \Gamma^{\mu}(p, q)=G^{-1}(p+q)-G^{-1}(p) \\
q_{1 \mu} \Gamma^{\mu \nu}\left(p, q_{1}, q_{2}\right)=\Gamma^{\nu}\left(p+q_{1}, q_{2}\right)-\Gamma^{\nu}\left(p, q_{2}\right)
\end{gathered}
$$

response function to an electric field

use Ward-Takahashi identities to simplify vertices

$$
\begin{gathered}
-i q_{\mu} \Gamma^{\mu}(p, q)=G^{-1}(p+q)-G^{-1}(p) \\
q_{1 \mu} \Gamma^{\mu \nu}\left(p, q_{1}, q_{2}\right)=\Gamma^{\nu}\left(p+q_{1}, q_{2}\right)-\Gamma^{\nu}\left(p, q_{2}\right)
\end{gathered}
$$

response function to an electric field

$K_{-n,-n^{\prime}}^{\mu \nu}\left(-q,-q^{\prime}\right)=-\left.\frac{(2 \pi)^{2 d}}{T^{2}} \mathcal{Z}^{-1} \frac{\delta^{2}}{\delta A_{\mu, n}(q) \delta A_{\nu, n^{\prime}}\left(q^{\prime}\right)}\right|_{A=0} \mathcal{Z}[A]$

compute conductivity

$$
\sigma^{\mu \nu}\left(i \omega_{n}\right)=\lim _{q \rightarrow 0} \frac{1}{\omega_{n}} K_{n}^{\mu \nu}(q)!
$$

compute conductivity

$$
\sigma^{\mu \nu}\left(i \omega_{n}\right)=\lim _{q \rightarrow 0} \frac{1}{\omega_{n}} K_{n}^{\mu \nu}(q)!
$$

$$
\sigma\left(i \omega_{n}\right)=\left(\frac{d+1}{2}-d_{U}\right) \sigma_{0}\left(i \omega_{n}\right)
$$

what went wrong?

what went wrong?

free field
$\phi_{U}(x)=\int_{0}^{\infty} d m^{2} f\left(m^{2}\right) \phi\left(x, m^{2}\right)$

continuous mass taken seriously

$$
S=\sum_{i=1}^{N} \int d \tau \int d^{d} x\left(\left|D_{\mu} \phi_{i}^{2}\right|+m_{i}^{2}\left|\phi_{i}\right|^{2}\right)
$$

continuous mass taken seriously

$$
\begin{gathered}
S=\sum_{i=1}^{N} \int d \tau \int d^{d} x\left(\left|D_{\mu} \phi_{i}^{2}\right|+m_{i}^{2}\left|\phi_{i}\right|^{2}\right) \\
\sum_{i} \rightarrow \int \rho(m) d m
\end{gathered}
$$

continuous mass taken seriously

$$
S=\sum_{i=1}^{N} \int d \tau \int d^{d} x\left(\left|D_{\mu} \phi_{i}^{2}\right|+m_{i}^{2}\left|\phi_{i}\right|^{2}\right)
$$

$$
\sum_{i} \rightarrow \int \rho(m) d m
$$

$$
\sigma(\omega)=\int_{0}^{M} d m \rho(m) e^{2}(m) f(\omega, m, T)
$$

continuous mass taken seriously

$$
\begin{gathered}
S=\sum_{i=1}^{N} \int d \tau \int d^{d} x\left(\left|D_{\mu} \phi_{i}^{2}\right|+m_{i}^{2}\left|\phi_{i}\right|^{2}\right) \\
\sum_{i} \rightarrow \int \rho(m) d m \\
\sigma(\omega)=\int_{0}^{M} d m \rho(m) e^{2}(m) f(\omega, m, T) \\
\propto \omega^{\alpha} \quad \alpha>0(\omega<2 M)
\end{gathered}
$$

last attempt

last attempt

take experiments

 seriously
last attempt

take experiments

 seriously$$
\sigma^{i}(\omega)=\frac{n_{i} e_{i}^{2} \tau_{i}}{m_{i}} \frac{1}{1-i \omega \tau_{i}}
$$

last attempt

take experiments

 seriously$$
\sigma^{i}(\omega)=\frac{n_{i} e_{i}^{2} \tau_{i}}{m_{i}} \frac{1}{1-i \omega \tau_{i}}
$$

continuous mass

last attempt

take experiments

 seriously$$
\sigma^{i}(\omega)=\frac{n_{i} e_{i}^{2} \tau_{i}}{m_{i}} \frac{1}{1-i \omega \tau_{i}}
$$

continuous mass

$$
\sigma(\omega)=\int_{0}^{M} \frac{\rho(m) e^{2}(m) \tau(m)}{m} \frac{1}{1-i \omega \tau(m)} d m
$$

variable masses for everything

$$
\begin{aligned}
\rho(m) & =\rho_{0} \frac{m^{a-1}}{M^{a}} \\
e(m) & =e_{0} \frac{m^{b}}{M^{b}} \\
\tau(m) & =\tau_{0} \frac{m^{c}}{M^{c}}
\end{aligned}
$$

variable masses for everything

$$
\begin{aligned}
\rho(m) & =\rho_{0} \frac{m^{a-1}}{M^{a}} \\
e(m) & =e_{0} \frac{m^{b}}{M^{b}} \\
\tau(m) & =\tau_{0} \frac{m^{c}}{M^{c}}
\end{aligned}
$$

$\sigma(\omega)=\frac{\rho_{0} e_{0}^{2} \tau_{0}}{M^{a+2 b+c}} \int_{0}^{M} d m \frac{m^{a+2 b+c-2}}{1-i \omega \tau_{0} \frac{m^{c}}{M^{c}}}$

variable masses for everything

$$
\begin{gathered}
\rho(m)=\rho_{0} \frac{m^{a-1}}{M^{a}} \\
e(m)=e_{0} \frac{m^{b}}{M^{b}} \\
\tau(m)=\tau_{0} \frac{m^{c}}{M^{c}} \\
\sigma(\omega)=\frac{\rho_{0} e_{2}^{2} \tau_{0}}{M^{a+2 b+c}} \int_{0}^{M} d m \frac{m^{a+2 b+c-2}}{1-i \omega \tau_{0}} \frac{m^{c}}{M^{c}}
\end{gathered}=\frac{\rho_{0} e_{0}^{2}}{c M} \frac{1}{\omega\left(\omega \tau_{0}{ }^{(+2 b-2 b-1}\right.} \int_{0}^{\omega \tau_{0}} d x \frac{x^{\frac{a+2 b-1}{c}}}{1-i x} .
$$

variable masses for everything

$$
\begin{array}{r}
\rho(m)=\rho_{0} \frac{m^{a-1}}{M^{a}} \\
e(m)=e_{0} \frac{m^{b}}{M^{b}} \\
\tau(m)=\tau_{0} \frac{m^{c}}{M^{c}}
\end{array}
$$

$$
\begin{gathered}
\sigma(\omega)=\frac{\rho_{0} e_{2}^{2} \tau_{0}}{M^{a+2 b+c}} \int_{0}^{M} d m \frac{m^{a+2 b+c-2}}{1-i \omega \tau_{0} \frac{m^{c}}{M^{c}}}=\frac{\rho_{0} e_{0}^{2}}{c M} \frac{1}{\omega(\omega \tau_{0} \underbrace{(+2 b-1}{ }_{c}^{c \mid}} \int_{0}^{\omega \tau_{0}} d x \frac{x^{\frac{a+2 b-1}{c}}}{1-i x} \\
\text { perform integral }
\end{gathered}
$$

$$
\frac{a+2 b-1}{c}=-\frac{1}{3}
$$

$$
\begin{gathered}
\frac{a+2 b-1}{c}=-\frac{1}{3} \\
\sigma(\omega)=\frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M} \frac{1}{\omega^{\frac{2}{3}}} \int_{0}^{\omega \tau_{0}} d x \frac{x^{-\frac{1}{3}}}{1-i x}
\end{gathered}
$$

$$
\begin{gathered}
\frac{a+2 b-1}{c}=-\frac{1}{3} \\
\sigma(\omega)=\frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M} \frac{1}{\omega^{\frac{2}{3}}} \int_{0}^{\omega \tau_{0}} d x \frac{x^{-\frac{1}{3}}}{1-i x} \\
\downarrow \tau_{0} \rightarrow \infty
\end{gathered}
$$

$$
\begin{gathered}
\frac{a+2 b-1}{c}=-\frac{1}{3} \\
\sigma(\omega)=\frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M} \frac{1}{\omega^{\frac{2}{3}}} \int_{0}^{\omega \tau_{0}} d x \frac{x^{-\frac{1}{3}}}{1-i x} \\
\omega \tau_{0} \rightarrow \infty \\
\sigma(\omega)=\frac{1}{3}(\sqrt{3}+3 i) \pi \frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M \omega^{\frac{2}{3}}} \\
\end{gathered}
$$

$$
\begin{gathered}
\frac{a+2 b-1}{c}=-\frac{1}{3} \\
\sigma(\omega)=\frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M} \frac{1}{\omega^{\frac{2}{3}}} \int_{0}^{\omega \tau_{0}} d x \frac{x^{-\frac{1}{3}}}{1-i x} \\
\downarrow \tau_{0} \rightarrow \infty \\
\sigma(\omega)=\frac{1}{3}(\sqrt{3}+3 i) \pi \frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M \omega^{\frac{2}{3}}}
\end{gathered}
$$

$$
\tan \sigma=\sqrt{3}
$$

60°
experiments
Wavenumber $\left(\mathrm{cm}^{-1}\right)$

Wavenumber $\left(\mathrm{cm}^{-1}\right)$

$$
\begin{gathered}
\sigma(\omega)=C \omega^{\gamma-2} e^{i \pi(1-\gamma / 2)} \\
\gamma=1.35
\end{gathered}
$$

experiments
Wavenumber $\left(\mathrm{cm}^{-1}\right)$

$$
\sigma(\omega)=\frac{1}{3}(\sqrt{3}+3 i) \pi \frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M \omega^{\frac{2}{3}}}
$$

Wavenumber $\left(\mathrm{cm}^{-1}\right)$

$$
\begin{gathered}
\sigma(\omega)=C \omega^{\gamma-2} e^{i \pi(1-\gamma / 2)} \\
\gamma=1.35
\end{gathered}
$$

experiments
Wavenumber $\left(\mathrm{cm}^{-1}\right)$

Wavenumber $\left(\mathrm{cm}^{-1}\right)$

$$
\begin{gathered}
\sigma(\omega)=C \omega^{\gamma-2} e^{i \pi(1-\gamma / 2)} \\
\gamma=1.35
\end{gathered}
$$

$$
\sigma(\omega)=\frac{1}{3}(\sqrt{3}+3 i) \pi \frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M \omega^{\frac{2}{3}}}
$$

$\tan \sigma_{2} / \sigma_{1}=\sqrt{3}$

$$
\theta=60^{\circ}
$$

experiments
Wavenumber $\left(\mathrm{cm}^{-1}\right)$

$$
\sigma(\omega)=\frac{1}{3}(\sqrt{3}+3 i) \pi \frac{\rho_{0} e_{0}^{2} \tau_{0}^{\frac{1}{3}}}{M \omega^{\frac{2}{3}}}
$$

victory!!

$\tan \sigma_{2} / \sigma_{1}=\sqrt{3}$

$$
\theta=60^{\circ}
$$

$$
\begin{gathered}
\sigma(\omega)=C \omega^{\gamma-2} e^{i \pi(1-\gamma / 2)} \\
\gamma=1.35
\end{gathered}
$$

are anomalous dimensions necessary

$$
\frac{a+2 b-1}{c}=-\frac{1}{3}
$$

$$
\rho(m)=\rho_{0} \frac{m^{a-1}}{M^{a}}
$$

$$
e(m)=e_{0} \frac{m^{b}}{M^{b}}
$$

$$
\tau(m)=\tau_{0} \frac{m^{c}}{M^{c}}
$$

are anomalous dimensions necessary

$$
\begin{aligned}
& \frac{a+2 b-1}{c}=-\frac{1}{3} \\
& \rho(m)=\rho_{0} \frac{m^{a r 1}}{M^{a}} \quad \begin{array}{l}
\text { hyperscalin } \\
\text { violation }
\end{array} \\
& e(m)=e_{0} \frac{m^{b}}{M^{b}} \\
& \tau(m)=\tau_{0} \frac{m^{c}}{M^{c}}
\end{aligned}
$$

are anomalous dimensions necessary

$$
\begin{aligned}
& \frac{a+2 b-1}{c}=-\frac{1}{3} \\
& \text { hyperscaling } \\
& \text { violation } \\
& e(m)=e_{0} \frac{m^{b}}{M^{b}} \quad \begin{array}{l}
\text { anomalous } \\
\text { dimension }
\end{array} \\
& \tau(m)=\tau_{0} \frac{m^{c}}{M^{c}}
\end{aligned}
$$

are anomalous dimensions necessary

$$
\begin{aligned}
& \frac{a+2 b-1}{c}=-\frac{1}{3} \\
& \begin{array}{l}
\rho(m)=\rho_{0} \frac{m^{a-1}}{M^{a}} \\
e(m)=e_{0} \frac{m^{b}}{M^{b}} \\
\begin{array}{c}
\text { hyperscaling } \\
\text { violation }
\end{array} \\
\begin{array}{c}
\text { anomalous } \\
\text { dimension }
\end{array} \\
\tau(m)=\tau_{0} \frac{m^{c}}{M^{c}}
\end{array} \\
& \quad c=1 \\
& a+2 b=2 / 3
\end{aligned}
$$

are anomalous dimensions necessary

$$
\begin{aligned}
& \frac{a+2 b-1}{c}=-\frac{1}{3} \\
& \rho(m)=\rho_{0} \frac{m^{a}-1}{M^{a}} \quad \begin{array}{r}
\text { violation }
\end{array} \\
& e(m)=e_{0} \frac{m^{b}}{M^{b}} \quad \begin{array}{c}
\text { anomalous } \\
\text { dimension }
\end{array} \\
& \tau(m)=\tau_{0} \frac{m^{c}}{M^{c}} \\
& c=1 \\
& b=0 \\
& a+2 b=2 / 3 \\
& a=2 / 3
\end{aligned}
$$

but they are possible!

unparticles

