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I. Conventional metals



Simple equations
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Essential facts
• The quasiparticle lifetime τ is the 

longest timescale in the game.  
           ⇒sharp Drude peak. 

• The dc conductivity (Drude, 1900): 
 

• Electron-electron scattering gives:

�dc =
ne2⌧

m?

⌧ ⇠ ~
kBT

EF

kBT
� ~

kBT
(Landau  
Fermi Liquid)



Essential facts
• Computations are possible because 

the low energy effective field theory of  
a conventional metal has infinitely 
many almost conserved operators:

�nk = c†kck

• “Almost conserved”  
       = conserved up to irrelevant operators. 

• Correct theoretical framework: Boltzmann 
equation.



II. Unconventional 
metals: Facts



T-linear resistivity
Cuprates, pnictides, organics, ruthenates, 
heavy fermions … [After Sachdev-Keimer ’11]



Cartoon phase diagram
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T-linear resistivity
• It is possible that a ‘mundane’ quasiparticle 

explanation of  T-linearity exists.  
    (cf. phonons)  

• No compelling theory at the present time.  
  (and it’s been ~ 30 years …)  

• Similarity in phase diagrams across 
materials rather striking …



Bad metals
• Some (not all) of  these T-linear resistivities 

have magnitudes so large, Drude formula 
would require a mean free path shorter than 
the de Broglie wavelength. Not consistent.  
 
 

• Such ‘bad metals’ [Emery-Kivelson ’95] 
probably require a non-quasiparticle based 
description … 

`mfp ⇠ vF ⌧ . `dB



Universal bounds?
• Very different magnitudes of  resistivity. 

• But, they share a universal timescale.

⌧ = ↵
~

kBT
(↵ ⇡ 1� 2)

(Bruin et al. ’13)

• Saturation of  some  
universal bound?

Holographic opportunity

(Sachdev, Zaanen, SAH)



III. Unconventional 
metals: Framework



Conservation laws
• In the absences of  quasiparticles, 

symmetries give us the key operators. 

• Conservation of  energy and charge:  
 ⇒ Electric and Heat currents: J and JQ. 

• These operators are directly probed by 
conductivities:

�AB(!) =
GR

AB(!)

i!



“Coherent” metals

• If  ∃ a long wavelength continuum QFT description 
of  the underlying lattice system, then there is an 
emergent almost conserved momentum P. 

• P is relaxed by irrelevant operators only and this 
dominates the conductivities:

(Lucas-Sachdev ’15 ; Hartnoll-Hofman ’12;  
Hartnoll-Kovtun-Muller-Sachdev ’07)

�AB(!) =
�AP�PB

�PP

1

�i! + �

Thermodynamic  
susceptibilities

P relaxation rate.  
∃ a formula for it.



“Coherent” metals
• An essential aspect of  a coherent 

metal is that the conductivity is 
parametrically controlled by a single 
pole in the complex frequency plane.



“Incoherent” metals
(SAH ’14)

• Nothing is long-lived that overlaps 
with the currents J and JQ. 

• Heat and charge will diffuse:  
 

• The Einstein relations (neglecting 
‘thermoelectric’ effects):

�L(!, k) =
�i!D�

i! �Dk2



Coherent vs Incoherent

• Holographic models with momentum 
relaxation explicitly show crossovers 
from coherent to incoherent behavior.

(Davison and Gouteraux: 1411.1062 + 1505.05092)



IV. The Lorenz ratio



The Lorenz ratio
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• Thermal conductivity at j = 0.
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Wiedemann-Franz law
• In a conventional metal (if  you can 

subtract the phonon contribution to 
thermal transport):
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Elastic  
disorder scattering

Elastic  
phonon scattering

Fermi Dirac



Quantum criticality with 
WF law I

• CeCoIn5: critical and non-critical (a-axis)

• Paglione et al. PRL ’06



Quantum criticality with 
WF law I

• Sr3Ru2O7: critical and non-critical

• Ronning et al. PRL ’06; Rost et al. PNAS ’11



Linear T without WF
• CeCoIn5: c-axis conductivity

• Tanatar et al. Science ’07 



Linear T without WF
• YbRh2Si2 tuned to criticality

• Pfau et al. Nature ’12.  
See also Machida et al.; J-Ph. Reid et al.  
Disagreement of  interpretation T→0, higher T already 
interesting!



Linear T without WF
• Hall Lorentz ratio in optimally doped YBCO

• Zhang et al. PRL ’00

• Hall ratio avoids phonons 

• L/L0 < 1 and linear. 

• Down to L/L0 ~ 0.15.



Coherent metals
• More conventional thermal conductivity

 = � ↵2T

�

• Two ratios of  conductivities
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Cancellation!

Universal ratio of  
thermodynamic susceptilibites

•             distinctive signature (equal in FL) ⌧ 

(Barkeshli-Hartnoll-Mahajan ’13)



Incoherent metals
• An incoherent quantum critical metal, the 

conductivities are finite and computable 
within the low energy scaling theory.

• This scaling has been done many times. 
Previously, several exponents were set to 
zero.

• Explicit holographic examples indicated 
extra exponents were necessary.

(Gouteraux, Kiritsis, Karch,…)



The three exponents
• z: dynamical critical exponent  
 

• θ: hyperscaling violation exponent  
 

• Φ: anomalous dimension for charge

⇠ ⇠ 1

T 1/z

f ⇠ T · T (2�✓)/z

n ⇠ T (2�✓+�)/z

(Hartnoll-Karch ’15)



Scaling in cuprates
• We found that the exponents:

z =
4

3
, ✓ = 0 , � = �2

3
.

Matched multiple scalings in transport 
quantities in the cuprates. The Lorenz 
ratio is particularly interesting:

(Hartnoll-Karch ’15)

L ⇠ T�2�/z

Need a nonzero Φ to get anything other 
than a constant! (cf. Khveshchenko)



Some questions
• Does this behavior  

occur in more than  
one cuprate? 

• Does it continue up to  
higher temperatures? 

• Is it scaling or an  
intermediate inelastic  
scattering regime?



V. Disordered fixed points 
in holography



Disorder physics
• The simplest models of  incoherent metals 

may come from disordered fixed points. 

• Because disorder breaks translation 
invariance at all scales (unlike a lattice). It 
can easily have strong effects on the far 
IR. 

• In QFT the way the continuum description 
and non-conservation of  momentum are 
married is traditionally through the 
“replica trick”.



Disorder physics
• However, attempts to find controlled 

interacting disordered fixed points in 
general dimension have not been 
successful. 

• Eg. in attempts à la Wilson-Fisher, the 
second term in the beta function has the 
wrong sign:

µ
dV

dµ
= �✏V �#V 2 + · · ·

(e.g. Sachdev book)



Disorder physics

• Holography allows study of  disorder 
physics without the replica trick.



Disordered fixed points 
in holography

• The relevance of  a disordered coupling

(Hartnoll-Santos ’14)

Z
dtd

d
xh(x)O(t, x)

• Is determined by the ‘Harris criterion’:

� >
d+ 2

2

• If  relevant, need to follow the flow to IR.



Disordered fixed points 
in holography

• A random coupling is generated by

h(x) =

¯

V

N�1X

n=1

2

p
�k cos(n�k x+ �n)

• Solved Einstein-scalar bulk theory with 
a marginally relevant random source. 

• Resummed the logarithmic growth to 
find stable disordered IR fixed points. 

• Confirmed and extended results via 
numerical simulation of  full disorder.



Disordered fixed points 
in holography

• Zero temperature  
averaged IR geometry:
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⇡(d�1)/2
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Disordered fixed points 
in holography

• Scale invariance of  the disorder 
averaged metric suggested an IR 
disordered fixed point. 

• Not clear what quantities controlled by z. 

• By constructing finite T solutions, have 
shown analytically and numerically:  

(Hartnoll-Ramirez-Santos ’15)

s ⇠ T 2/z



Disordered fixed points 
in holography
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Disordered fixed points 
in holography

• Compelling evidence for a disordered 
fixed point, of  the type that is elusive in 
weakly interacting QFT. 

• Transport calculations underway. 
Natural thing to look at is heat transport, 
model for incoherent ‘metal’.



Summary
• Unconventional metals cannot be described  

using formulae from textbooks. 

• The coherence vs incoherence question is  
a useful way to organize ones thoughts. 

• The Lorenz ratio:  
  (i)  Direct diagnostic of  coherent metal.  
  (ii) Directly sees exponent Φ incoherent case. 

• Holography gives explicit instances of  
disordered quantum critical points.


