Comments on Holography and Unconventional transport

Sean Hartnoll (Stanford)

IPMU - May 2015

- Conventional metals
- Unconventional metals: Facts
- Unconventional metals: Framework
- An Observable: The Lorenz ratio
- <u>Disorder</u> in holography

I. Conventional metals

Altland a	ELECTRONS AND	S	ASH				Tinkhar
d and simons Field Theory	AND PHONONS ZIMAN	SOLID STATE PHY	HCROFT / MERMIN	Pines • Nozières 🛉 The Theory of Quantum L	ANDERSON BASIC NOTIONS OF CONDENS	Negele • Orland Quantum Many-particl	SUPERCONDUCTION SUPERCONDUCTION
er		SICS		IQUIDS	ed Matter Pi	e Systems	VTV

Simple equations

 $\left(\sigma_1(\omega) = \frac{\operatorname{Im} G_{J^x J^x}^R(\omega)}{\omega}\right)$

 $j(\omega) = \sigma(\omega)E(\omega)$

 $\sigma(\omega) = \sigma_1(\omega) + i \,\sigma_2(\omega)$

 $P = \sigma_1(\omega)E(\omega)^2$ **Joule Heating**

Optical conductivity

Essential facts

- The <u>quasiparticle lifetime ⊤</u> is the longest timescale in the game.
 ⇒sharp Drude peak.
- The dc conductivity (Drude, 1900):

$$\sigma_{\rm dc} = \frac{ne^2\tau}{m_\star}$$

• Electron-electron scattering gives:

$$\tau \sim \frac{\hbar}{k_B T} \frac{E_F}{k_B T} \gg \frac{\hbar}{k_B T} \quad \begin{array}{l} \text{(Landau} \\ \text{Fermi Liquic} \end{array}$$

Essential facts

 Computations are possible because the low energy effective field theory of a conventional metal has infinitely many almost conserved operators:

$$\delta n_k = c_k^{\dagger} c_k$$

- "Almost conserved" = conserved up to irrelevant operators.
- Correct theoretical framework: Boltzmann equation.

II. Unconventional metals: Facts

I-linear resistivity Cuprates, pnictides, organics, ruthenates, heavy fermions ... [After Sachdev-Keimer '11]

Cartoon phase diagram

x,B,P, ...

T-linear resistivity

- It is possible that a 'mundane' quasiparticle explanation of T-linearity exists. (cf. phonons)
- No compelling theory at the present time. (and it's been ~ 30 years ...)
- Similarity in phase diagrams across materials rather striking ...

Bad metals

• Some (not all) of these T-linear resistivities have magnitudes so large, Drude formula would require a mean free path shorter than the de Broglie wavelength. Not consistent.

$$\ell_{\rm mfp} \sim v_F \tau \lesssim \ell_{dB}$$

 Such 'bad metals' [Emery-Kivelson '95] probably require a non-quasiparticle based description ...

Universal bounds?

- Very different magnitudes of resistivity.
- But, they share a universal timescale.

III. Unconventional metals: Framework

Conservation laws

- In the absences of quasiparticles, symmetries give us the key operators.
- Conservation of energy and charge:
 ⇒ Electric and Heat currents: J and J^Q.
- These operators are directly probed by conductivities:

$$\sigma_{AB}(\omega) = \frac{G_{AB}^R(\omega)}{i\omega}$$

"Coherent" metals

(Lucas-Sachdev '15 ; Hartnoll-Hofman '12; Hartnoll-Kovtun-Muller-Sachdev '07)

- If ∃ a long wavelength continuum QFT description of the underlying lattice system, then there is an emergent almost conserved momentum P.
- P is relaxed by irrelevant operators only and this dominates the conductivities:

$$\sigma_{AB}(\omega) = \frac{\chi_{AP}\chi_{PB}}{\chi_{PP}} \frac{1}{-i\omega + \Gamma}$$
Thermodynamic P relaxation rate.
susceptibilities I a formula for it.

"Coherent" metals

• An essential aspect of a coherent metal is that the conductivity is parametrically controlled by a single pole in the complex frequency plane.

- <u>Nothing</u> is long-lived that overlaps with the currents J and J^Q.
- Heat and charge will diffuse:

$$\sigma^{L}(\omega,k) = \frac{-i\omega D\chi}{i\omega - Dk^{2}}$$

• The Einstein relations (neglecting 'thermoelectric' effects):

$$\sigma = \chi D_{\text{charge}}$$

 $\kappa = c D_{\text{heat}}$

Coherent vs Incoherent

 Holographic models with momentum relaxation explicitly show crossovers from <u>coherent</u> to <u>incoherent</u> behavior.

(Davison and Gouteraux: 1411.1062 + 1505.05092)

IV. The Lorenz ratio

Metalle.	Für den lu	ofterfüllten	Für den luftverdünnten		
	Rau	m.	Raum,		
	q.	l.	q .	l.	
Silber	2,057	100	$\begin{array}{r} 2,020\\ 2,025\\ 2,0315\\ 2,0665\\ 2,063\\ 2,099\\ 2,172\end{array}$	100	
Kupfer	2,072	77,4		80,2	
Gold	2,093	60,1		63,7	
Messing I.	2,202	27,9		30,2	
Messing II (dicker)	2,179	25,8		26,0	
Zinn	2,297	15,4		16,1	
Eisen	2,441	13,1		11,8	
Stahl Blei Platin Neusilber Rose'sches Metall VVismuth	2,4485 2,502 2,670 2,860 3,529 5,104	12,8 9,3 9,2 6,8 3,2 1,8	2,176 2,176 2,182 2,246 2,502 —	11,5 9,3 11,7 8,3 3,3	

The Lorenz ratio

• Matrix of conductivities:

$$\left(\begin{array}{c}j\\j^Q\end{array}\right) = \left(\begin{array}{cc}\sigma & T\alpha\\T\alpha & T\overline{\kappa}\end{array}\right) \left(\begin{array}{c}E\\-(\nabla T)/T\end{array}\right)$$

• Thermal conductivity at j = 0.

$$\kappa = \overline{\kappa} - \frac{\alpha^2 T}{\sigma}$$

• Lorenz ratio:

$$L = \frac{\kappa}{\sigma T}$$

Wiedemann-Franz law

 In a conventional metal (if you can subtract the phonon contribution to thermal transport):

Quantum criticality with WF law I

• CeColn₅: critical and non-critical (a-axis)

• Paglione et al. PRL '06

Quantum criticality with WF law I

Sr₃Ru₂O₇: critical and non-critical

Ronning et al. PRL '06; Rost et al. PNAS '11

Linear T without WF

• CeColn₅: c-axis conductivity

• Tanatar et al. Science '07

Linear T without WF

• YbRh₂Si₂ tuned to criticality

Pfau et al. Nature '12.
 See also Machida et al.; J-Ph. Reid et al.
 Disagreement of interpretation T→0, higher T already interesting!

Linear T without WF

Hall Lorentz ratio in optimally doped YBCO

- Hall ratio avoids phonons
 - $L/L_0 < 1$ and linear.
- Down to L/L₀ ~ 0.15.

• Zhang et al. PRL '00

Incoherent metals

- An incoherent quantum critical metal, the <u>conductivities are finite and computable</u> <u>within the low energy scaling theory</u>.
- This scaling has been done many times. Previously, several exponents were set to zero.
- Explicit holographic examples indicated extra exponents were necessary.

(Gouteraux, Kiritsis, Karch,...)

The three exponents (Hartnoll-Karch '15)

• z: dynamical critical exponent

• θ: hyperscaling violation exponent

$$f \sim T \cdot T^{(2-\theta)/z}$$

 $\xi \sim \frac{1}{T^{1/z}}$

• Φ : anomalous dimension for charge

$$n \sim T^{(2-\theta+\Phi)/z}$$

Scaling in cuprates (Hartnoll-Karch '15)

• We found that the exponents:

$$z = \frac{4}{3}$$
, $\theta = 0$, $\Phi = -\frac{2}{3}$.

Matched multiple scalings in transport quantities in the cuprates. The Lorenz ratio is particularly interesting:

 $L \sim T^{-2\Phi/z}$

<u>Need a nonzero Φ to get anything other</u> than a constant! (cf. Khveshchenko)

Some questions

- Does this behavior occur in more than one cuprate?
- Does it continue up to higher temperatures?
- Is it scaling or an intermediate inelastic scattering regime?

V. Disordered fixed points in holography

 $\mathbf{x} k_0$

Disorder physics

- The simplest models of incoherent metals may come from disordered fixed points.
- Because disorder breaks translation invariance at all scales (unlike a lattice). It can easily have strong effects on the far IR.
- In QFT the way the <u>continuum description</u> and non-conservation of momentum are <u>married is traditionally through the</u> <u>"replica trick"</u>.

Disorder physics

- However, attempts to find controlled interacting disordered fixed points in general dimension have not been successful.
- Eg. in attempts à la Wilson-Fisher, the second term in the beta function has the wrong sign:

$$\mu \frac{dV}{d\mu} = -\epsilon \sqrt{- \# V^2} + \cdots$$

(e.g. Sachdev book)

Disorder physics

 Holography allows study of disorder physics without the replica trick.

Disordered fixed points in holography (Hartnoll-Santos '14)

• The relevance of a disordered coupling

$$\int dt d^d x \, h(x) \mathcal{O}(t,x)$$

• Is determined by the 'Harris criterion':

$$\Delta > \frac{d+2}{2}$$

• If relevant, need to follow the flow to IR.

Disordered fixed points in holography

- A random coupling is generated by $h(x) = \bar{V} \sum_{n=1}^{N-1} 2\sqrt{\Delta k} \cos(n\Delta k \, x + \gamma_n)$
- Solved Einstein-scalar bulk theory with a marginally relevant random source.
- Resummed the logarithmic growth to find stable disordered IR fixed points.
- Confirmed and extended results via numerical simulation of full disorder.

Disordered fixed points in holography

• Zero temperature <u>averaged</u> IR geometry:

$$ds_{\rm IR}^2 \rangle = -\frac{dt^2}{r^{2\bar{z}}} + \frac{dr^2 + dx^2 + dy^2}{r^2}$$

$$\overline{z} = 1 + \frac{\pi^{(d-1)/2}}{2} \Gamma\left(\frac{d+1}{2}\right) \overline{V}^2 + \cdots$$

Disordered fixed points in holography (Hartnoll-Ramirez-Santos '15)

- Scale invariance of the disorder averaged metric suggested an IR disordered fixed point.
- Not clear what quantities controlled by z.
- By constructing finite T solutions, have shown analytically and numerically:

$$s \sim T^{2/z}$$

Disordered fixed points in holography

Disordered fixed points in holography

- <u>Compelling evidence for a disordered</u> <u>fixed point, of the type that is elusive in</u> <u>weakly interacting QFT</u>.
- Transport calculations underway. Natural thing to look at is heat transport, model for incoherent 'metal'.

- Unconventional metals cannot be described using formulae from textbooks.
- The coherence vs incoherence question is a useful way to organize ones thoughts.
- The Lorenz ratio:

 (i) Direct diagnostic of coherent metal.
 (ii) Directly sees exponent Φ incoherent case.
- Holography gives explicit instances of disordered quantum critical points.