
Holographic Lattices 
Jerome Gauntlett



Holographic Lattices

CFT with a deformation by an operator that breaks 
translation invariance

Why?
• Translation invariance         momentum is conserved                  
no dissipation      DC response are infinite. To model more 
realistic behaviour we can use a lattice

)

• The lattice deformation can lead to novel ground states at T=0. 

• General holographic results: thermo-electric DC 
conductivities in terms of black hole horizon data
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4⇡ [Policastro,Kovtun,Son,Starinets]   

• Can model metal-insulator or metal-metal transitions

Can realise novel metals and insulators
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Plan

• Drude physics and coherent metals

• DC conductivities and Navier-Stokes on the horizon

• Some examples of holographic lattices and some results 

A new connection between fluids and gravity differing 
from e.g [Bhattacharya,Hubeny,Minwalla,Rangamani]

[Bredberg,Keller,Lysov,Strominger]

[Bhattacharya,Minwalla,Wadia]

[Fouxon,Oz]

Aristomenis Donos
Elliot Banks, Christiana Pantelidou

with 



Drude Model of transport in a metal  
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Coherent metals arise when 
momentum is nearly conserved with 
dominant pole on imaginary axis

[Hartnoll,Hofman]   

• Drude physics doesn’t require quasi-particles

• In nature there are also “incoherent” metals without Drude 
peaks

• Insulators with                                 at T=0

• Similar comments apply to thermal conductivity Q = �̄rT

�DC = ̄DC = 0

Of particular interest to realise these in holography

!
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Holographic CFTs at finite charge density

 Focus on d=3 CFT and consider D=4 Einstein-Maxwell theory:

Admits              vacuumAdS4 d=3 CFT with global U(1)
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At = µ(1� r+
r
)

Electric flux

T

ds

2 = �Udt

2 +
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U
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Electrically charged AdS-RN black hole (brane)

Describes holographic matter at finite charge density that is 
translationally invariant

µ

T=0 limit: AdS4AdS2 ⇥ R2

 UV IR

d=3 CFT



Need to solve PDEs in two (or more) variables

[Horowitz, Santos,Tong]   

Construct lattice black holes dual to CFT with 

By perturbing the black hole and using holographic tools we 
can calculate the electric conductivity and find a delta 
function at 

µ(x) = µ+A cos kx

! = 0 [Hartnoll]   

µ(x)

At(x, r) ⇠ µ(x) +O(
1

r

) r ! 1

After constructing black holes, one can perturb, again solving 
PDEs, to extract thermo-electric conductivities

gµ⌫(x, r)

[Donos,JPG]   

e.g. Monochromatic lattice:

[Chesler,Lucas,Sachdev]   
[Ling,Niu,Wu,Xian]   
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Find sharp Drude peaks at low T



UV data

IR fixed point

Coherent metal phases

AdS-RN

At T=0 the black holes approach                           in the IRAdS2 ⇥ R2

AdS2 ⇥ R2

perturbed by irrelevant operator with

k/µ

�(kIR) � 1

A/µ

Don’t find exceptions to this behaviour, for these lattices, even for 
“dirty lattices” e.g.

µ(x) = 1 +A

10X

n=1

cos(nk x+ ✓n) ,

Can be understood by 
analysing T=0 solutions:

[Hartnoll,Hofman]   



Holographic Q-lattices  

• Choose             so that AdS-RN is a solution at 

• Now                in CFT.  Want to build a holographic lattice 
by deforming with the operator

• The model has a gauge           and a global           symmetryU(1) U(1)

Exploit the global bulk symmetry to break translations so that 
we only have to solve ODEs

• Illustrative D=4 model 

L = R� 1

2
|@'|2 + V (|'|)� Z(|'|)

4
F 2

V, Z ' = 0

' $ O
O

[Donos,JPG]   



Homogeneous and anisotropic and periodic holographic lattices

Ansatz for fields

U = r2 + . . . ,

a = µ+
q

r
. . . ,

UV expansion: approaches AdS with deformation

e2V1 = r2 + . . . e2V2 = r2 + . . .

� =
�

r3��
+ . . .

UV data: T/µ �/µ3�� k/µ

ds

2 = �Udt

2 + U

�1
dr

2 + e

2V1
dx

2 + e

2V2
dy

2

At = a(r)

'(r, x) = �(r)eikx



For small deformations from AdS-RN we find Drude peaks for 
small T corresponding to coherent metals. 

�/µk/µ

AdS2 ⇥ R2

AdS-RN
This can be understood 
by examining T=0 
behaviour of solutions:



For small deformations from AdS-RN we find Drude peaks for 
small T corresponding to coherent metals. 

�/µk/µ

AdS2 ⇥ R2

AdS-RN
This can be understood 
by examining T=0 
behaviour of solutions:

New

For larger deformations, for specific models, we find a transition 
to new behaviour.  The new ground states - which break 
transaltions - can be both insulators and also incoherent metals!

See also: [Gouteraux][Andrade,Withers]
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�(rT )/T

◆
Generalised Ohm/Fourier Law:

For Q-lattice black holes the DC matrices                     diagonal

Qa = T ta � µJa

Ja Electric current

Heat current

DC conductivity of Q-lattices

�,↵, ↵̄, ̄

Can obtain from the behaviour of the Q-lattice solutions
at the black hole horizon                       (more later!)[Donos,JPG]   



First term in     is actually
“Pair evolution” term
Second term “Dissipation” term

Different ground states can be dominated by first or second term

(J/E)Q=0� ⌘ � � ↵2̄�1T

Notice that the first term is finite when k ! 0

̄ =


4⇡sT

k2�(�)

�
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↵ = ↵̄ = �
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�
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• For dissipation dominated T=0 ground states      and     can 
have different low temperature scaling (n.b.             for FL)

 ̄
 = ̄

• Metals                both at small and large T

Hence there is a minimum conductivity      a maximum resistivity 
at some finite T c.f Mott-Ioffe-Regel bound

• Figure of merit:   

Holography:          diverges at high temperature and also 
diverges at low temperature for coherent metal ground states

,

ZT ⌘ ↵2T

�
Measure of the efficiency of thermoelectric engines. 
Maximum known value is about 3

� ! 1

• Wiedemann-Franz law violated:              not constant/�T

ZT



Other lattices

• Helical

• Others: [Jain,Kundu,Sen,Sinha,Trivedi]   [Balasubramanian,Herozg]   

[Donos,JPG,Pantelidou]   [Donos,Gouteraux,Kiritsis]   
[Erdmenger,Herweth,Klug,Meyer,Shalm]   
[Donos,Hartnoll]   

Replace spatial       with Bianchi 

• Scalar lattice - one-dimensional. Solve PDEs
[Horowitz, Santos,Tong]   

[Rangamani,Rozali,Smyth]   Similar to Q-lattice results

R3 V II0

There is a universal helical deformation of all d=4 CFTs.         
In holography this leads to a conformally invariant ground 
state at T=0 [Donos,JPG,Pantelidou]   

[Vegh]   

c.f.[Nakamura,Ooguri,Park]   



Axion lattices and N=4 SYM
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 ⇠ T 7/3Thermal insulator with

[Azeyanagi,Li,Takayanagi]   

[Mateos,Trancanelli]   

S5

Describe anisotropic phase of N=4 SYM

• Consistent KK truncation of IIB on

• Axionic lattice black holes

• Zero temperature limit approach in the IR

[Banks,JPG]   



These black holes are unstable

S =

Z
d

5
x

p
�g

✓
R� 1

2
(@�)2 � 1

2
e

2�(@�)2 � 3X�2(@X)2 + 4(X2 + 2X�1)

◆

Kaluza-Klein reduction on       gives rise to 20 scalars with 
masses that saturate the            BF bound but violate an 
analogous bound for the IR Lifshitz solution

Study via a consistent KK truncation that keeps one 
of the 20 scalars

Find that                             black holes undergo a phase 
transition, with a condensation of the X-field

Curiously the transition has critical exponents NOT mean field type

[Banks,JPG]   

Ground state is a kind of hyper-scaling type solution

S5

AdS5

[Mateos,Trancanelli]   

 ⇠ T 10/3



Consider D=4 Einstein-Maxwell Theory

A = at dt

U ! r2 F ! 1

G ! Ḡ(x) gij(r, x) ! r

2
ḡij(x) at(r, x) ! µ(x)

• Background lattice black holes

• Behaviour at AdS boundary

Very general class of UV lattice data

ds

2 = �UGdt

2 +
F

U

dr

2 + gijdx
i
dx

j

with                   and everything else depends on U = U(r) (r, xi)

• Demand that they have regular black hole horizon at r = 0

DC Conductivity and Navier Stokes [Donos,JPG]   



• Perturb the black hole 

• Behaviour at AdS boundary

The only sources are provided by the closed one-forms

• Regular behaviour at the horizon

�(ds2) = �gµ⌫dx
µ
dx

⌫ � 2tGU⇣idtdx
i

�A = �aµdx
µ � tEidx

i + tat⇣idx
i

E(x), ⇣(x)

Kruskal coordinate v = t+
ln r

4⇡T
+ . . .

e.g. �ai =
ln r

4⇡T
(�Ei + at⇣i) + . . .

 - they source the electric and heat currents



• Electric current

• Heat current

Want a suitable two-form.  Let                and define 

(think of First Law or Kaluza-Klein reduction)

J i =
p
�gF ir

At the AdS boundary,          ,  this is the electric currentJ i|1

@iJ
i = 0 , @rJ

i = @j
�p

�gF ji
�

k = @t

Gµ⌫ = r[µk⌫] +
1
2k[µF⌫]�A

� + ✓ Fµ⌫

Qi = �2
p
�gGir

@iQ
i = 0 , @rQ

i = �@j
�
2
p
�gGji
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• Evaluate currents on the horizon and examine the linear 
equations of motion satisfied by the perturbation

Define vi ⌘ �g(0)it w ⌘ �a(0)t

p ⌘ 4⇡T
�g(0)rt

G(0)
+ �g(0)it gij(0)rj lnG(0)

Find riv
i = 0

r2w � vi ri(a
(0)
t ) = �riE

i

r2vj +Rjiv
i � a(0)t rjw �rj p = 4⇡T ⇣j + a(0)t Ej

Linear, time-independent, forced Navier-Stokes equations for a 
charged, incompressible fluid on the curved black hole horizon!

Note: no hydrodynamic limit has been taken.



• Solutions are uniquely fixed by the sources 

(unless there is Killing vectors on the horizon)
E(x), ⇣(x)

• Given               on the horizon, what do we know about J i, Qi

J i|1, Qi|1 (the holographic electric currents)?

@rQ
i = �@j

�
2
p
�gGji

�
@rJ

i = �@j
�
2
p
�gF ji

�
Need to integrate:

Can always define constant averaged currents e.g. if the 
lattice deformation is periodic in        with period

J̄

1 ⌘ 1

2⇡L2

Z
J

1
dx

2
J̄

2 ⌘ 1

2⇡L1

Z
J

2
dx

1

2⇡Lix

i

and also for Q, and we can obtain the averaged DC conductivity



Examples

• Can recover earlier results for Q-lattices and one-dim lattices

• Perturbative, periodic lattice about AdS-RN black brane

G(0) = f(0) + � f(1) + · · ·

The black hole horizon is a small expansion about flat space

Solve Navier-Stokes perturbatively in

Let     be the expansion parameter�

g(0)ij = g �ij + �h(1)
ij + · · ·

a(0)t = a+ � a(1) + · · ·

�



•  At leading order in        we find

where       

�

Lij =

Z

H

lij(h
(1)
kl , a

(1))

Consistent with memory matrix formalism 
[Barkeshli,Hartnol,Mahajan]   
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�2
4⇡⇢+ . . . ̄ij =

L�1
ij

�2
4⇡sT + . . .



• Holographic lattices are interesting            

AdS2 ⇥ R2

• For larger deformations the Q-lattices (and others) can 
realise incoherent metallic and insulating phases and 
transitions between them

The new T=0 ground states break translation invariance and 
have novel thermoelectric transport properties. 
What is the landscape? How can they be realised?

Summary/Final Comments

• Coherent metals/Drude physics can be understood by the 
appearance of translationally invariant ground states in the 
far IR e.g.                     perturbed by irrelevant operators    

• New appearance of Navier-Stokes on black hole horizons

Can be used to obtain DC thermoelectric conductivities



0.005 0.010 0.015 0.020 0.025 0.030
-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

T

<O
X
>



Phase transition is not mean field!

hOi ⇠ (Tc � T )� � = 1

� = 1/2

C ⇠ (Tc � T )�↵ ↵ = 1

↵ = 0Mean field:

T=0 ground states in the far IR:
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