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Lorentz Violation and Sterile Neutrinos

)

e Searches for exotic
oscillations mixed with o5 L oscillations
standard 3-flavor
oscillations

 [Lorentz violation:

— L and LE oscillations

Sterile matter | J 108
effects

e Sterile neutrinos: 05

— Fast oscillations at
short distances

coso,
o
o

— Sterile matter effect at
long distances




Sensitivity Studies

Presenting sensitivity studies to non-standard
oscillations based on analyses in SK.

Scaling SK-II MC sensitivities to:

— 10 years of livetime

— 560/22.6 for FC/PC (scale by mass)
— 14.4 for Up-u (scale by area)

Constrain 3-flavor oscillation parameters based on
external measurements:

— Errors included as uncertainties

— Sources:
» T2K 2014 PRL v, disappearance for 8,5, Am?,;
 SK Solar for 8,,, Am?,,

* PDG weighted average for 0,
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Not so simple...

* With only 1 sterile neutrino, should see three
correlated signatures:

— V. appearance sin® 20 = 4|Uea|*|Upua]”

sin® 20e. = 4|Uws|?(1 — |Uos|?)
sin® 20, = 4|U 14|

— v, disappearance

— v, disappearance
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Super-K Sterile Model

* A fully generic sterile model is difficult
computationally

— Cannot calculate both active (v,) and sterile (NC)
matter effects together

* So, we need to perform 2 different fits:

No-v, Fit Sterile Vacuum Fit
— Fitfor |U 4|*+ |U 4| — Fitfor |U ,|* only
— NC matter effects only — v, matter effects only
— Required for |U_,|? — Most accurate |U, | limit

— Over-constrains |U 4| — No |U_,|? limit



* The v, survival probability (3+1):

No-v, Fit
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* 2-level system is the benefit of decoupling v,’s from

oscillations

« U, can be written in terms of |U_,|? and U 4l* ina3+1

framework




No-v, Oscillogram
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Example Zenith Distributions

Most sensitive samples
— Energies ~10 GeV

Less disappearance at long
path-lengths

— Up-going events

Systematic errors fit to
both hypotheses
— Large differences in
oscillation probability

reduced by systematic
errors
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No-v, Fit Results

99% |U_,|* Sensitivity
SK: 0.164
HK: 0.066

L
Significant improvement —*

with the increase in PC
statistics.
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Sterile Vacuum Fit

* The v, survival probability in 3+1:

P = (1= 0u?)" P + U,/

« Here, P3) is just the standard 3-flavor oscillation
probability

— Includes v, matter effects - get e-like sample
normalization right

— Does not include |U_,|?
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Sterile Vacuum Oscillations vs. L/E
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Sterile Vacuu

99% |U 4| Sensitivity
SK: 0.038
HK: 0.029

10

Improvement with HK
is marginal.

Amj, (eV?)

Analysis is dominated
by systematic errors
on flu and cross-
section normalization.
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Lorentz Invariance

A fundamental symmetry in QFT and
general relativity, but small violations
predicted in some models

— Discrete spacetime structure

— Spacetime foam

The Standard Model Extension (SME)

— A QFT with all the properties of the
standard model which adds parameters to
allow all possible LV terms

Tested in a wide variety of contexts,
including other neutrino experiments

— MINOS, Double Chooz, LSND, MiniBooNE...
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Standard Model Extension

Coeflicient Unit d CPT Oscillation Effect
— Isotropic
SK = agﬁ GeV 3 odd x L
8 czg - 4 even x LE
— Directional
Prev. X v z i . .
Exp. — Anp,00p8,058 GeV 3 odd sidereal variation
cgfﬁX : CXBZ e - 4 even sidereal variation

* Focusing on the terms which just affect v—v
oscillation probabilities

— Other terms generate v—anti-v transitions
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Neutrino Oscillations with SME
H=UAU"' +V.+ Hrvy

0 ) agﬂ al AE 0 ) cgjp clt
R N N A I I N
CANNCAN () )

* Previous experiments used 1 of 2 approximations:
— The short-baseline approximation where there are only LV oscillations
— The perturbative approximation where H, , is assumed to be small.

* Neither is appropriate for SK
— 30% of our events fail the perturbative conditions

* We use, for the first time, the full diagonalization of the Hamiltonian
to calculate oscillation probabilities.
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Path Length (km)

Lorentz Violation
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LV Sensitivity

R(a") 4x1020 8x10-20 ] R(c™) 1x1019 1x1017
(GeV) MiniBooNE  Double Chooz . MiniBooNE  Double Chooz
v
SK: 2x10723 4x1023 6x102%4 27%x1026 1x1024 5x10-27
HK: 7x102% 2x1023 2x1024 6x1027 7x1025 2x1027

* Limits improve by a factor of 1.8-3.6 relative to
SK sensitivity

—sqrt(14.4x10 years / 13 years) = 3.3

* Improvements are as expected: incremental on
the scale of these searches.
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Conclusions

* Sensitivity studies to non-standard oscillations
performed by increasing SK-II lifetime for
existing SK studies.

e Sterile neutrino search:

#— Improvement in |U_,|? limit thanks to increased PC
statistics

— Marginal improvement in |U,,|? limit since that is
systematically limited

* Lorentz violation search:
— Improvements of a factor of 2-3
— Consistent with increase in Up-u statistics.
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No-v, Fit in 3+N

The 2-level system in 3+N

GrN, Ua2)?  UZU,
H<2>:HSM_ - Z( ‘ ;]y \?fQny’)

l

HS(AS,QS)

Extend to multiple sterile neutrinos with a sum over sterile species a

Because it is a 2-level system, any number of sterile parameters
reduceto 3: A, 0, |U ,|

We also make the results of this fit available in these parameters.



Sterile Vacuum Fit in 3+N

* The v, survival probability in 3+N:
P = (1= di)" P) + Z Uaal”

\

@ 0.8)
 Very similar to the 3+1 >10 o
- 2 T
formula with |U 4|* = d, .

2 0.4f

» Correspondence is not exact :

in constant term but that 0'2;_
term is second-order and | RN . 3 ”
much harder to observe 10 _ 100 10010
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Sterile Vacuum Results

Best fit: |U,,|*=0.016
— Shown as solid line at right

— Dashed line shows fit without
minimizing systematics

All of the y? improvement at
best fit is in systematics.

— Fitis systematically limited
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Sterile Vacuum Fit Results
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Extending to 3+N Models:
Hydrogen-Earth

Pup = (1 - dﬂ)z‘Pﬁ(bi) T Z Uil

1>4
. . 1. 0.2
Substitute sum for single value

|Uu4|2 — dy, :Z|Uui|2 >5F o
124 0.0

Exact in first term, '
approximate in the second 01
SK is much more sensitive to 0.2

10" 1 102

the first term than the second Energy (é?eV)
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Sub-GeV u-like 1-dcy e
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* Signature is extra disappearance in all ¢ samples
— Correlated change at all energies, all cos0O,
— u/e flux uncertainty an important systematic

* Bug was in this fit - NC events were not oscillating
— Sensitivity improved by a few percent
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* NC Matter effects create shape distortion in PC/Up-u
zenith distribution

— Less disappearance in most upward bins, still have extra
disappearance in downward bins
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3+N = 3+1 for Super K

Pup = (1 — ‘Uu4|2)2

0
Puu+

* The first sterile term:
— Controls extra disappearance
— Is the same for any Nsterile

e The second sterile term:
— Fills in the minima
— Varies for Nsterile

* QOur experiment is much more
sensitive to first term
— Beam experiments, focusing on

the first oscillation dip, are
sensitive to the second term.
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. 2 (" )
When is Am<,, no longer “large”?

 When do the oscillations no longer appear fast?

— This will be the worst at short L’s and large E’s, so lets focus on Up-u
with cos 6, > -0.1

— Loop through all these events and calculate the mean of sin?(Am?L /4E)
for various Am?

 Doing this, the approximation is valid down to ~0.8 eV?

N LI | ! ! LI L ! ! ! |
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. 2 (" )
When is Am<,, no longer “large

However, the limit on |U 4| is driven by the low |U_,|* region.
— In this region, the dominant samples are Sub-GeV muons

— Almost no power comes from Up-u

For these samples, the “large” assumption is ~always valid so |U |
limit really is a vertical line in Am? to a good approximation
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