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Which CFT's have Gravity Duals?

Which Gravities have CFT Duals?
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Tomography from Entanglement

based on arXiv:1412.1879 with J. Lin, M. Marcolli, B. Stoica

Entanglement Inequalities in CFT = Energy Conditions in Gravity

The Structure of Holographic Entropy

to appear, with N. Bao, S. Nezami, B. Stoica, J. Sully, M. Walter

Local Geometry in Gravity = New Entanglement Inequalities in CFT
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Tomography from Entanglement

based on arXiv:1412.1879 with J. Lin, M. Marcolli, B. Stoica
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Tension between Quantum and Gravity

Non-Local Entanglement < Local Geometry

Holographic Expectations:

% Bulk locality emerges from boundary entanglement.

% Bulk-boundary relation is non-local.

We will show how these expectations
are realized in a specific setup.
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Main Result:
Ryu-Takayanagi formula for boundary entanglement
can be inverted to diagnose local data in the bulk.

A
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Entanglement Entropy
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Relative Entropy
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Entropy Inequalities < Positive Energy Conditions
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The relation can be inverted by

the Radon transform to express

the bulk energy density by the
entanglement data on the boundary.
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Holographic Expression for Relative Entropy
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Relative Entropy in terms of Bulk Metric
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First Law of Entanglement

& Linearized Einstein Equations

Blanco, et al., arXiv:1305.3182; Lashkari, et al., arXiv:1308.3716;
Faulkner, et al., arXiv:1312.7856 15/42



Consicler Aackreaalc'an ][rom bu/k m«,{{ﬁ“ t/«y .

Stpiips) = AL{Hmod) - ASe

i g\ V dx £ ¢ bulk eneryy dlhsiiy
I
@ = 3;5: N gv(sz_zz-xz) éﬁt Jg‘dZd”H?C
20 |

Boundary Entanglement Inequalities

< Bulk Energy Conditions
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This relation can be inverted to express
the bulk energy density by the relative entropy.
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Radon Transform:
§B£ §p = X (§11Po)

Inverse Radon transform:
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Summary

% Bulk stress tensor near boundary can be

diagnosed by boundary entanglement entropy.

% Entanglement inequalities on the boundary are

(integrated) positive energy conditions in the bulk.

% Todo: Go deeper inthe bulk interior.
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The Structure of Holographic Entropy

to appear, with N. Bao, S. Nezami, B. Stoica, J. Sully, M. Walter
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Which CFT's have Gravity Duals?



Which CFT's have Gravity Duals?

Given that the bulk geometry reflect boundary
entanglement, the criteria for holography may
be stated in terms of entanglement properties.

holography = hydrodynamic description
of entanglement

What are hydrodynamic criteria?
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Entropy Inequalities

(Classical) Shannon Entropy:

There are infinite number of independent entropy inequalities
for 4 or more random variables.

— applications to network coding theory

Zhang, Yeung (1998), Matus (2007)

(Quantum) von Neumann Entropy:

General properties are not known.

Entropy inequalities for sub-classes of quantum systems
are also of interest for information theorists
(e.g., stabilizer states for quantum error correction)
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Ryu-Takayanagi formula is known to

satisfy 2 types of inequalities: m
Strong Subadditivity A B C

Sag + Sge 2 S5 + Sz

Headrick, Takayanagi, arXiv:0704.3719

Monogamy of Mutual Information
S/’B -I-'SBC "I"’SAC ._2_ SA +SB+SC +SHBC
Hayden, Headrick, Maloney, arXiv:1107.2940
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Ryu-Takayanagi formula is known to
satisfy 2 types of inequalities:

Strong Subadditivity

Sag + Sge 2 S+ Saee
TRUE for any gquantum systems

Monogamy of Mutual Information

Sag + SBc t Sac = Sp+5Sp+S, *+ Spe.

NOT TRUE for general quantum systems
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Monogamy of Mutual Information

\SAB + SEC + SAC __>__ SA +SE+SC +S/‘)BC

¢ excludes Greenberger-Horne-Zeilinger states.
1 ® m
3 ( + |1 )

¢ holographic Markov chain is trivial.

Are there other constraints on holographic entanglement entropy?
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We prove the following properties of holographic states:

¥¢ The strong subadditivity and the monogamy of mutual information
give the complete set of inequalities for 4 or less regions.
This is in contrast to the situation for general quantum systemes,
where complete set is not known for 4 or more regions.

¥¢ New inequalities for 5 or more regions

¢ For a fixed number of regions, there are only
finite number of inequalities.
This is known not to be the case for the Shannon entropy and
is conjectured not to be the case for the von Neumann entropy.
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Entanglement entropy requires UV cutoff
= IR cutoff of the Ryu-Takayanagi formula

Strong Subadditivity

Sag + Sge 2 S8+ Susc
Monogamy of Mutual Information

Sag + Sec t Sac = Sa+5Sp+S, + Sy

These inequalities are balanced,
and so are other inequalities we will derive.
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Holographic Entropy Cone

S(AB) 4

% Entropy vectors ma
(rescaling of the bul
disjoint union of bu

Entanglement entropies for n regions
make a vector in (2*n - 1) dimensions.

Ke a convex cone.
K metric rescale all entropies;

k manifolds gives a sum of entropies)

v¢ Inside of the cone is populated by holographic constructions.

¢ The cone is rational polyhedral.
(with finite number of generators)
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Holographic Entropy Cone

S(AB) 4

Entanglement entropies for n regions
make a vector in (2*n - 1) dimensions.

¥ We have developed a combinatorial method to prove
inequalities for holographic entanglement entropies.

¢ These inequalities make a complete set if all extremal
rays are realized by holographic construction.
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Holographic State

In semi-classical gravity, there is one quantum state for
each phase space volume measured in the Planck constant.

For the vacuum Einstein equation
with cosmological constant,

< Y% constant scalar curvature

Y » vanishing extrinsic curvature

on the spacelike section

N\

space Uke section ¢

Time reflection symmetric solution allowing:
¥¢ analytic contiuation to Euclidean signature
¢ use of the Ryu-Takayanagi formula
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Holographic State
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From Geometry To Combinatorics

A B T C

Left: Ryu-Tayayanagi surfaces cut the bulk geometry into pieces.

Right: Y% Add one vertex for each connected bulk piece.
v Add an edge with weight = surface area.

v¢ External vertices correspond to boundary regions
and the extra vertex O is for the purifying region.
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From Geometry To Combinatorics

A B T C

Discrete entropy:
¢ Choose a set of external vertices.
¢ Consider all possible cuts that separate it from its complement.
% Minimize the weight.

Discrete entropy reproduces the Ryu-Takayanagi formula.
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From Combinatorics To Geometry

For each graph model,

one can construct a Riemann
surface with constant scalar
curvature such that:

¢ Boundaries correspond to external vertices of the graph.
¢ Discrete entropies are equal to holographic entropies.

Higher dimensional generalization is straightforward.
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Any holographic entropy of n regions can be
described by a graph on 272{2”n-1} vertices.

The only variable data are edge weights.

Therefore, the holographic entropy cone is
rational polyhedral.
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For 2, 3, 4 regions, we found that all extremal rays
generated by the strong subadditivity and the monogamy
of mutual information are realizable holographically.

Therefore, they make the complete set of inequalities.

(Note: no genuine 3 party extremal rays)
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The combinatorial model enables us to prove the following:
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This formalizes and generalizes
the proof of the strong subadditivity.

For m rzjions, A, Am,
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New holographic entanglement inequalities:

For any k. and £ such that m 2 2kt 4

°> m
Z N) (Ac - A é+h+¢»l> _2_ Z S ( Aire --- Au—mu)
t=1

L=

+ SC(hA - Am)

For n=2, this gives the subadditivity.

For n=3, this gives the monogamy of mutual information.

For n > 3, this gives an infinite family of new inequalities.
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Y¢ We found a complete set of holographic
entanglement inequalities for 4 or less regions.

v We found a new infinite family of inequalities.

¢ For a fixed number of regions, there are only
finite number of inequalities.

To do: Find a complete set of inequality
for any number of regions.

41/42



Tomography from Entanglement

Entropy Inequalities in CFT
= Energy Conditions in Gravity

The Structure of Holographic Entropy

Smooth Holographic Dual
= Entropy Inequalities in CFT






