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Part I   
Brief introduction: Metal-insulator transition by holography 



•  Classification of Insulators: 

    

I.  Electron-ion interaction   

Metal-Insulator Transition (MIT) by Holography 

⎧
⎨
⎩ II. Electron-electron interaction   

⎧
⎨
⎩

Insulators 

Band Insulator 

Peierls Insulator 

Anderson Insulator 

Mott Insulator 
⎧
⎨
⎩

Mott-Heisenberg Insulator 

Mott-Hubbard Insulator 



•  MIT as a thermal phase transition: 

   

Metal-Insulator Transition (MIT) by Holography 
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•  MIT as a quantum critical phenomenon: 

    

•  Mott-Hubbard model: 

Metal-Insulator Transition (MIT) by Holography 
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Gebhard, The Mott metal-insulator transition, Springer press,1997.  

Towards a Holographic Bose-Hubbard Model  
Fujita, Harrison , Karch , Meyer and Paquette. JHEP 1504 (2015) 068  



Many MITs occur due to strong correlations ! 

Metal-Insulator Transition (MIT) by Holography 



Metal-Insulator Transition (MIT) by Holography 

•  General method for optical conductivity in holographic approach： 

( )
(1) (1)

(0)

( ) ( )1
( )

R x x

x

a x a xG i i
i a x

σ ω
ω ω ω

= = − = −

(0) (1)( , ) ( ) ( ) ...x x xa x z a x a x z= + +

2
2 2

2 ( )RdS dx dx dz
z

µ ν
µνη= + 1 0z

r
= → Infinity 1、Setup for asymptotical AdS 

2、Solving perturbation equations 
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Metal-Insulator Transition (MIT) by Holography 
•  How can one implement MIT by holography? 

•    Two renormalization group flow scenarios that arise in theories, mediating  
     quantum phase transitions between metallic and insulating phases.  

Donos and Hartnoll, Nature Phys.9, 649 (2013).  

•    IR fixed point plays a crucial role in understanding the holographic quantum  
     phase structure. 
 
•    The low energy behavior of a system in long wave- length limit such as the DC  
     conductivity is completely controlled by the near horizon geometry.  



Holographic gravity over an inhomogeneous or anisotropic background 

The breaking of spatially 
translational invariance 

Lattice 

Spontaneous breaking 
instability 

Scalar lattice 

Ionic lattice 

Massive gravity 

Q-lattice，Bianchi models 

Topological terms 

Non-topological terms 

CDW 

Building a lattice background in holographic gravity 

Impurities 
Spatially dependent axions 

Horowitz, Santos and Tong,  
JHEP 1207 (2012) 168. 



Part II   
MIT as a thermal phase transition: charge density waves 



•  Motivations and recent progress 

1.  It is essential to introduce some mechanism inducing the instability of the bulk 
geometry which is usually of spatial homogeneity. 

             H. Ooguri and C. -S. Park, Phys. Rev. Lett. 106, 061601 (2011) 
               A. Donos and J. P. Gauntlett, JHEP 1108, 140 (2011) 
 
2.  Striped black hole solutions as the examples of spatially modulated unstable 

modes have been presented. 

              M. Rozali, D. Smyth, E. Sorkin and J. B. Stang, Phys. Rev. Lett. 110, 201603 (2013) 
              A. Donos, JHEP 1305, 059 (2013) 

3.   The dynamics of CDW in the holographic approach. 
           Y. Ling, C. Niu, J. Wu,  Z. Xian and H. Zhang, Phys.Rev.Lett. 113 (2014) 091602.  
              Y. Ling, C. Niu, J. Wu,  Z. Xian and H. Zhang, To appear. 
 

Holographic Charge Density Waves (HCDW) 



•  Spontaneous breaking of translational invariance 
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•  Instability of near horizon geometry which is AdS2 
A. Donos and J. P. Gauntlett, JHEP 1108, 140 (2011) 
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Holographic Charge Density Waves (HCDW) 

AdS-RN black holes： 



•  The holographic charge density waves 

  ρ0 ≅ ρ2 ≅ 0...,    ρ1,   ρ3    → CDW

B = (1− z)χdt

ρ(x) = (1− ∂χ
∂z z=0

)

ρ(x) = ρ1 cos[kcx]+ ρ3 cos[3kcx]+ ...

χ (x, z) = 0+ zχ1(x) + z
2χ2 (x) + ...

Charge density  

No free electrons 

Holographic Charge Density Waves (HCDW) 2

are � and �.
Obviously, in the case of � = 0 and B = 0, the equa-

tions of motion always allow the electric AdS-RN black
hole solution

ds2 =
1

z2

✓
�(1� z)f(z)dt2 +

dz2

(1� z)f(z)
+ dx2 + dy2

◆

(2)

with

f(z) = 4(1 + z + z2 � z3µ2

16
), A

t

= µ(1� z). (3)

We will consider the dual field theory in a grand canon-
ical system, hence we will use the chemical potential µ
as the unit for the system. In this coordinate system,
the black hole horizon is located at z = 1 and the AdS4

boundary is at z = 0. The Hawking temperature of the
black hole is T/µ = (48 � µ2)/(16⇡µ). The zero tem-
perature limit is reached when µ = 4

p
3. However, the

linear perturbation analysis shows that at low tempera-
ture such a black hole will be unstable against the striped
phase[16]. To obtain such a resultant striped solution by
solving the fully non-linear bulk dynamics numerically,
we assume the following ansatz for the background fields

ds2 =
1

z2
[�(1� z)f(z)Qdt2 +

Sdz2

(1� z)f(z)
+ V dy2 +

T (dx+ z2Udz)2],

A = µ(1� z) dt,

B = (1� z)�dt,

� = z�, (4)

where the eight variables involved in the ansatz are func-
tions of x and z. In order to have a spontaneous breaking
of the translational symmetry in the dual field theory, the
following Dirichlet boundary conditions are imposed

Q[x, 0] = S[x, 0] = T [x, 0] = V [x, 0] =  [x, 0] = 1,

U [x, 0] = �[x, 0] = �[x, 0] = 0. (5)

Furthermore, we impose the regularity conditions at the
horizon such that all the functions have a Taylor expan-
sion in powers of (1 � z). Now the equations of motion
reduce to eight partial di↵erential equations with respect
to x and z. We solve them numerically with the Einstein-
DeTurck method, which has been employed to look for
static solutions to Einstein equations[17–22]. We demon-
strate the relevant result below, where we focus solely on
the case of � = �138 and � = 17.1.

The corresponding critical temperature for the phase
transition to the striped phase is about T

c

= 0.078µ and
the critical momentum mode in the x direction is given
by k

c

= 0.325µ. The onset of CDW can be read o↵
explicitly from the component of the gauge field B

t

[23]

B
t

= �⇢(x)z +O(z2),

⇢(x) = ⇢0 + ⇢1 cos[kcx] + ...+ ⇢
n

cos[nk
c

x] + .... (6)
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FIG. 1: The first mode of CDW as a function of
temperature.
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FIG. 2: The first and third modes of CDW for
T/Tc = 0.6, 0.8, 0.95, 0.98 from top to down.

We find that the coe�cients of even orders in numerical
solutions vanishes, such that the charge density for CDW
has the form ⇢(x) = ⇢1 cos[kcx] + ⇢3 cos[3kcx] + .... As
shown in Fig.1, ⇢1 can serve as the order parameter of our
system to characterize the phase transition to CDW as
it should be the case. Its condensation behavior near the
critical temperature indicates that the system undergoes
a second order phase transition to CDW. In Fig.2 we have
plotted the charge density associated with ⇢1 and ⇢3 at
various temperatures, respectively. From this figure we
notice that near the critical temperature the sub-leading
term ⇢3 is tiny comparing with the leading term ⇢1 and
can be neglected, while as the temperature goes down,
its contribution becomes important.
In Fig.3 we plot the solutions of the scalar � and the

time component of the gauge field � at the temperature
T = 0.8T

c

. Note that the striped profile increases when
one goes deeper into the horizon, which is consistent with
the linear perturbation analysis that such a striped phase
is triggered by the instability of near horizon geometry
AdS2 ⇥ R2 of extremal AdS-RN black hole[16]. With
this relevant striped deformation, the IR metallic fixed
point characterized by AdS2 ⇥ R2 is driven to another
fixed point. As we shall show in the next section, this
resultant fixed point corresponds to an insulating phase.
Optical conductivity of holographic CDW and metal-

insulator transition.–Now we turn to study the dynamics
of holographic CDW by computing the optical conductiv-
ity as a function of frequency. To this end, we separate
the variables into the background part and fluctuation
part as

g
µ⌫

= ḡ
µ⌫

+h
µ⌫

, A
µ

= Ā
µ

+a
µ

, B
µ

= B̄
µ

+b
µ

,� = �̄+'.
(7)
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are � and �.
Obviously, in the case of � = 0 and B = 0, the equa-

tions of motion always allow the electric AdS-RN black
hole solution

ds2 =
1

z2

✓
�(1� z)f(z)dt2 +

dz2

(1� z)f(z)
+ dx2 + dy2

◆

(2)

with

f(z) = 4(1 + z + z2 � z3µ2
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), A

t

= µ(1� z). (3)

We will consider the dual field theory in a grand canon-
ical system, hence we will use the chemical potential µ
as the unit for the system. In this coordinate system,
the black hole horizon is located at z = 1 and the AdS4

boundary is at z = 0. The Hawking temperature of the
black hole is T/µ = (48 � µ2)/(16⇡µ). The zero tem-
perature limit is reached when µ = 4

p
3. However, the

linear perturbation analysis shows that at low tempera-
ture such a black hole will be unstable against the striped
phase[16]. To obtain such a resultant striped solution by
solving the fully non-linear bulk dynamics numerically,
we assume the following ansatz for the background fields

ds2 =
1

z2
[�(1� z)f(z)Qdt2 +

Sdz2

(1� z)f(z)
+ V dy2 +

T (dx+ z2Udz)2],

A = µ(1� z) dt,

B = (1� z)�dt,

� = z�, (4)

where the eight variables involved in the ansatz are func-
tions of x and z. In order to have a spontaneous breaking
of the translational symmetry in the dual field theory, the
following Dirichlet boundary conditions are imposed

Q[x, 0] = S[x, 0] = T [x, 0] = V [x, 0] =  [x, 0] = 1,

U [x, 0] = �[x, 0] = �[x, 0] = 0. (5)

Furthermore, we impose the regularity conditions at the
horizon such that all the functions have a Taylor expan-
sion in powers of (1 � z). Now the equations of motion
reduce to eight partial di↵erential equations with respect
to x and z. We solve them numerically with the Einstein-
DeTurck method, which has been employed to look for
static solutions to Einstein equations[17–22]. We demon-
strate the relevant result below, where we focus solely on
the case of � = �138 and � = 17.1.

The corresponding critical temperature for the phase
transition to the striped phase is about T

c

= 0.078µ and
the critical momentum mode in the x direction is given
by k

c

= 0.325µ. The onset of CDW can be read o↵
explicitly from the component of the gauge field B

t

[23]

B
t

= �⇢(x)z +O(z2),

⇢(x) = ⇢0 + ⇢1 cos[kcx] + ...+ ⇢
n

cos[nk
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FIG. 1: The first mode of CDW as a function of
temperature.
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FIG. 2: The first and third modes of CDW for
T/Tc = 0.6, 0.8, 0.95, 0.98 from top to down.

We find that the coe�cients of even orders in numerical
solutions vanishes, such that the charge density for CDW
has the form ⇢(x) = ⇢1 cos[kcx] + ⇢3 cos[3kcx] + .... As
shown in Fig.1, ⇢1 can serve as the order parameter of our
system to characterize the phase transition to CDW as
it should be the case. Its condensation behavior near the
critical temperature indicates that the system undergoes
a second order phase transition to CDW. In Fig.2 we have
plotted the charge density associated with ⇢1 and ⇢3 at
various temperatures, respectively. From this figure we
notice that near the critical temperature the sub-leading
term ⇢3 is tiny comparing with the leading term ⇢1 and
can be neglected, while as the temperature goes down,
its contribution becomes important.
In Fig.3 we plot the solutions of the scalar � and the

time component of the gauge field � at the temperature
T = 0.8T

c

. Note that the striped profile increases when
one goes deeper into the horizon, which is consistent with
the linear perturbation analysis that such a striped phase
is triggered by the instability of near horizon geometry
AdS2 ⇥ R2 of extremal AdS-RN black hole[16]. With
this relevant striped deformation, the IR metallic fixed
point characterized by AdS2 ⇥ R2 is driven to another
fixed point. As we shall show in the next section, this
resultant fixed point corresponds to an insulating phase.
Optical conductivity of holographic CDW and metal-

insulator transition.–Now we turn to study the dynamics
of holographic CDW by computing the optical conductiv-
ity as a function of frequency. To this end, we separate
the variables into the background part and fluctuation
part as

g
µ⌫

= ḡ
µ⌫

+h
µ⌫

, A
µ

= Ā
µ

+a
µ

, B
µ

= B̄
µ

+b
µ

,� = �̄+'.
(7)

  
L2 = 1

24
,m2 = −8

β = −138,γ =17.1  Tc = 0.078µ,kc = 0.325µ
T
µ
= 48− µ2

16πµ



•  The examples of background solutions 

Holographic Charge Density Waves (HCDW) 
3

FIG. 3: Solutions of the scalar field and the time component
of the gauge field � for T = 0.8Tc.
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FIG. 4: The optical conductivity for CDW, where the black
horizontal line denotes the corresponding optical

conductivity for AdS-RN black hole associated with the
second gauge field.

We assume that the fluctuations of all the fields have
a time dependent form as e�i!t but independent of the
coordinate y. To solve the fluctuation equations, gauge
conditions must be imposed for gravity and two gauge
fields. Here we choose the de Donder gauge and Lorentz
gauge condition for them, respectively

r̄µĥ
µ⌫

= 0, r̄µa
µ

= 0, r̄µb
µ

= 0 (8)

where ĥ
µ⌫

= h
µ⌫

� hḡ
µ⌫

/2 is the trace-reversed metric
perturbation.

As usual, we adopt ingoing wave boundary conditions
at the horizon. While at our AdS boundary z = 0,
we consider the following consistent boundary condition
with

b
x

(x, 0) = 1, a
x

(x, 0) = @

z

�(x,0)
µ(1�@

z

 (x,0))

others(x, 0) = 0. (9)

Then by holography, we can extract the homogeneous
part of optical conductivity, the quantity we are inter-
ested in. Namely, given that b

x

= (1+j
x

(x)z+...)e�i!t by
solving the fluctuation equations, the conductivity asso-

ciated with the second gauge field reads �(!/µ) = 4j(0)
x

i!

,
in which a factor four comes from the unusual asymptotic
form of the metric in Eq.(2).

One typical plotting for the real and imaginary parts
of the optical conductivity at various temperatures is
shown in Fig.4. Two fundamental features of CDW are
observed. One is the pinned collective mode, which is re-
flected as the first peak appearing in the real part of the
conductivity. The second is the gapped single-particle
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FIG. 5: The fit of optical conductivity with two Lorentz
oscillators in the low frequency regime for T = 0.6Tc. The
contributions from the individual oscillator are also plotted

with dashed lines.

excitation, which corresponds to the occurrence of the
second peak in the real part of the conductivity.
The pinning is a common phenomenon for CDW on

account of the various interactions with the other compo-
nents of the system, which can be described by a damped
harmonic oscillator with Lorentz resonance

�
CDW

(!) =
K⌧

1� i!⌧(1� !2
0/!

2)
, (10)

where ⌧ is the relaxation constant, K is proportional
to the number density of CDW, and !0 is the average
pinning resonance frequency[3]. This formula has been
widely employed in the analysis of CDW optical response
experiments. Here we also use it to fit our data. In con-
sistent with the fact that our holographic CDW is always
generated with multiple wave vectors, we find in general
our data in the low frequency region of the conductivity
can be well fit with multiple Lorentz oscillators. In par-
ticular, as the temperature is not quite low, for instance
T � 0.6T

c

, it can be fit with only two oscillators, namely
�
tot

(!) = �
CDW1(!) + �

CDW2(!), because in this case
the contribution from those CDW with higher wave vec-
tors is negligible. Fig.5 is such a fit to this formula for
T/T

c

= 0.6. The parameters in the Lorentz formula for
various temperatures are listed in Table I.

T/Tc K1/µ ⌧1µ !01/µ K2/µ ⌧2µ !02/µ

0.6 0.207 6.593 0.452 2.225 0.609 1.629

0.7 0.207 6.327 0.449 2.512 0.498 1.653

0.8 0.188 5.870 0.442 1.587 0.802 1.354

TABLE I: The fit parameters in Lorentz formula at
various temperatures.

Although this pinned collective mode is gapless, our
single-particle excitation is gapped, as clearly evident
from Fig.4. In particular, the magnitude of gap is es-
timated as 2�/T

c

⇡ 20.51 by locating the position of the
second minimum in the imaginary part of the conductiv-
ity, which is obviously much larger than the mean-field
BCS value 2�/T

c

⇡ 3.52. This large gap ratio asso-
ciated with this gap is indicative of a strongly coupled
CDW phase transition in our system as it should be the
case by holography. On the other hand, remarkably, this

The solutions of scalar field and the time component of the gauge field at T=0.8Tc  

•     The striped profile increases when one goes deeper into the horizon. 

•     Such a striped phase is triggered by the instability of near horizon geometry.  



•  The optical conductivity  

•   Two Lorentz formulae 2 2
0

( )
1 (1 / )CDW

K
i

τσ ω
ωτ ω ω

=
− −

Remark: metal to insulator phase transition! 

Y. Ling et.al., Phys.Rev.Lett. 113 (2014) 091602. 

gµν = gµν + hµν ,Aµ = Aµ + aµ ,Bµ = Bµ + bµ ,Φ =Φ +ϕ.

  
∇µ ĥµν = 0,∇µaµ = 0,∇µbµ = 0.

σ tot (ω ) =σCDW1(ω ) +σCDW 2 (ω )

•   Single-particle gap: 

  

2Δ
Tc

≅ 20.51

ĥµν = hµν − hgµν / 2.
  

bx = (1+ jx (x)z + ...)e− iωt

σ (ω / µ) =
4 jx

(0)

iω

15.80 for Single crystalline TbTe3  



•  Summary： 
1、Superconductivity 

3、CDW 

2、Drude law for metals 

1
DC

i
σσ
ωτ

=
−

1( ) ( )K
i ασ ω δ ω
ω

⎛ ⎞∝ −⎜ ⎟⎝ ⎠

2 2
0

( )
1 (1 / )CDW

K
i

τσ ω
ωτ ω ω

=
− −

Theory：The breaking of translational symmetry 
Strategy：Introducing lattice structure 

Theory：The breaking of U(1) gauge symmetry 
Strategy：Introducing a complex scalar field   

Theory：Spontaneously breaking of translational    
               symmetry 
Strategy：Introducing a topological term 

Holographic Charge Density Waves (HCDW) 



Part III   
MIT as a quantum critical phenomenon 



•  4D Setup  
Q-lattice and novel MIT 

2 24 21 1[ 6 ]
16 2

ab
abS d x g R F F m

Gπ
= − + − − ∂Φ − Φ∫

Equations of motion: 

3 .... 0ab ab abG R g= + − =

0a
a bF∇ =

(−m2 )Φ = 0

:       scalar Complex field  Φ

A. Donos and J. P. Gauntlett, JHEP 1404, 040 (2014). 



•  A family of three-parameter black brane solutions:  

Q-lattice and novel MIT 

Boundary condition (0)φ λ=

3/ ,        / ,           /T kµ λ µ µ−Δ

2 2 2 2 2
1 22

1 1[ (1 ) ( ) ( ) ( ) ( ) ]
( )(1 ) ( )

ds z P z U z dt dz V z dx V z dy
z P z z U z

= − − + + +
−

(1 ) ( )A z z dtµ ψ= −

3 ( )ikxe z zφ−ΔΦ =

2 3
2( ) 1

2
zP z z z µ= + + −

•   Ansatz of variables 

( )1/223 / 2 9 / 4 mΔ = ± +

Temperature 
Lattice Amplitude 

Wave number 

( ), ,  T kλ
2 2m = −



•  Linear perturbations and optical conductivity:  

Q-lattice and novel MIT 

(1 ...)

( / )

i t
x x

x

a j z e
j
i

ω

σ ω µ
ω

−= + +

=

3( , ),   ( , ),   ( , ).ikx
tx tx xg h t z A a t z ie z t zµδ δ δ ϕ−Δ= = Φ =

( 2)
2

2(0) 1,   (0) ( / ) ,            ...tx
x tx tx

ha ik h h
z

ϕ λ ω
−

−= = = +

Boundary condition: 

Optical conductivity: 



•  Novel MIT:  

Q-lattice and novel MIT 

Insulator Metal 0DCd
dT
ρ <0DCd

dT
ρ >



•  Phase Diagram:  

Q-lattice and novel MIT 

( , ) 0T DC kσ λ∂ =

T / µ = 0.001

Question:  
What role can  the holographic entanglement 
entropy play in quantum phase transition? 

Y.Ling, et.al.,arXiv:1502.03661 

2 2
1 22

2 2
1 1

DC

z

a VVV
V k

µ
σ

φ
=

⎛ ⎞
= +⎜ ⎟⎜ ⎟⎝ ⎠

Critical points:  

i)  The zero-frequency limit of AC conducutivity 

( )
0

limDC ACω
σ σ ω

→
=

ii)  It is completely determined by the near  
         horizon geometry 



•  Holographic description of entanglement entropy: RT formula 

Holographic Entanglement Entropy (HEE) close to QPT 

S full =
Area(γ A)
4GN

Y.Ling, et.al.,arXiv:1502.03661 

•  The reduced HEE:  
T. Nishioka, S. Ryu and T. Takayanagi, J.Phys.A42:504008,2009  

l = µ dzz2
0

z*∫
V1(z*)V2 (z*)

P(z)V1(z)W (z*, z)

4GNS full = 2Ly (S +1/ ε )

4 4
* * 1 2 1 * 2 *( , ) ( ) ( ) ( ) ( )W z z z V z V z z V z V z= −

•   It is suggested that the reduced HEE measures the degrees   
   of freedom in CFT on the boundary. 

S = 1
µ

− 1
z*
+ dz

z2
z*
2V1(z)V2 (z)

P(z)V1(z)W (z*, z)
−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

z*∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪



Holographic Entanglement Entropy (HEE) close to QPT 

Y.Ling, et.al.,arXiv:1502.03661 

•  Numerical results:  

•  Q-lattice dual to metallic phase 
•  AdS-RN black brane 
•  Q-lattice dual to insulating phase 

•  The reduced HEE increases in a linear fashion with the width of the strip  
   when l is relatively large   



•  Pronounced peaks :  

Holographic Entanglement Entropy (HEE) close to QPT 

Y.Ling, et.al.,arXiv:1502.03661 

•    The half-width of the strip l is increased from 
     0.91 to 5.56 uniformly. 

•    All the strips have the same width 2l. 
S vs k with     fixed λ S vs     with k fixed λ

•    The location of turning points becomes  
     independent of the width of the strip. 

•    Independence of the width of the strip : 



•  HEE close to QPTs :  

Holographic Entanglement Entropy (HEE) close to QPT 

Y.Ling, et.al.,arXiv:1502.03661 

•    All the turning points of the reduced HEE are distributed in the vicinity of 
     quantum critical points.  
 
•    It indicates that HEE can be viewed as a signature of the occurrence of QPTs. 

•    This feature coincides with the behavior of EE in CMT. 

Osterloh, et.al.  
Nature 416,608(2002).  
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FIG. 3. As in the case of the nearest neigh-
bour concurrence, data collapse is also obtained for the
next-nearest-neighbour concurrence C(2). In the figure, data
for system size from N = 41 to N = 401 are plotted. The
inset shows a peculiarity of the Ising model: C(2) has its
maximum precisely at the critical point for arbitrary system
size (note that the maximum decreases as the system size in-
creases). Therefore we consider the second derivative to per-
form the scaling analysis. It can also be seen that C(2) is two
orders of magnitude smaller than C(1). For the smallest sys-
tem sizes the concurrence is different from zero for |i− j| = 3
and λ > 1.05 (for N = 7; for N ≥ 9, C(3) = 0 for all λ).
In contrast the correlation functions are long-ranged at the
critical point.

The results for systems of different size (including the
thermodynamic limit) are presented in Fig.1. For the in-
finite chain ∂λC(1) diverges on approaching the critical
value as

∂λC(1) =
8

3π2
ln |λ − λc| + const. (3)

Equation (3) quantifies non-local correlations in the crit-
ical region. One aspect of this system, particularly rel-
evant for quantum information is the study of the pre-
cursors of the critical behaviour in finite samples. This
study is known as finite size scaling [22]. In Fig.1 the
derivative of C(1) respect to λ is considered for different
system sizes. As expected, there is no divergence for fi-
nite N , but there are clear anomalies. The position of the
minimum λm scales as λm ∼ λc + N−1.87 and its value
diverges logarithmically with increasing system size as

∂λC(1)|λm

= −0.2702 lnN + const. (4)

According to the scaling ansatz [22] in the case of log-
arithmic singularities, the ratio between the two prefac-
tors of the logarithm in Eqs.(3) and (4) is the exponent
which governs the divergence of the correlation length ξ
[23]. In this case (8/3π2 ≈ 0.2702) it follows that ν = 1,
as it is known from the solution of the Ising model [18].
By proper scaling [22] and taking into account the dis-
tance of the minimum of C(1) from the critical point, it

is possible to make all the data for different N collapse
onto a single curve (Fig.2).
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FIG. 4. The universality hypothesis for the entanglement
is checked by considering the model Hamiltonian, defined in
Eq.(1), for a different value of γ. In this case we chose γ = 0.5
and N ranging from 41 up to 401. Data collapse, shown here
for C(1), is obtained for ν = 1, consistent with the model
being in the universality class of the Ising model. In the inset
is shown the divergence at the critical point for the infinite
system.

This figure contains the data for the lattice size rang-
ing from N = 41 up to N = 2701. These results show
that all the key ingredients of the finite size scaling are
present in the concurrence. We note that finite size scal-
ing scaling is fulfilled over a very broad range of values of
N which are of interest in several protocols in quantum
information.

A similar analysis can be carried on for the next-
nearest neighbour concurrence C(2). Since ∂λC(2)|λc

=
0, the logarithmic singularity here appears first in the sec-
ond derivative with respect to λ (see Fig.3 legend). In the
thermodynamic limit ∂2

λC(2) = 0.108 ln |λ − λc| + const.
In this case also, the data collapse and finite size scal-
ing (Fig.3) agree with the expected scaling behaviour,
ν = 1. This completes the analysis of entanglement for
the one-dimensional Ising model.

A cornerstone in the theory of critical phenomena is
the concept of universality – that is, the critical proper-
ties depend only on the dimensionality of the system and
the broken symmetry in the ordered phase. Universal-
ity in the critical properties of entanglement was verified
considering the properties of the family of models defined
in Eq.(1) with γ = 1/2. The range of entanglement ξE is
not universal. The maximum possible distance between
entangled pairs increases and tends to infinity as γ tends
to zero. From the asymptotic behaviour of the reduced
density matrix [19] we find that ξE goes as γ−1. This
however has no dramatic consequences; the total concur-
rence

∑
n C(n) stored in the chain is a weakly increasing

function of γ (for 0 < γ ≤ 1, 0 <
∑

n C(n) < 0.2). More
interesting is the critical behaviour of the concurrence.

3

Chen, et.al.  
New J. Phys. 8, 97(2006).  

2

N=8

N=12

N=16

N=18

FIG. 1: The ground state concurrence (a) and the entangle-
ment entropy per site SL/L (b) in terms of ∆ in XXZ spin
chain for various lattice sizes (N = 2L). The inset of (b)
displays the sublattice bipartition.

where ρL ≡ trBL
|Ψg〉〈Ψg| is the reduced density matrix

for BL, a block of L spins. The scaling of the entan-
glement in the block size L may allow one to establish
a connection between SL and the quantum phase tran-
sition: SL ∼ lnL at the critical point, and SL ∼ const
away from the critical point; while this idea is applicable
to few one dimensional models. Here we adopt a distinct
way that bi-partitions the system into two sublattices BL

and RL, with the largest number of connecting bonds be-
tween them [19, 20]. The motivation of such partition is
to best reveal the correlation between the two sublattices.
We will see that in most cases the considered entangle-
ment entropy between the two subsystems scales linearly
with the size of the boundary between them [notice that
in the case [18], the boundary is zero-dimensional i.e.,
one single spin][21].

All the above three Hamiltonians have a rotational
symmetry around the z-axes. The calculations presented
below are carried out in an invariant subspace with
Sz = 0. Lanczos algorithms are employed to calculate
the ground state |Ψg〉, from which we construct the den-
sity matrix for the whole system. We then obtain the
reduced density matrix ρL by tracing out RL, and com-
pute its Von Neumann entropy in Eq.(5).

XXZ-chain. Let us first consider the one-dimensional
XXZ model. As a simple toy model, a great deal of work
has been devoted to analyze its entanglement and quan-
tum phase transition [22]. It is well known that ∆ = 1
is the antiferromagnetic isotropic point, ∆ = −1 is the

ferromagnetic isotropic point, and ∆ = 0 is the pure XY
point. This allows us to describe the various domains
as a function of ∆. The system is in an Ising ferromag-
netic phase at ∆ < −1, Ising antiferromagnetic phase at
∆ > 1, and XY phase at −1 < ∆ < 1. In Fig. 1(a), we
show the pairwise concurrence as a function of anisotropy
∆ for different number of sites L. Because the concur-
rence here is expressed in terms of the two-site correlation
function of the nearest-neighbor sites, its value converges
quickly as L increases. As we can see, the concurrence at
one phase transition point ∆ = 1 reaches the maximum
while the concurrence emerges at another transition point
∆ = −1 as L approaches infinity. These two quantum
phase transition points can be identified from the analy-
sis of concurrence in this case. We now address the en-
tanglement entropy of the sublattice BL = {odd − sites}
with L = N/2 [23]. Fig. 1(b) displays the numerical
results of the entanglement entropy SL/L as a function
of ∆. We obtain the reduced subsystem of crosses by
tracing out the spin degree of freedom on circle points.
As the system is in the vicinity of the quantum phase
transition point, we may expect SL/L to reach its ex-
treme value. We find that the transition points ∆ = 1
and ∆ = −1 correspond to the maximum and minimum
of the sublattice entanglement entropy. As for the latter
case, a simple analysis of the scaling behavior around the
minimum point shows that the location of the transition
point approaches to ∆ = −1 and SL/L = 0 as the size
of the subsystem increases. Thus at L → ∞, SL/L → 0
for ∆ < −1. Therefore, the two transition points can be
clearly specified and a distinct connection between quan-
tum phase transition and the entanglement entropy has
been established.

Dimerized Heisenberg chain. We now consider the
dimerized Heisenberg chain [24]; this model is charac-
terized by an alternation of strong and weak bonds be-
tween two nearest neighboring spins. In the case of
0 < J2/J1 ( 1, the ground state is just an ensemble
of N/2 uncoupled dimers around the strong bonds. Con-
sequently, there is an energy gap of order of J1 to sep-
arate the singlet ground state (Sz = 0) from the first
excited state with Sz = 1. All the spins are locked into
singlet states. At J2/J1 = 1, the system is reduced to
the isotropic antiferromagnetic Heisenberg chain that is
quasi-long-range ordered, and belongs to a different uni-
versality class from the dimerized system. In the case of
J2/J1 < 0, the ground state is a product of spin singlet
pairs coupled by ferromagnetic bonds. We can define
two concurrences C1 and C2, which correspond to two
nearest-neighboring spins coupled by bonds J1 and J2,
respectively. The pairwise concurrence as a function of
J2/J1 for different lattice size L is shown in Fig. 2(a). It
can be easily seen that the value of concurrence is inde-
pendent of the lattice size. In the limit of strong dimer-
ization, J2/J1 = 0 (or equivalently J2/J1 → ∞), the
concurrence C1 (C2) reaches a maximum value. However,
the concurrence analysis does not enable us to identify
the transition point J2/J1 = 1 unambiguously. Below,



•  Near horizon analysis:  

Holographic Entanglement Entropy (HEE) close to QPT 
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  A contour plot of the quantity r 

•  For large l, the reduced HEE receives  
   the dominant contribution from the near  
   horizon regime!  



•  4D Setup: 

    

Towards  a holographic Mott-like insulator 

( ) 2 24 21 [ 6 ]
16 2

ab
ab

V
S d x g R F F m

Gπ
Φ

= − + − − ∂Φ − Φ∫

( ) 21V βΦ = − Φ

•     Finite temperature region 

( ), , ,  T kβ λ

i)  The transition from a metallic phase to an insulating phase occurs when 
the lattice constant becomes larger, for a given  ( ), ,Tβ λ

2 /a kπ=•    Periodic structure:  

0.2,   2T λ= =

Y.Ling, et.al.,to appear  

Dynamically generating a Mott gap in the probe limit by holography has been proposed 
in Phys. Rev. Lett. 106 (2011) 091602, by Edalati, Leigh and Phillips. 



Towards  a holographic Mott-like insulator 

ii) A gap in insulating phase can be manifestly observed from the optical conductivity  
when the parameter     is increased to an appropriate value. β

0.2,   2,   k=0.03,    =0T λ β= = 0.2,   2,    k=0.03,   =3.0 T βλ= =

Similar results appeared in e-Print: arXiv:1503.03481 by Kiritsis and Ren    

Y.Ling, et.al.,to appear  



Towards  a holographic Mott-like insulator 
•     In zero temperature limit 

•    This model exhibits a novel metallic behavior again at the extremely low temperature  
     featured by a gap as well as a zero-frequency mode with tiny spectral weight.  
 
•    It implies that it is a doped ( or incommensurate) system where umklapp scattering is  
     frozen in zero temperature limit.       
                                                  (T. Giamarchi, Quantum physics in one dimension,2004) 
•          plays a double role in this model, namely, generating a gap and doping the system. 
 
•     Its behavior  is analogous to some organic linear chain conductors observed in  
      experiments.                        (Vescoli et. al., Science 281 (1998) 1181.) 

Y.Ling, et.al.,to appear  

2,    k=0.03,    =0.76λ β=

β



Thank you！ 

Summary：  
 
•   We investigate the metal-insulator transition in a holographic  
    approach.  

•   As a thermal phase transition, a holographic model for charge  
    density waves has been constructed with a spontaneous breaking of  
    translational symmetry. 

•   In Q-lattice backgrounds, the reduced HEE always displays a peak  
    in the vicinity of quantum critical points, indicating that the reduced  
    HEE can be used to characterize the quantum phase transition.  

•   Building a holographic background dual to Mott insulator is on the 
    road.  


