DAQ

Yoshinari Hayato (ICRR)

Procedure to design a DAQ system

- $\checkmark\,$ Characteristics of (analog) signal from the photo sensor
- ✓ Requirements from physics
 - Charge resolution
 - Charge dynamic range
 - Timing resolution
 - Allowed dead time etc...
- ✓ Number of photo sensors
 - Possible combinations of
 - 1. Digitization technology
 - 2. Communication (bus) technology
 - 3. Sizes of intermediate buffers

Another constraints

Power consumption

Size of the circuit boards (form factor)

- Characteristics of (analog) signal from the photo sensor HPD? or PMT?
- ✓ Requirements from physics
 - Charge resolution
 - Charge dynamic range
 - Timing resolution
 - Allowed dead time etc...
 - Signal digitization ~ possible options
 - QTC + TDC
 - ~ similar to SK
 - FADC (with shaper)

R&D ~ Evaluation of the performance

has been started.

✓ Number of photo sensors

10k ~ 20k / unit detector (compartment)

- ✓ Another constraints
 - Electronics modules have to be located under the water? Water tight chassis
 Signal connection method under the water
 (Water tight connectors)
 - Electronics outside of water : Long cable (up to ~ 150m) Signal degradation Cabling route and method (Signal connection method under the water)
 - Timing synchronization

Reference clock & counter distributions

- Stability ("re-initialization" or "reset" is not allowed for a week ~ months)
- Cost

- 1) Evaluation of the digitization methods
 - 1) FADC (100 ~ 250 MHz) + shaper
 - 2) QTC (developed for SK QBEE)+ FPGA based TDC (used in g-2 experiment)

Check

timing and charge resolution charge dynamic range

and

evaluate feasibility including cost estimation.

- Evaluate communication methods (data transfer)
 SiTCP (standard TCP/IP protocol)
 Rapid IO
- 3) Study reference clock & counter distribution methods
- 4) Evaluate water tight chassis
- 5) R&D of water tight connections (incl. cables and connectors)

R&D status of QTC + FPGA based TDC option

Availability of QTC chips

QTC (CLC101EF) : Charge to time converter ASIC

custom ASIC by ICRR & Iwatsu

We have spare chips for SK : Borrow them for R&D.

Process rule : 0.35 μm (CMOS)

- Expected to be available for several years from now. There seems to exist industrial demands of this process. (If the process rule is changed, need to re-design.)
 - Possible re-production of the same chip.

R&D status of QTC + FPGA based TDC option

http://www-ppd.fnal.gov/EEDOffice-W/Projects/ckm/comadc/LowPowerWUTDC paper11c.pdf

Ed Kearns (BU)

R&D status of QTC + FPGA based TDC option

Hyper-K Electronics R&D with U.S.-Japan Program

Direct upgrade path from current SK electronics "QBEE"

- QTC chip by Iwatsu (ADC)
- TDC chip by KEK ⇒ FPGA-based TDC by Fermilab
- 10 Mb/s Ethernet readout by Boston \Rightarrow upgrade to 100 Mb/s or Gb

Prototype circuit designed to test integration and performance of ADC and TDC - delivered 1/16/2015

Custom circuit with QTC

Ed Kearns (BU)

+

Large detector ~ longer trigger window & event window

Gate width ~ 4 * V(Height)²+(Diameter)² (ns) For Super-Kamiokande, trigger window ~ 200ns. For Hyper-Kamiokande (new designs) trigger window ~ 400 ~ 500 ns.

Diameter

Why width of trigger / event window matters?

Trigger efficiency, fake event rate Energy resolution Vertex resolution

Effect of (dark) noise may be non-negligible

1MeV corresponds to ~ 6 hits for SK (40% coverage)

Current lowest threshold in SK (SLE trigger) ~ 34 hits 34 hits ~ 10 (dark hits) + 24 hits (signal) 24 hits / sqrt (10) ~ 7.6 *Much higher than noise fluctuations* 24 hits ~ 6 (hits / MeV) * 4 (MeV)

Assumption : HK # of sensors **15 k** Noise (dark) rate **10 kHz**

Window

500ns

→ 15k (sensors) * 10kHz * 500ns ~ 75 hits

1MeV corresponds to ~ 3 hits for 20% coverage equivalent Assuming 8MeV threshold 75 hits (noise) + 24 hits (signal) = 99 hits 24 hits / sqrt(75) = 2.7

- May exist fake events from noise.
- For energy reconstruction, window could be 10 ~ 50ns (after TOF subtraction). But noise hits may affect resolutions.

Amount of data from the detector (before applying trigger)

Assumption : HK

of sensors15 kNoise (dark) rate10 kHz

15k (sensors) * 10kHz ~ 0.15 Ghits / sec / detector ~ 2.4 GBytes / sec / detector

of hits from μ : 100 Hz (*worst* case) * 15k (sensors)

~ 0.015 Ghits / sec / detector
 ~ 0.24 GBytes / sec / detector

~ 10 times smaller than dark noise hits