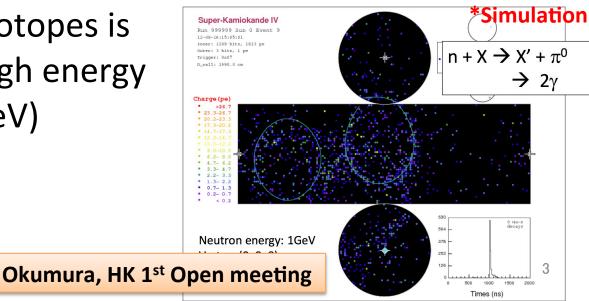
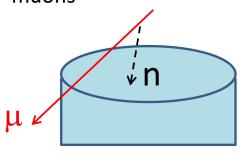
Background Study for thin Hyper-K OD

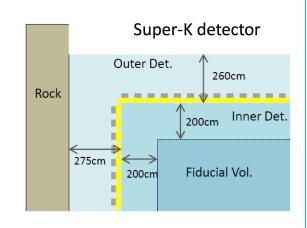
Takatomi Yano, Kobe Univ.

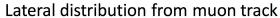

29th Jan. 2015 6th Open Meeting for the Hyper-Kamiokande meeting

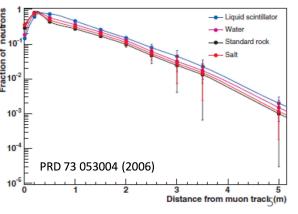
Introduction

- With thinner OD of Hyper-K, external background will be increased due to less shielding by OD water layer.
 - High-energy background
 - High-energy neutron
 - Low-energy background
 - Low-energy gamma
 - Direct cosmic muon background (Common.)
- Direct muon background will not be discussed. Here, the muon detection efficiency of OD is considered as same as current OD. It will easily reject the direct muon background.

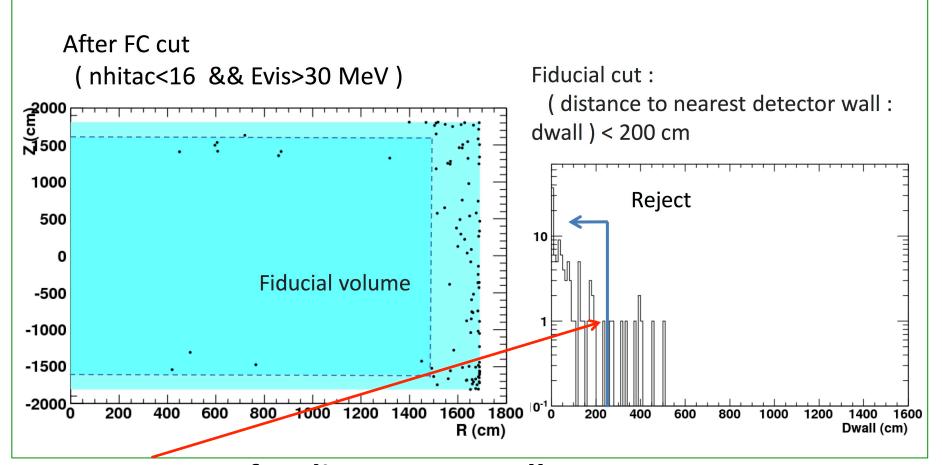

High-energy background


- At Hyper-K 1st Open meeting, the background for atmospheric neutrino and proton decay was discussed by Okumura-san.
- Here I review his study and discuss the effect of thinner OD.
- High-energy neutron generated by cosmic muon and its π^0 production was simulated. (SK 50 years)
- Spallation radioisotopes is not problem in high energy analysis. (E>30MeV)




Shielding against neutron

- 1. Self-shielding by water
 - 4.6~4.7 meter shield around fiducial
 volume can attenuate neutron significantly
- 2. / Coincidence with primary cosmic muons
 - neutrons are spatially correlated with muon track
 - Using large detector, neutron events can be rejected by taking coincidence with muons



 Shielding effect will be decreased, when the detector get thinner. (OD 2.5m -> OD 1.0m)

Reconst. vertex distributions

- 11 events for distance to wall > 200,
- 26 events for distance to wall > 100 (OD 1.5m)
- 42 events for distance to wall > 50 (OD 1.0m)

Event summary and BG estimate

	N (/50yr)	Event / year (SK site)
Entering neutrons	4.5 x 10 ⁸	8.9 x 10 ⁶
w/o muon coincidence	1.1×10^7	2.1 x 10 ⁵
FC	105	2.1
FCFV	11	0.2

Number of FVFV events in one year at Super-K: ~3000 events / year / SK

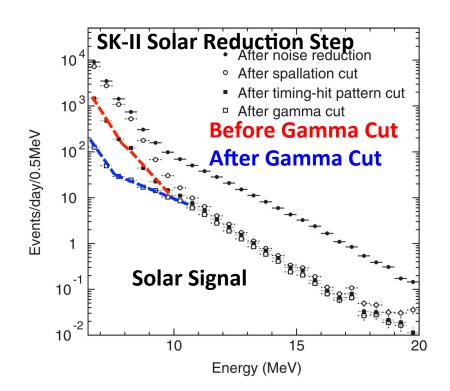
Background rate of FCFV events at Super-K site : $0.2 / \sim 3000 = 7 \times 10^{-3} \%$

26 events for OD 1.5m 42 events for OD 1.0m

- The rate of spallation products is studied by I. Shimizu at HK 4th Open Meeting. ×2 for Mozumi and ×4 for Tochibora. (In water.)
- Assuming these factors, BG rate at HK will be
 - OD 1.5m : 0.03 % (Mozumi) 0.07 % (Tochibora)
 - OD 1.0m : 0.05 % (Mozumi) 0.11 % (Tochibora)
- It is almost same as okumura-san's study.(before. 0.07) ~0.1% BG rate will be OK.

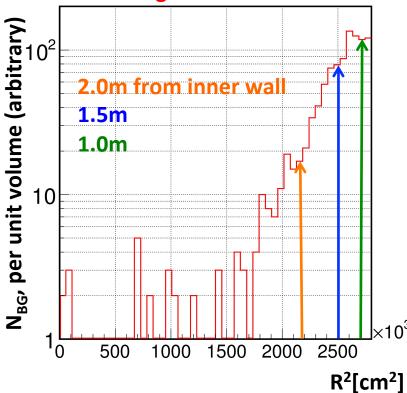
The factor was 8 at Okumura-san's study.

Summary for High-E


- Background rate of neutron produced by cosmic ray muons in rock was discussed.
- The neutron background is negligibly small (the order of 0.1%).
 - The OD muon detection efficiency is assumed to be same as current SK OD.
 - K⁰_L was also studied by Okumura-san and negligible with 50yr simulation.
 - This time, the neutron flux was almost same as before. So K⁰_L will be also negligible.

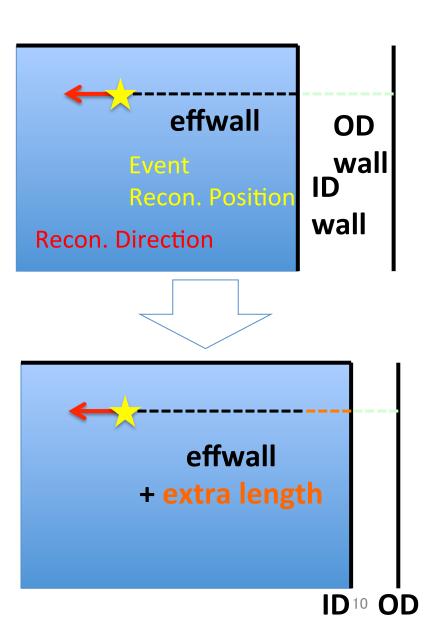
Low-Energy Background

- The main external background for low energy analysis is incoming gamma-ray.
- The source of γ is not determined. The possible candidates are :
 - Radioisotopes in PMT and FRP(only for SK-III, IV)
 - Radioisotopes in Bedrock around SK
- Only the γ from rocks can be increased due to less shielding effect with thinner OD.
- Here, we won't separate these incoming BG for conservative estimation.
- Incoming Muon will not be discussed here.
- Muon spallation products is a BG of low energy analysis. The spallation reduction, including muon reconstruction is done by ID. So the effect of thin OD can be ignored.


External gamma-ray background

- With thin OD, γ-ray background can be increased by 4-6 times.
- It will not affect to SRN search region, E > 18 MeV.
- For solar 7 10MeV analysis,
 the effect is not negligible.

SK-IV run 071345, 50% PMT mask (E>7.0MeV)



OD 1.5m: ×~4 of curernt BG

OD 1.0m: ×~6 of current BG

Gamma-ray Reduction at Low-E

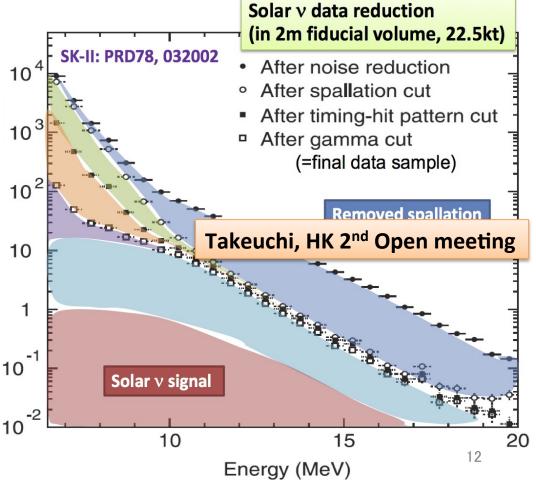
- For gamma-ray reduction, we apply a cut to effective distance between event and ID wall (effwall).
- If we add extra length to effwall, it will cancel the effect of thin ID.
 - For 1.5m OD, effwall+1m
 - For 1.0m OD, effwall+1.5m

Signal Efficiency with longer effwall

- The solar signal efficiency will be decreased by adding extra length to effwall.
- The effect is estimated with toy MC. (uniform 8MeV γ
 MC with SK-II.)
 Solar signal efficiency with thin OD

Effwall cut + L	7-7.5 MeV cut	8-8.5 MeV cut	9-10 MeV cut	10-30 MeV cut
L = 0 m (OD 2.5m, SK)	66%	79%	91%	95%
L = 1m (OD 1.5m)	62%	91-94% 74%	87%	91%
L = 1.5m (OD 1 m)	60%	94-96% 72%	85%	89%

The signal efficiency can be decreased to 91-94% (OD 1.5m) or 94-96% (OD 1.0m). This will be acceptable.


Reduction Step at SK-II

Unclear background is left after reduction step at SK-II.

 If it is remaining (and not reducible) gamma, it will make S/N of solar analysis worse.

 More study with MC is needed for background reduction with effwall cut.

Summary for Low-E

- The dominant external background for low energy is gamma.
- An estimation was done by assuming that all of gamma is coming from bedrock.
- With 1.5m OD or 1.0m OD, the amount of background will be increased by 4 or 6 times of current SK analysis.
- The increased gamma-ray will be dealt with increased effwall cut.
- It will affect on solar analysis and it will reduce the signal efficiency to 91-94% or 94-96%. For now, the number is acceptable.
- More study with MC will be needed to prove the reduction with effwall cut.
- Thight FV also can be a option for external background.