Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Hyper-K potential to study the Leptonic Unitarity Triangle

@HK meeting, Jan.29, 2015

Akira Konaka (TRIUMF)

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Unitarity of the PMNS matrix

- Unitarity condition: U⁺U=1
 - Normalization

 $\begin{aligned} |U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 &= 1 \\ |U_{\mu 1}|^2 + |U_{\mu 2}|^2 + |U_{\mu 3}|^2 &= 1 \\ |U_{\tau 1}|^2 + |U_{\tau 2}|^2 + |U_{\tau 3}|^2 &= 1 \end{aligned}$

• Unitarity triangle

 $U_{e1}U_{\mu1}^{*}+U_{e2}U_{\mu2}^{*}+U_{e3}U_{\mu3}^{*}=0$ $U_{\mu1}U_{\tau1}^{*}+U_{\mu2}U_{\tau2}^{*}+U_{\mu3}U_{\tau3}^{*}=0$ $U_{\tau1}U_{e1}^{*}+U_{\tau2}U_{e2}^{*}+U_{\tau3}U_{e3}^{*}=0$

- \bullet Unitarity of PMNS is broken due to v_{R}
 - 4th generation or new interactions, can also do it.

Lesson from CKM (quarks)

- Normalization: $|Vud|^2 + |Vus|^2 + |Vub|^2 = 1$
 - |Vud|² < 1 lead to the idea of Cabbibo angle: strange quark implication in nuclear β decay
- Flavour Changing Neutral Current (FCNC)
 - Unitarity prohibits FCNC
 - Already tested for charged leptons: e.g. $\mu \! \rightarrow \! e \gamma$
- Unitarity triangle:

- Unitarity condition including CP phase is tested in B, K decays: works very well
- Over-constrain the unitarity triangle to explore physics beyond Standard Model

Unitarity Triangle (PRD89(2014)073002)

4

RTRIUMF

$$P_{\ell \to \ell'} = 4ab \sin(\Delta_{12} \pm \gamma) \sin \Delta_{12} + 4bc \sin(\Delta_{23} \pm \alpha) \sin \Delta_{23} + 4ac \sin(\Delta_{31} \pm \beta) \sin \Delta_{31}$$

 $\Delta_{12} = \Delta m^2_{12} L/4E$ $\Delta_{23} = \Delta m^2_{23} L/4E$ $\Delta_{31} = \Delta m^2_{31} L/4E$

$$P_{\ell \to \ell'} = a^2 + b^2 + c^2 - 2ab\cos(2\Delta_{12} \pm \gamma) - 2bc\cos(2\Delta_{23} \pm \alpha) - 2ca\cos(2\Delta_{31} \pm \beta)$$

• Disappearance gives sides of the triangle:

$$P_{disapp} = 1 - P_{\ell \neq \ell}$$

= 4|U_{\ell 1}|^2 |U_{\ell 2}|^2 sin^2 \Delta_{12}
+ 4|U_{\ell 2}|^2 |U_{\ell 3}|^2 sin^2 \Delta_{23}
+ 4|U_{\ell 3}|^2 |U_{\ell 1}|^2 sin^2 \Delta_{31}

At 1st oscil. max. $\Delta_{23} \sim \Delta_{13}$ ~ 0.03 Δ_{12}

• Different L/E scale to untangle each contrib.

- solar (Δ_{12}) and atmospheric (Δ_{23} , Δ_{31}) scales
- level crossing due to matter effect provides an additional handle

$e-\mu$ unitarity in PMNS

• $e-\mu$ part of unitarity can be studied best:

$$|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1$$
$$|U_{\mu 1}|^2 + |U_{\mu 2}|^2 + |U_{\mu 3}|^2 = 1$$

TRIUMF

6

Normalization terms and sides of the triangle can be determined by disappearance

- Solar neutrino: $|U_{e2}|^2$
 - MSW conversion in the sun: $v_e \rightarrow v_2$ and detect v_e
- KamLand: $|U_{e1}|^2 |U_{e2}|^2$
 - Reactor v_e disappearance at Δ_{12} scale of L/E
- Reactor θ_{13} : $|U_{e3}|^2 (|U_{e1}|^2 + |U_{e2}|^2)$
 - Reactor v_e disappearance at Δ_{12} scale of L/E
- All the parameters are measured. Better precision desired for KamLand measurement
 - JUNO experiment will achieve this in future

$|U_{\mu 1}|^2 + |U_{\mu 2}|^2 + |U_{\mu 3}|^2 = 1$

- LBL v_{μ} disappearance: $|U_{\mu3}|^2 (|U_{\mu1}|^2 + |U_{\mu2}|^2)$
 - This is what T2K/MINOS/NovA measure
- $v_{\mu} \rightarrow v_{e}$ atm. matter resonance: (r|U_{µ3}|² -1)
 - Amplitude of the atmospheric mass hierarchy study [HK]
- Solar scale atm. v_{μ} disapp. : $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
 - 0.4–0.8GeV up-going atm. ν_{μ} disapp. [HK]
 - zenith angle measurement: anti- ν_{μ} , proton energy cut
- 1–3GeV atm. v_{μ} disapp. (4–6th max.) can untangle $|U_{\mu 1}|^2$ and $|U_{\mu 2}|^2$ terms in LBL disapp. [HK]
 - Δ_{13} and Δ_{23} show 30–20% difference
 - 2nd max. LBL detector could also do this.

Lepton angular distribution

nucl-th/9901027

Lepton from neutrino reaction goes backward at low energy

TRIUMF

nucl-th/0311022 $^{16}O(v_{e},e)X$ 0.8 normalized d0/d(cos0) 0.6 300 MeV 100 MeV 0.4 500 MeV 0.2 E_=50 MeV 1.0 0.8 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 $\cos \theta$

Neutrino direction measurement possible for $E_v > 400-500$ MeV Cross section study by vPRISM is important.

MiniBooNE differential x-sec

- Forward peak for anti-v even for neutrino energy at 200MeV
 - $\bullet\,\overline{\nu}_e$ tagging by WbLs proton veto, Gd neutron tag?
 - $\bullet\,\overline{\nu}_e$ cross section is reasonably large at low E_ν

neutrino CCQE

TRIUMF

11

•CP study at Δ_{12} scale using sub-GeV atmospheric neutrios

Atmospheric $v_{\mu} \rightarrow v_{e}$

• Δ_{12} oscillation below 1GeV: large θ_{12} oscillation effect

RUMF

- Above matter resonance ($E_R=0.1GeV$), $v_{\mu} \rightarrow v_e$ level crossing
- phase difference between ν and $\overline{\nu}$ due to matter effect

Compensation due to r=2

- $\Phi(v_{\mu}) \times P_{\mu e} = \Phi(v_{\mu}) \times \sin^2\theta_{23}P_{ee}$
- $\Phi(v_e) \times (1-P_{ee})$

RIUMF

- $r=\Phi(v_{\mu})/\Phi(v_e)=2$, $sin^2\theta_{23}=0.5$, they cancel: no effect!
 - r=2 for E < 3GeV
 - even cancels matter effect
- Some cases that avoid r=2
 - E_v>3GeV (r>2) : mass hierarchy
 - $sin\theta_{23} \neq 0.5$: constrained by T2K
 - CP violation!

T (CP) violaiton

• Oscillogram formula (arXiv:0804.1466)

$$\begin{split} P_{\mu e} &= c_{23}^2 |A_{e\tilde{2}}|^2 + s_{23}^2 |A_{e\tilde{3}}|^2 + 2 \, s_{23} \, c_{23} \, \operatorname{Re}(e^{-i\delta}A_{e\tilde{2}}^*A_{e\tilde{3}}) \,, \\ P_{\tau e} &= s_{23}^2 |A_{e\tilde{2}}|^2 + c_{23}^2 |A_{e\tilde{3}}|^2 - 2 \, s_{23} \, c_{23} \, \operatorname{Re}(e^{-i\delta}A_{e\tilde{2}}^*A_{e\tilde{3}}) \,, \end{split}$$

$$1-P_{ee} = P_{\mu e}(-\delta) + P_{\tau e}(-\delta) = |A_{e2}|^2 + |A_{e3}|^2$$

$$2xP_{\mu e}(\delta) - (1-P_{ee}) \sim Re(e^{i\delta}A^*_{e2}A_{e3})$$

• $v_{\mu} \rightarrow v_{e}$ and $v_{e} \rightarrow v_{\mu}$ differs by T (CP) violation

- All the oscillation due to Δ_{12} cancels including matter effects due to r=2, except for T violation
- Opposit sign for $\overline{\nu}$, but luckily we mainly see ν_e : $\sigma(\nu_{\mu} \rightarrow \nu_e) \sim 5 \sigma(\overline{\nu_{\mu}} \rightarrow \overline{\nu_e})$
- Very sensitive test of T-violation !

&TRIUMF

15

arXiv:1207.5694

• $P_{\mu e}$ =10–30% with significant CP violation, $P_{\mu e}$ (CP)~10–20%, for E_{ν} =400–800MeV (E_e=300–700MeV)

CTRIUMF

Oscillation through the earth

arXiv:1406.1407

1-3GeV region is also sensitive (4th-7th max of Δ_{13})

arXiv:1406.1407

- Super-PINGU
 - 2.2Mton-year
 - 4-year of HK
- ∆N/√N
- Good sensitivity
 - E<1GeV
 - cosθ<-0.6

Slow dependence in energy and zenith angle: modest subGeV angular and energy resolution is OK

TRIUMF

- Neutrino flux (astro-ph/0611266)
 - Primary cosmic ray flux (AMS, BESS, etc.)
 - Hadron production (HARP, etc.): dominant flux error
 - Follow-up of the HARP experiment is needed!
 - Geomagnetic field effect (east-west effect)
- Ratio mesurements reduce systematics to 2-3%
 - v_e/v_μ
 - up/down, up/horizontal
- Neutrino cross section
 - nuPRISM solves this $E_v=400-800$ MeV range

astro-ph/0611266

Normalization error is ~12%

TRIUMF

Sources of flux uncertainties

> 200 GeV/n 2.74 ± 0.03

 2.64 ± 0.04

TRIUMF

Hadron production

0.5

0

XLAB

0.5 X LAB

CTRIUMF

22

astro-ph/0611266

- Systematics cancels for the ratios:
 - v_e/v_µ (~1%)
 - charge asymmetry in v_e/v_e need improvement
 - hadron production study like HARP helps
 - up/down (~2-5%) up/horizontal (~2-3%)
 - up/horizontal~2-3%
 - East-west effect to test geomagnetic field

&TRIUMF SUBGEV 1R e-like (p<400MeV/c)

subGeV 1R e-like (p>400MeV/c)

WTRIUMF

25

$U_{e1}U_{\mu1}^{*}+U_{e2}U_{\mu2}^{*}+U_{e3}U_{\mu3}^{*}=0$

- a,b,c can be determined by disappearance measurements
 - amplitude of $\nu_{\mu} {\rightarrow} \nu_{e}$ appearance also constrains a+b
- α,β from LBL $\nu_{\mu} \rightarrow \nu_{e}$ appearance, γ from atm. $\nu_{\mu} \rightarrow \nu_{e}$
 - comparison between v and anti-v: phase changes signs
 - T2K/T2HK determines β
 - γ is determined by the 0.5–0.8GeV atm. $\nu_{\mu} {\rightarrow} \nu_{e}$
 - 1-3GeV atm. $v_{\mu} \rightarrow v_{e}$ helps separating $\beta(\Delta_{31})$ and $\alpha(\Delta_{23})$ terms

 ΔP_{CP} oscillogram

- Sub-GeV neutrino for CP study may be possible
 - Peak of atmospheric v event rate
 - Directional information available @ E> 0.4-0.5GeV
 - $r=\Phi(v_{\mu})/\Phi(v_e)=2$ cancels all the oscillation signal except for CP violation.
 - Large CP violation $\nu_{\mu} \! \rightarrow \! \nu_{e}$ (10–20%) possible at 400–800MeV
 - If Oscillation pattern is seen, it is likely CP violation!
 - v_{μ} disappearance ($|U_{\mu 1}| |U_{\mu 2}|$) is also possible
- Systematic errors can be handled by
 - taking ratios: up/horizontal, up/down, ν_{μ}/ν_{e}
 - hadron production studies (more precise HARP exp.)
 - Sub-GeV neutrino cross section study is essential (nuPRISM)

- We could access all the sides and angles of the lepton unitarity triangle: HyperK leads this!
- The current SK data may already be sensitive to these parameters:
 - $\cos\theta_{v} < -0.4$ for sub-GeV v_{e} (hint already there?)
 - Further improvements:

TRIUMF

- improved fiTQun reconstruction
- zoom in to sensitive energy region: $E_e=0.3-0.7 \text{GeV}$
- anti-neutrino study: opposite CP, good angular resolution
- update oscillation simulation Prob3++
- vPRISM sub-GeV cross section study and precise hadron production study like HARP would be essential for this precision measurement.

Energy and angular resolution

Sub-GeV e 0dcy

29

RTRIUMF