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Holographic Lattices

CFT with a deformation by an operator that breaks
translation invariance

Why?
* Translation invariance = momentum is conserved —-
no dissipation = DC response are infinite. To model more

realistic behaviour we can use a lattice

* The lattice deformation can lead to novel ground states at T=0.
Can realise novel metals and insulators

e Can model metal-insulator or metal-metal transitions

* General holographic results: thermo-electric DC
conductivities in terms of black hole horizon data
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Plan

* Drude physics and coherent metals
* Some examples of holographic lattices and some results

e DC conductivities and Navier-Stokes on the horizon

A new connection between fluids and gravity differing

from e.g ‘Bhattacharya,Hubeny,Minwalla,Rangamani]

Bhattacharya,Minwalla,VVadia]

'Fouxon,Oz]

Bredberg,Keller,Lysov,Strominger]

with Aristomenis Donos
Elliot Banks, Christiana Pantelidou



Drude Model of transport in a metal
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* Drude physics doesn’t require quasi-particles

W
Coherent metals arise when
momentum is nearly conserved with .I T
dominant pole on imaginary axis

e Similar comments apply to thermal conductivity () = —kVT

e In nature there are also “incoherent” metals without Drude
peaks

e |nsulators with opc = kpc =0 atT=0

Of particular interest to realise these in holography



Holographic CFTs at finite charge density

Focus on d=3 CFT and consider D=4 Einstein-Maxwell theory:

S:/d4x\/jg{R+6—iF2+...}

Admits AdS4 vacuum VRN d=3 CFT with global U(I)



Electrically charged AdS-RN black hole (brane)

Describes holographic matter at finite charge density that is
translationally invariant

dr?
ds® = —Udt* 1 - r?(dz* + dy*)
T
Ay = p(l = =5) d=3 CFT
poT
T=0 limit: AdSs; x R? < AdSy

IR Uv



By perturbing the black hole and using holographic tools we
can calculate the electric conductivity and find a delta
functionat w =0

Construct lattice black holes dual to CFT with ()
Ai(x, ) N,u(a:)—l—O(%) r— 00
Guv (,7)

Need to solve PDEs in two (or more) variables

e.g. Monochromatic lattice:

u(x) =+ Acoskx

After constructing black holes, one can perturb, again solving
PDEs, to extract thermo-electric conductivities



Find sharp Drude peaks at low T

60k
—- T/u=0.47 - T/u=0.058
- T/y=0.22 = T/u=0.039
40t ~— T/u=0.14 T/p=0.025
S ~ T/p=0.097 —— T/u=0.02
o - T/u=0.015

wlu



Coherent metal phases UV data

Can be understood by
k A
analysing T=0 solutions: /n Aln

IR fixed point AdSs x R?
in the IR

J

At T=0 the black holes approach  AdS, x R?

perturbed by irrelevant operator with A(k;r) > 1

— AdS-RN

Don’t find exceptions to this behaviour, for these lattices, even for

“dirty lattices” e.g.
10

p(x)=1+A ) cos(nkz+6y).

n=1



Holographic Q-lattices

¢ |llustrative D=4 model

1 YA
£=R— Sjop + V(lg)) - 20 p2

* Choose V,Z sothat AdS-RN is a solutionat ¢ =0

* Now ¢ < O in CFI. Want to build a holographic lattice
by deforming with the operator (O

* The model has a gauge /(1) and a global /(1) symmetry

Exploit the global bulk symmetry to break translations so that
we only have to solve ODEs



Ansatz for fields
ds® = —Udt® + U™ 'dr® + e*V1dx? + *V2dy?
Ay = a(r)
p(r,a) = o)t |

UV expansion: approaches AdS with deformation

U = r? e e2v1:7“2—|—... V2 =2 4.

Homogeneous and anisotropic and periodic holographic lattices

UWVdata: T/p AptTA k/p |




For small deformations from AdS-RN we find Drude peaks for
small T corresponding to coherent metals.

k/w A p
®

This can be understood |

by examining T=0 «—— AdS-RN
behaviour of solutions: J

AdSQ X RQ




For small deformations from AdS-RN we find Drude peaks for
small T corresponding to coherent metals.

k/w A p

This can be understood
by examining T=0
behaviour of solutions:

|

vl

«—— AdS-RN

[ Newj AdS, x R?

For larger deformations, for specific models, we find a transition
to new behaviour. The new ground states - which break
transaltions - can be both insulators and also incoherent metals!

See also:



DC conductivity of Q-lattices

Generalised Ohm/Fourier Law:

(g)z(;} 2‘?)((%”)

J¢ Electric current
Q% =T" — uJ* Heat current

For Q-lattice black holes the DC matrices o,a,a,k diagonal

Can obtain from the behaviour of the Q-lattice solutions
at the black hole horizon (more later!)
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First term in 0 isactually (J/E)g=0 =0 —a"k T

“Pair evolution” term

Second term “Dissipation” term

Different ground states can be dominated by first or second term

Notice that the first term is finite when £ — 0



* For dissipation dominated T=0 ground states x and K can
have different low temperature scaling (n.b. x = K for FL)

» Wiedemann-Franz law violated: k/o1" not constant

*Metals o — oo both at small and large T

Hence there is a minimum conductivity < a maximum resistivity
at some finite T c.f Mott-loffe-Regel bound

T
KO

Measure of the efficiency of thermoelectric engines.
Maximum known value is about 3

* Figure of merit: Z'1" =

Holography: 271’ diverges at high temperature and also
diverges at low temperature for coherent metal ground states



Other lattices

e Scalar lattice - one-dimensional. Solve PDEs
'Horowitz, Santos, Tong]

Similar to Q-lattice results 'Rangamani,Rozali,Smyth]

e Helical

[Donos,Hartnoll] [Donos,|PG,Pantelidou][Donos,Gouteraux,Kiritsis]
[Erdmenger;Herweth,Klug,Meyer,Shalm] c.f.[Nakamura,Ooguri,Park]

Replace spatial R* with Bianchi V11

There is a universal helical deformation of all d=4 CFTs.
In holography this leads to a conformally invariant ground
state at =0 [Donos,|PG,Pantelidou]

e Others: [Balasubramanian,Herozg][Jain,Kundu,Sen,Sinha, Trivedi] [Vegh]



Axion lattices and N=4 SYM

e Consistent KK truncation of IIB on S°
S = /d%\/i (R— —(0¢)* — 162¢(8X) + 12)

e Axionic lattice black holes

d 2
ds* = —Udt* 5 - eV (dz? + dy?) + e?V3d2?

6=0o(r) [ x=az |
Describe anisotropic phase of N=4 SYM

e LZero temperature limit approach in the IR

72

d 2
ds? = L? ( L p2(—dB? + dF? + dP) + r4/3d22)

Thermal insulator with x ~ T7/3



These black holes are unstable

Kaluza-Klein reduction on S° gives rise to 20 scalars with
masses that saturate the AdSs BF bound but violate an
analogous bound for the IR Lifshitz solution

Study via a consistent KK truncation that keeps one
of the 20 scalars

5= / 1/ (R (@6 — S (00| BX2(0X)” + 4(X? + le))

Find that black holes undergo a phase
transition, with a condensation of the X-field

Curiously the transition has critical exponents NOT mean field type

Ground state is a kind of hyper-scaling type solution K ~ T10/3



DC Conductivity and Navier Stokes

Consider D=4 Einstein-Maxwell Theory

* Background lattice black holes
I o
ds* = —UG dt* + i dr? + gi;jdx’dx’
A = A+ dt

with {7 = U(r) and everything else depends on (r,z")
* Behaviour at AdS boundary

U — r° F—1
G — G(x) gij(r,x) = r°gi5() ai(r,z) — p(z)
Very general class of UV lattice data

* Demand that they have regular black hole horizonat r» =0



¢ Perturb the black hole

6(ds®) = 6g,datdz” QtGUth@

T —

0A = da,dx" (= tE.dx' + tatg@

* Behaviour at AdS boundary
The only sources are provided by the closed one-forms

E(x),((x) - they source the electric and heat currents

* Regular behaviour at the horizon

Inr

Kruskal coordinate v =1 —
Al

Inr

eg a; —
& 0Gi = h

(—Ei +aiG) + ...



* Electric current Jt — \/Tgpir

At the AdS boundary, J*|~, this is the electric current
0;J' =0,  0,J"=09; (V=gF""

e Heat current

Want a suitable two-form. Let k& = 0; and define

v = Viuky) + 3k Pl A7 + 0 F*

(think of First Law or Kaluza-Klein reduction)
Q' = —2V/—gG"
aiQi =0, arQi = —0; (2\/ _ngi)



* Evaluate currents on the horizon and examine the linear
equations of motion satisfied by the perturbation

Define v = 59(0) w = 5a7(50)
5q (O) z
= 47T G(O) -0 §t>g({))vj In GV
. ( '
Find Vol =0

Viw — v* V;(a (O)) —V,E"

Vzvj -+ Rjz'?}i — a;( )ij V,p=d4nrl CJ + agO)E

\_

Linear, time-independent, forced Navier-Stokes equations for a
charged, incompressible fluid on the curved black hole horizon!

Note: no hydrodynamic limit has been taken.



* Solutions are uniquely fixed by the sources E(x),((x)
(unless there is Killing vectors on the horizon)

e Given J' (Q° on the horizon, what do we know about
J" 0o, Q"lcc  (the holographic electric currents)?

Need to integrate:
0,J" = —0; (2¢/—gF’") 0,Q" = —0; (2/—gG"")

Can always define constant averaged currents e.g. if the
lattice deformation is periodic in x" with period 27L;

_ 1 _ 1
J'= o /Jlda:Q J = /J2dx1
2 L

and also for Q, and we can obtain the averaged DC conductivity



Examples

e Can recover earlier results for Q-lattices and one-dim lattices

* Perturbative, periodic lattice about AdS-RN black brane
Let A be the expansion parameter

The black hole horizon is a small expansion about flat space

Ge0yij £ g0ij A hgjn 4.

Solve Navier-Stokes perturbatively in A




At leading orderin A we find

L} L1
Qij = Qijj = )\; dTtp + . .. Rij = )g 4msT + . ..
~1
1) = Lij Amp? |
A2 S

where Lz’j:/Hl (hl(cll)7 (1))

Consistent with memory matrix formalism



Summary/Final Comments

* Holographic lattices are interesting

e Coherent metals/Drude physics can be understood by the
appearance of translationally invariant ground states in the
far IR e.g. AdS> x R? perturbed by irrelevant operators

* For larger deformations the Q-lattices (and others) can
realise incoherent metallic and insulating phases and
transitions between them

The new T=0 ground states break translation invariance and
have novel thermoelectric transport properties.
What is the landscape! How can they be realised!?

* New appearance of Navier-Stokes on black hole horizons

Can be used to obtain DC thermoelectric conductivities
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Phase transition is not mean field!
(O) ~ (T. — T)" g=1

C~((T.—T)“ a=1
Mean field: 8=1/2 «a=0

T=0 ground states in the far IR:

5 —2(3—9)

ds® ~ p 3 (dp2 _ AP + dz? + di? + p_2(z_1)d22)

e? ~p B X~ pT?B x=az

0=—-1, z2=2/3



