Exotic Oscillations Searches at HK: Sterile Neutrinos and Lorentz Violation

> Alex Himmel, Duke HK Collaboration Meeting January 29th, 2015

Lorentz Violation and Sterile Neutrinos

- Searches for exotic oscillations mixed with standard 3-flavor oscillations
- Lorentz violation:
 L and *LE* oscillations
- Sterile neutrinos:
 - Fast oscillations at short distances
 - Sterile matter effect at long distances

Sensitivity Studies

- Presenting sensitivity studies to non-standard oscillations based on analyses in SK.
- Scaling SK-II MC sensitivities to:
 - 10 years of livetime
 - 560/22.6 for FC/PC (scale by mass)
 - 14.4 for Up- μ (scale by area)
- Constrain 3-flavor oscillation parameters based on external measurements:
 - Errors included as uncertainties
 - Sources:
 - T2K 2014 PRL ν_{μ} disappearance for θ_{23} , Δm^2_{23}
 - SK Solar for θ_{12} , Δm^2_{12}
 - PDG weighted average for θ_{13}

Sterile Neutrinos

Alex Himmel

4

Not so simple...

- With only 1 sterile neutrino, should see three correlated signatures:
 - $-v_e$ appearance
 - $-v_e$ disappearance
 - ν_{μ} disappearance

$$\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$

$$\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)$$

$$\sin^2 2\theta_{\mu \mu} = 4|U_{\mu 4}|^2(1-|U_{\mu 4}|^2)$$

- No evidence yet of v_{μ} disappearance
 - Creates tension in global fits $\frac{2}{5}$ Models with additional
- Models with additional neutrinos tried
 - No consensus yet

Alex Himmel

Super-K Sterile Model

- A fully generic sterile model is difficult computationally
 - Cannot calculate both active (v_e) and sterile (NC) matter effects together
- So, we need to perform 2 different fits:

No-v _e Fit	Sterile Vacuum Fit	
- Fit for $ U_{\tau 4} ^2 + U_{\mu 4} ^2$	- Fit for $ U_{\mu4} ^2$ only	
- NC matter effects only	- v_e matter effects only	
- Required for $ U_{\tau 4} ^2$	- Most accurate $ U_{\mu4} ^2$ limit	
- Over-constrains $ U_{\mu 4} ^2$	- No $ U_{\tau4} ^2$ limit	

No-v_e Fit

• The v_{μ} survival probability (3+1):

$$P_{\mu\mu} = \left(1 - |U_{\mu4}|^2\right)^2 P_{\mu\mu}^{(2)} + |U_{\mu4}|^4$$

$$H^{(2)} = H_{sm}^{(2)} + H_s^{(2)} :$$

= $\frac{\Delta m_{31}^2}{4E} \begin{pmatrix} -\cos 2\theta_{23} & \sin 2\theta_{23} \\ \sin 2\theta_{23} & \cos 2\theta_{23} \end{pmatrix} \pm \frac{G_F N_n}{\sqrt{2}} \begin{pmatrix} |\tilde{U}_{s2}|^2 & \tilde{U}_{s2}^* \tilde{U}_{s3} \\ \tilde{U}_{s2} \tilde{U}_{s3}^* & |\tilde{U}_{s3}|^2 \end{pmatrix}$

- 2-level system is the benefit of decoupling v_e 's from oscillations
- \tilde{U}_{si} can be written in terms of $|U_{\tau 4}|^2$ and $|U_{\mu 4}|^2$ in a 3+1 framework

No-v_e Oscillogram

Example Zenith Distributions

- Most sensitive samples

 Energies ~10 GeV
- Less disappearance at long path-lengths

Up-going events

- Systematic errors fit to both hypotheses
 - Large differences in oscillation probability reduced by systematic errors

Alex Himmel

No-v_e Fit Results

Sterile Vacuum Fit

• The v_{μ} survival probability in 3+1:

$$P_{\mu\mu} = \left(1 - |U_{\mu4}|^2\right)^2 P_{\mu\mu}^{(3)} + |U_{\mu4}|^4$$

- Here, $P^{(3)}$ is just the standard 3-flavor oscillation probability
 - Includes v_e matter effects get *e*-like sample normalization right
 - Does not include $|U_{\tau 4}|^2$

Sterile Vacuum Oscillations vs. L/E

Sterile Vacuum Fit Results

99% $|U_{\mu4}|^2$ Sensitivity SK: 0.038 HK: 0.029

Improvement with HK is marginal.

Analysis is dominated by systematic errors on flu and crosssection normalization.

Lorentz Invariance

- A fundamental symmetry in QFT and general relativity, but small violations predicted in some models
 - Discrete spacetime structure
 - Spacetime foam
- The Standard Model Extension (SME)
 - A QFT with all the properties of the standard model which adds parameters to allow all possible LV terms
- Tested in a wide variety of contexts, including other neutrino experiments
 - MINOS, Double Chooz, LSND, MiniBooNE...

Standard Model Extension

• Focusing on the terms which just affect $v \rightarrow v$ oscillation probabilities

– Other terms generate $\nu \rightarrow anti-\nu$ transitions

Neutrino Oscillations with SME $H = U\Delta U^{\dagger} + V_e + H_{LV}$

$$H_{LV} = \begin{pmatrix} 0 & a_{e\mu}^{T} & a_{e\tau}^{T} \\ (a_{e\mu}^{T})^{*} & 0 & a_{\mu\tau}^{T} \\ (a_{e\tau}^{T})^{*} & (a_{\mu\tau}^{T})^{*} & 0 \end{pmatrix} - \frac{4E}{3} \begin{pmatrix} 0 & c_{e\mu}^{TT} & c_{e\tau}^{TT} \\ (c_{e\mu}^{TT})^{*} & 0 & c_{\mu\tau}^{TT} \\ (c_{e\tau}^{TT})^{*} & (c_{\mu\tau}^{TT})^{*} & 0 \end{pmatrix}$$

- Previous experiments used 1 of 2 approximations:
 - The short-baseline approximation where there are only *LV* oscillations
 - The perturbative approximation where H_{LV} is assumed to be small.
- Neither is appropriate for SK
 - 30% of our events fail the perturbative conditions
- We use, for the first time, the full diagonalization of the Hamiltonian to calculate oscillation probabilities.

TT

Lorentz Violation

LV Sensitivity

• Limits improve by a factor of 1.8-3.6 relative to SK sensitivity

- sqrt(14.4×10 years / 13 years) = 3.3

• Improvements are as expected: incremental on the scale of these searches.

Conclusions

- Sensitivity studies to non-standard oscillations performed by increasing SK-II lifetime for existing SK studies.
- Sterile neutrino search:
 - Improvement in $|U_{\tau 4}|^2$ limit thanks to increased PC statistics
 - Marginal improvement in $|U_{\mu4}|^2$ limit since that is systematically limited
- Lorentz violation search:
 - Improvements of a factor of 2-3
 - Consistent with increase in Up- μ statistics.

Backups

No- v_e Fit in 3+N

• The 2-level system in 3+N

$$H^{(2)} = H_{\rm SM} \pm \frac{G_F N_n}{\sqrt{2}} \sum_{\alpha} \begin{pmatrix} |\tilde{U}_{\alpha 2}|^2 & \tilde{U}_{\alpha 2}^* \tilde{U}_{\alpha 3} \\ \tilde{U}_{\alpha 2} \tilde{U}_{\alpha 3}^* & |\tilde{U}_{\alpha 2}|^2 \end{pmatrix} \\ H_s(A_s, \theta_s)$$

- Extend to multiple sterile neutrinos with a sum over sterile species α
- Because it is a 2-level system, any number of sterile parameters reduce to 3: $A_{s'} \theta_{s'} |U_{\mu 4}|^2$
- We also make the results of this fit available in these parameters.

Sterile Vacuum Fit in 3+N

• The v_{μ} survival probability in 3+*N*:

0.2

10

L/E (km/GeV)

 10^{3}

 10^{4}

 Correspondence is not exact in constant term but that term is second-order and much harder to observe

Sterile Vacuum Results

- Best fit: $|U_{\mu4}|^2 = 0.016$
 - Shown as solid line at right
 - Dashed line shows fit without minimizing systematics
- All of the χ^2 improvement at best fit is in systematics.
 - Fit is systematically limited

Systematic	No Steriles	Best Fit
v_{μ}/v_e flux, <i>E</i> < 1 GeV	-0.52σ	-0.07σ
$ u_{\mu}/v_{e}$ flux, <i>E</i> 1-10 GeV	-0.50σ	-0.11σ
CCQE ν_{μ}/ν_{e}	0.38σ	-0.01σ

Alex Himmel

Sterile Vacuum Fit Results

Extending to 3+N Models: Hydrogen-Earth

$$P_{\mu\mu} = (1 - d_{\mu})^2 P_{\mu\mu}^{(3)}$$

$$(1-d_{\mu})^2 P^{(3)}_{\mu\mu} +$$

Substitute sum for single value

$$|U_{\mu4}|^2 \rightarrow d_{\mu} = \sum_{i>4} |U_{\mu i}|^2$$

- Exact in first term, approximate in the second
- SK is *much* more sensitive to the first term than the second

 $|U_{\mu i}|^4$

Fit for $|U_{\mu4}|^2$

- Signature is extra disappearance in all μ samples
 - Correlated change at all energies, all $\cos\theta_z$
 - $-\mu/e$ flux uncertainty an important systematic
- Bug was in this fit NC events were not oscillating
 Sensitivity improved by a few percent

Fit for $|U_{\tau 4}|^2$ (with $|U_{\mu 4}|^2$)

- NC Matter effects create shape distortion in PC/Up- μ zenith distribution
 - Less disappearance in most upward bins, still have extra disappearance in downward bins

$3+N \approx 3+1$ for Super K

$$P_{\mu\mu} = \left(1 - |U_{\mu4}|^2\right)^2 P_{\mu\mu}^0 + \sum_{i>4} |U_{\mu i}|^4$$

- The first sterile term:
 - Controls extra disappearance
 - Is the same for any Nsterile
- The second sterile term:
 - Fills in the minima
 - Varies for Nsterile
- Our experiment is *much* more sensitive to first term
 - Beam experiments, focusing on the first oscillation dip, *are* sensitive to the second term.

When is Δm_{41}^2 no longer "large"?

- When do the oscillations no longer appear fast?
 - This will be the worst at short L's and large E's, so lets focus on Up- μ with cos $\theta_{\rm z}$ > -0.1
 - Loop through all these events and calculate the mean of sin²($\Delta m^2 L/4E$) for various Δm^2
- Doing this, the approximation is valid down to $\sim 0.8 \text{ eV}^2$

When is Δm_{41}^2 no longer "large"?

- However, the limit on $|U_{\mu4}|^2$ is driven by the low $|U_{\tau4}|^2$ region.
 - In this region, the dominant samples are Sub-GeV muons
 - Almost no power comes from Up– μ
- For these samples, the "large" assumption is ~always valid so $|U_{\mu4}|^2$ limit really is a vertical line in Δm^2 to a good approximation

