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Overview

e Brief Reminder of NuPRISM Concept

e H., Measurement Problem

e Constraining E, with Linear Combinations
e Plans for other measurements
e CPV & ve, sterile-v, cross sections

e NuPRISM-Lite: Current Status

e Next Steps




Why Hyper-K Needs NuPRISM:
The B, Measurement Problem

e It is now believed that large E biases can
exists due to nuclear and non-nuclear effects
(e.g. multinucleon interactions)
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e Models are very difficult to produce and
show large disagreements
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e Without a data-driven constraint, this will
likely be a dominant uncertainty for TRHK

e Typical near detectors likely cannot provide
a sufficient constraint
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Reminder: NuPRISM Detector Concept
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Reminder: NuPRISM Detector Concept
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Reminder: NuPRISM Detector Concept

Take linear
combinations!
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Reminder: NuPRISM Detector Concept
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Benefits of a Monoenergetic Beam

e First ever measurements of NC
events with E.

— Linear Combination

—— 1.7° Off-axis Flux
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Gaussian: Mean=0.9, RMS=0.11 GeV

e Much better constraints on
NC oscillation backgrounds

e FHirst ever “correct”
measurements of CC events
with B,

Linear Combination, 0.9 GeV Mean

e No longer rely on final state
particles to determine Ey

—— 1 Ring u Event Spectrum
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e It is now possible to separate I eure
the various components of j o NEUTNomaE
single-y events! :
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e This is also very interesting to
the nuclear physics community




How We Typically Perform
Oscillation Analyses

Nuclear model Predicted by
poorly understood
Observed far models

: CCQE: u + , : Simultaneousl
detector signal: QE: i +p -\ g—" y

(p unobserved) : » 121 Gev/et 045 constrain flux

1-ring muon events e G and cross section

\ pr 120 n NTM&/e 30 | shape parameters with
\ Ep 2C 25 MeV 9 shape

. . ccn+: IJ- + N 8 "+ \ SF 12C ¢ 0 (off) 1 (on) | shape a near detector

Ak B CC Other shape ND280 all 0.0 0.40 | shape
T (p, 3 unObsewed) ) Pion-less A Decay all 0.0 0.2 | shape
s : CCQE E1 0<E, <15 1.0 norm
. L . TE Ly . CCQE E2 1.5< E, <35 1.0 norm
’ s . %= : Composed/ CCDIS: ”_ + x CCQE E3 E,>35 1.0 norm
T g _E‘ g ‘ Of: (x unobsewed) CClr E1 0< FE, <25 1.15 norm
\ — L ' CClrm E2 E,>25 1.0 norm

CC Coh all 1.0 .C norm

NC17° all norm
NCm™: 1 + n | N But the near
(TI' mISIdentlﬁ.ed, NC other norm and far ﬂuxe s
n unobserved) 7 7
o ) | i are different!

3 Multinucleon Feed-down on Oscillated Flux Multinucleon Feed-down, ND280 Flux

x10

SK Oscillated Flux
Ev— Erec Smearing
(Ev=0.8 GeV)

ND280 Flux

psdsiid Goal of NuPRISM is to replace
this procedure with a data
measurement (to first order)




NuPRISM in Oscillation Analyses
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NuPRISM in Oscillation Analyses
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NuPRISM in Oscillation Analyses
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NuPRISM in Oscillation Analyses
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NuPRISM in Oscillation Ana
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Reproduce Super-K Oscillation
Pattern at a Near Detector!
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SK oscillated flux

Linear combination of
vPRISM off-axis fluxes
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HBree Distribution

e For now, collapse 2D muon p,0 Previously, the entire
distribution into 1D E,.. plot predicted E... distribution

at Super-K was based on

e Notice the NuPRISM and SK Bl cxtrapolation

distributions disagree

e Ifthey didn’t, we would have no 35 — E,.. SK with Osc
Cross section systematic errors | — E,.. Linear Comb
(modulo variations in the flux) | | |

o Differences are from detector
acceptance & resolution, and
imperfect flux fit

e Super-K prediction is largely based
on the directly-measured NuPRISM
muon kinematics!

e Now, only a small amount of model
extrapolation is needed

e TZK measurements are now
largely independent of cross
section modeling!



vPRISM v, Disappearance Constraint

Standard T2K
Analysis

vPRISM
Analysis

Bias = 0.3%
800 RMS = 3.6%

ff§

Entries
Mean -0.0002917
RMS 0.005395

Martini Model

(with Nieves
final states) [

Bias =-2.9%
400 RMS =3.2% |

L

Nieves Model

201 -005 0 005 0.1
SiN“0y, . - SIN‘O

Bias =-0.06%

. RMS =1.0%
Nominal

Fake Experiments

0.05 0.1 _
: Nominal sin“6., - Nieves sind,,

e v S
-0.1 -0.05 0 0.05
* t
SIN“Opy .y - SINO

Nominal
e TFake data studies show the bias in 013 is Entries 300
reduced from 4.83%/3.6% to 1.8%/1.0% sk Mean -0.000475
RMS 0.006014
e More importantly, this is now based on a data m |
constraint, rather than a model-based guess : final states)
e Expect the NuPRISM constraints to get ol Emsevaex

significantly better as additional constraints ° o0
are implemented (very conservative errors)



Sterile Neutrino Analysis

o To compute first sensitivities, make several conservative assumptions
e No constraint from the existing near detector (ND280)

o FHEventually, a powerful 2-detector constraint will be incorporated
e No constraints on background processes

e nuPRISM should provide control samples for all of the major
backgrounds to impose strong data-driven constraints

e No combined v, + v fit

e MiniBooNE results would not have been possible without
normalizing the ve signal to the observed v, spectrum

e Assume Super-K detector efficiencies and resolutions

e nuPRISM has smaller phototubes, and should perform better closer
to the wall (which is important, since the diameter is much smaller)

e Significant increase in ve statistics is expected

o With such conservative assumptions, is a measurement still possible?



(Very) Conservative
oterile-v Sensitivities

90% C.L. Contours
5 5: — No Systs

| — Flux Systs
|— All Systs
|— MiniBooNE

&)

e Can already exclude currently allowed MiniBooN.
regions at 90% C.L.

e Much better limits expected as the analysis improves



NnuPRISM CPV (ve Appearance)
Q step approach:

Step 1: Measure Super-K ve response Step 2: Measure nuPRISM v, response
with nuPRISM v, with nuPRISM v,

-
19

vPRISM v, (2.5-4.0°)
—— SK Beam+Osc. v,

vPRISM v, Linear Combo.
vPRISM v, Linear Combo. |

Ifo(ve) /o(vy)=1 -
this fit is all ]
that is needed

High-E is above
Measure nuonacceptang

o(ve) /o(vi)

IIII|IIII|IIII|IIII|IIII>G

2 2.5
E, (GeV)

OO

e Step 1 isthe ve version of the v, disappearance analysis

e Step & uses only nuPRISM to measure 6(ve)/o(Vvy)

e High energy disagreement is above muon acceptance

e These plots show flux*E,, so difference is 1-ring y events is smaller




Anti-neutrinos

TEK can switch between v-mode and
anti-v-mode running by switching the
beam focusing

Anti-v-mode analysis is the same as for
neutrinos

e Except with a much larger neutrino
contamination

Can use v-mode v, data to construct the
vy background in the anti-v-mode anti-
vy data

e Statistical separation of neutrinos
from anti-neutrinos, rather than
event-by-event sign selection

After subtracting neutrino background,
standard NuPRISM oscillation analyses
can be applied to anti-neutrinos

=1 _00_2.()0 —— VvPRISM Anti-v Mode v, Flux

—— vPRISM v, Linear Combo.

vPRISM Anti-v Mode v,, Flux

vPRISM v, Linear Combo.




v Cross Section Measurements

Example MEC |

event separation [N — NEUT CCQE

— np-nh (Nieves et al.)
—— CCQE+np-nh

e NMono-energetic neutrino
beams are ideal for
measuring neutrino cross
sections

e (Can provide a strong
constraint on new
models

o TZ2K v, disappearance is
subject to large NCm*
uncertainties

P .

e ] existing
measurement

.
—h

e NuPRISM can place a
strong constraint on

this process vs Hy

e
25
o)
|
2 2 g

500 1000 1500 2000 500
Reconstructed v, energy [MeV]




NuPRI M Lite

e (Goal is to construct the first l\TuPRISM detector during the TRK

era

e Moveable detector that sa.mpl’es full Off axis range in 5 steps

o After J-PARC beam upgrade (2018‘?) TEK will double its
POT

e Provides an ideal environment for Hyper-K detector RéD

e Detector can be lifted out of the water for maintenance or
replacements

e Provides a mechanism to grow the Japanese neutrino physics
community toward Hyper-K

e Large, engaged, international user base will be needed

Cirrent Transition A
Project huure
Fermilab NOVA * Shortﬁi‘selme * LBNF

???
J-PARC TK * NuPRISM® * Hyper-K




Timescales

e The TRK 2 km detector provides a

e NuPRISM construction time is
faster

e Same pit depth as the 2km
detector, but no excavation of
a large cavern at the bottom of
the pit

e Smaller instrumented volume
e No LAr or MRD detector

e < 3yeartimescale from approval
to data taking

e (oal is to start data taking in time
for the J-PARC 700kW beam
(2018%)

e Ideally, ground breaking would

start in 2016

Preparation B
Excavation

]
MRD detector preparation [ NG
]

Liquid Argon Assembly
MRD Installation B

Year 2

Year 4

Water tank construction
Liquid Argon installation
Surface facilities

PMT module preparation
Ligid Argon (surface)
Liquid Argon (Cryogenic)
Water system

Water Ch. (PMT etc)
MRD electronics

L.Ar. filling and purifying |
Water filling and purifying B

B Facility construction

B Detector construction (on site)

B Detector construction (off site, i.e., @J-PARC)
B Pure water and liquid Argon production

TIK
2km detector




Current Status

e A Letter of Interest (L.ol) was
submitted to the J-PARC PAC
in November 2014

Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline

= a’PX]'V: 1412'8086 S.Bhadra,?* A.Blondel,® S. Bordoni,® A.Bravar,® C.Bronner,? J. Caravaca Rodriguez,® M. Dziewiecki,??
T.Feusels,! G.A.Fiorentini Aguirre,?* M. Friend,* * L. Haegel,®> M. Hartz,® 2?2 R. Henderson,?? T.Ishida,* *

° Tota;]. COSt iS $ 15‘$2OM M. Ishitsuka,?° C.K.Jung,''"T A.C.Kaboth,® H. Kakuno,?® H.Kamano,'®> A.Konaka,?? Y.Kudenko,” *

M. Kuze,? T. Lindner,?? K. Mahn,'® J.F. Martin,?! J. Marzec,?®> K.S. McFarland,'® S. Nakayama,'®:
T. Nakaya,” 8 S. Nakamura,'? Y. Nishimura,'® A.Rychter,?? F.Sanchez,® T.Sato,'? M. Scott,?? T. Sekiguchi,* *
M. Shiozawa,'® 8 T.Sumiyoshi,?® R. Tacik,'* 2?2 H.K. Tanaka,'® T H.A. Tanaka,''$ S. Tobayama,' M. Vagins,® 2

. Chea‘per tha’n Fermi]'a’b J. Vo, D. Wark,'® M.O. Wascko,® M.J. Wilking,!! S. Yen,??> M. Yokoyama,'”* and M. Ziembicki??
Short_baseline program (The nuPRISM Collaboration)

Y University of British Columbia, Department of Physics and Astronomy, Vancowver, British Columbia, Canada
2 University of California, Irvine, Department of Physics and Astronomy, Irvine, California, U.S.A.
3 . . . . .
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" Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
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Y University of Regina, Department of Physics, Regina, Saskatchewan, Canada
deteCtOP fOP HypeP-K R&D 15 University of Rochester, Department of Physics and Astronomy, Rochester, New York, U.S.A.
$STFC, Rutherford Appleton Laboratory, Harwell Ozford, and Daresbury Laboratory, Warrington, United Kingdom
Y7 University of Tokyo, Department of Physics, Tokyo, Japan
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) If tlmesca’les are 19 University of Tokyo, Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, Kashiwa, Japan
t.b]_ i th- 20 Tokyo Institute of Technology, Department of Physics, Tokyo, Japan
COmpa, 1 e, ]-S money Caln 2 University of Toronto, Department of Physics, Toronto, Ontario, Canada
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TRIUMF, Vancouver, British Columbia, Canada
be used fOP NUPRISM 23 Warsaw University of Technology, Institute of Radioelectronics, Warsaw, Poland
2 York University, Department of Physics and Astronomy, Toronto, Ontario, Canada
25 Tokyo Metropolitan University, Department of Physics, Tokyo, Japan

e Hven if initial testing is
done elsewhere (e.8.
EGADs), can transfer to
NuPRISM later



Next Steps

e Full proposal will be submitted to the J-PARC PAC, July 15-17
e Significant progress has been made in detector simulation (next talk)
e However, reconstruction is not yet available

e Simple tuning of PMT QE and water attenuation was not sufficient for 8”
PMT's

e Full tuning of PMT pulse shape, angular acceptance, and time PDFs are
now underway

e Same procedure as for Hyper-K (see fiTQun talk)
e Aiming for significant progress in physics analyses for the full proposal
e Full v, disappearance analysis with estimate of all systematic errors

e (Complete ve appearance analysis with CP violation constraint

e Including anti-neutrinos if wrong-sign background constraint can be
finished

e Planning a weeklong workshop in mid-March

e Intensive week of analysis work (very few talks)



summary

e To reach ultimate Hyper-K precision, it will be necessary to constrain E,
reconstruction

e NuPRISM provides the only data-driven mechanism for achieving this
e NuPRISM can also measure many other important physical processes

e Sterile neutrinos and a variety of unique cross section measurements
e It isimportant to build the first version now! (NuPRISM-Lite)

e A lot of interesting physics in the next 5 years!

e Ideal tool for Hyper-K Ré&D

e Intermediate project to expand Hyper-K involvement

e We need a detailed understanding of NuPRISM to ensure it will achieve
Hyper-K goals (calibration requirements, etc.)

e A full proposal will be submitted to J-PARC in June
e Additional collaborators are welcome!

e (Consider attending the NuPRISM meeting on Sunday and/or
the week-long workshop in March
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Effect on TRK v, Disappearance

Create “fake data” samples with flux and cross
section variations

e With and without multi-nucleon events

For each fake data set, full TRK near/far
oscillation fit is performed

e For each variation, plot difference with and
without multi-nucleon events

For Nieves model, “average bias” (RMS) = 3.6%

For Martini model, mean bias = -2.9%, RMS =
3.8%

e TFull systematic =V (2.9%*+3.2%2) = 4.8%

e This would be one of the largest systematic
uncertainties

But this is just a comparison of & models

e How much larger could the actual systematic
uncertainty be?

We need a data-driven constraint!

Fake Experiments

D
o
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N
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01005 0

Nieves Model -

Bias = 0.3%
RMS = 3.6%

~201-005 0 005 0.1

i n i
SIN“Oy4u1in = SN Onominal

_ Hacked-up
: DMartini Model

Bias =-2.9%
RMS = 3.2%

0.05 0.1
i . 2
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Interpreting Linear Combinations

o After vPRISM linear combination:

v Energy Spectrum

e (CC-v, spectrum should reproduce
oscillated far detector spectrum:

Good! Flux < 1 GeV is dominated by " decay
e NGC-v, backgrounds will also appear '|'|'+ —> |.|+ Vp

“oscillated”: |% + —

Bad! € Ve Vu

e NC events are unaffected by v, produced in 2-body decay

oscillations at Super-K

ve produced in 3-body decay
e NC events must be subtracted at both . : ,
Vi experience more off-axis affect

Super-K and nuPRISM

e Introduces cross section model
dependence

v — v, Flux — v, Flux
M —v,Fluxx 100 — v, Flux x 100

e However, NC backgrounds can be very well
measured using mono-energetic beams

e Significantly reduces cross section model |
dependence %

e In current analysis (see later slides), NC
constraint has not yet been applied

e Conservative errors




Pion Multiplicity Throw
1.15

10

More on Beam Errors|

e Haven’t we just replaced unknown cross section
errors with unknown flux errors

1.1F — SK MC (Random Throw)/Nominal

—
<
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=
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n

e Yes! But only relative flux errors are important!

e (Cancelation exist between nuPRISM and far
detector variations

Proton Beam -1 mm Y Shift
1.15

10

¢ Normalization uncertainties will cancel in the
vPRISM analysis

SK Prediction Rat

e (Cancelations persist, even for the vPRISM linear
combination

e Shape errors are most important

e For scale, 10% variation near the dip means

~ ° ° . y Horn Current +5 kA Change
1% variation in sin<2023

1.15

p—
p—

e Although this region is dominated by feed down

e Full flux variations are reasonable

SK Prediction Ratio

e No constraint used (yet) from existing near
detector!




nuPRISM Technique

e Fluxis now the same at the near and far
detector

SK oscillated flux

e Can just measure observed muonp & Linear combination of
vPRISM off-axis fluxes

vs 0 for any oscillated flux

=

e Same signal selection as used at Super-K [

e Single, muon-like ring

02040608 1 1214 16 18 2

e Signal events are defined as all true E. (GeV)

single-ring, muon-like events

e A muon above Cherenkov threshold

F ' . N EZO

o All other particles below Cherenkov
threshold

e {Signal includes CCQE, multi-nucleon,
CCrr*, ete.

¢ No need to make individual
measurements of each process and +E :
extrapolate to T2K flux | ___ Muon Momentum (MeVic)




Reminder: Analysis Concept

4 0° Off-axis Flux

2.5° Off-axis Flux ' (add)

Arb. Norm.

(subtract)

Reproduction
of SK flux

o Different slices of nuPRISM are combined
to reproduce an oscillated SK flux

 Flux only! No cross sections or :
detector response at this point ' 1.5° Off-axis Flux

e For simplicity, only 3 slices are shown here

e The default analysis uses 60 slices




Super-K Flux
vPRISM Flux Fit

Am-*czo=2.41e-3
sin<023=0.48
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e Fit for coefficients of 60 off-axis vPRISM slices to match a chosen Super-K oscillated
spectrum

e Fit between 400 MeV and & GeV
e Repeat this fit for every set of oscillation parameters
e Notice disagreement at low energy
e The most off-axis flux (4°) peaks at 380 MeV, so difficult to fit lower energies

e (Could extend detector further off-axis, but the low energy region is not very
important to extract oscillation physics (e.g. nuclear feed-down not an issue)



NnuPRISM Prediction for Super-K

e Efficiency correction is still needed for both vPRISM and Super-K

e vPRISM and Super-K have different detector geometries

e Particles penetrate ID wall (and get vetoed) more often in nuPRISM

e Particle ID degrades near the tank wall

e The efficiency correction is performed in muon momentum and angle
to be as model independent as possible

e This should be nearly a pure geometry correction

e For now, fit in Super-K Ere; distribution (in future, just use muon p,0)

OAangles

Efelc(,j (Am§27 ‘923) — Z

p,0




Systematic Covariance Matrices

Analysis is performed in unequal-sized E,.c bins

Flux and XSec uncertainty
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e Fractional uncertainties are shown (normalized to bin content)

e At high energies, vVPRISM provides no constraint
e Detector acceptance: all muons exit the inner detector
e Subject to full flux & cross section uncertainties

e Bin 3 (600-700 MeV) has a 6% uncertainty
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v-Fluxes

Oscillated SK flux

Fitted vPRISM flux
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« sin?02z=0.61
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Sterile Neutrinos

10! &

1km,1200MeV
1km,850MeV

1km,600MeV

~1km is a good
distance for sterile
v search at T2K
beam energy

- F999%CL, 2 dof

e The 1 km baseline is ideal for sterile neutrinos

e Many repeated measurements for varying energy spectra

e (Continuously sample a variety of L/E values




Detector Location:
Energy spectrum Ratio

vy Flux Ratio (SK/ND) vy Flux Ratio Error (SK/ND)

SK/280 m
SK/1 km
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e At 280 m, the flux shape has 20-30% differences below 1 GeV
e Uncertainty in the ratio is noticeably larger, but mostly above 1 GeV

e The difference between 1km and 2km is small in both shape and shape
uncertainty



Other Design Considerations

Off-axis Fluxes

Civil construction is expensive!
e Smaller hole = More affordable
Off-axis angle range (i.e. E, range)
e On-axis flux peaks at 1.2 GeV
e 4° (6°) off-axis peaks at “380 (T 260) MeV
e Beam points 3.63° below horizon, so get ~4° for free
Distance to target
e Atl (1.2) km,need 54 (65) m deep pit to span 1°-4°
o Event pileup must be manageable (see later slides)
Tank diameter
e Determines maximum muon contained
e 41m (+FVcut) for 1 GeV/c muon
e PID degrades near the wall
e Important for selecting e-like events
e Larger = more stats, but also more pileup
e Larger =more PMTs = more expensive

e How much outer detector is necessary?

Off-axis Angle (°)

Fraction of Emitted
Cherenkov Light

Muon Range




Event Pileup

e Full GEANT4 simulation of water and
surrounding sand

e Using T2K flux and neut cross section
model

e 8 beam bunches per spill, separated by
670 ns with a width of 27 ns (FWHM)

e 41% chance of in-bunch OD activity during
an ID-contained event

e Want to avoid vetoing only on OD light
(i.e. using scintillator panels)

e 17% of bunches have ID activity from
more than 1 interaction

e 10% of these have no OD activity

: . ID, OD and intermediate
e Need careful reconstruction studies volumes

e (but multi-ring reconstruction at
Super-K works very well)

Pileup Rates at 1 km Look Acceptable!



Detector Frame

Initial proposal for ID/OD frame and lifting
mechanism has been produced

Careful consideration given to water flow
rate while in motion

4 towers allow the entire detector to be
lifted out of the water tank for maintenance

{/,f—-ifting Tower (x4)

1%

~Track Joint
' / A Sf,:',l, g

~Track {X4)

’1_ Cable ‘:_X “)

Cover




e For the ID, both 8” and 5”

PMTs are being considered Ha,ma,matsu E Stim&tes

¢ Perha’p S Wlth hlgh- Name Type QE% | Quantity | Price/PMT | Total Cost | Delivery Year
quantum-efficiency (HQE) 5” PMT R6594-WPassy | 25 | 8000 103,500 828M
coating 5” PMT HQE 35 5714 123,700 707M
8” PMT R5912-WPassy 25 3215 143,000 460M
P Also Consj_dering HypeP_K_ 8” PMT HQE 35 2296 170,500 391M
style hYbI’id 8” HPD HQE | R12112-WPmodule | 35 2296 264,000 606M 2014
35 2296 236,500 543M 2018
photodetectors (HPD) 35 2296 209,000 480M 2016
e Initial Hamamatsu estimate 20” PMT HQE | R12860-WPassy | 30 508 604,500 307M 2014
for basic 8” RE91R PMT is TR
much more expensive that 20” HPD HQE | R12850-WPmodule | 30 508 715,000 363M 2014
assumed for 2km detector 30 | 808 | 617500 | 3l4M 2015
30 508 520,000 264M 2016
e TUS $4.3M for 3’000 PMTs 20” HPD HQE | R12850-WPmodule | 30 140 770,000 108M 2014
30 140 665,000 93M 2015
e UK /Texa,s company BETEL / 30 140 560,000 78M 2016
ADIT ha;S also been Consulted 20” PMT R12860-WPassy 5{0) 140 651,000 91M 2014
30 140 616,000 86M 2015
° Ba;S].C 877 PMT IS $lr7|75 30 140 581,000 81M 2016

e No HQE or HPD option
available



Physics Capabilities

Direct measurement of the

relationship between lepton Fraction of electrons misIDed as muons
o . o 5

kinematics and neutrino energy

Miss-ID rate [%]

e No longer rely solely on models

41 detector (like Super-K)

Target material is water (like Super-K)

100 200 300 400 500 600 700 800 900 1000
Visible energy [MeV]

e (Can directly measure NC
backgrounds

Very good e/u separation

Can make a precise measurement of
beam ve

® ﬂo baCkground iS We].]. Sepa:ra:ted 100 200 300 400 500 600 700 800 900 1000

Visible energy [MeV]

e (Can also constrain ve cross sections




TRK Uncertainties

ND280 Analysis | ND280 SK sin°20,.=0.1 | sin“20_=0.0
Data Selection

No Constraint 22.6% 18.3%
No Constraint  -- New 26.9% 22.2%

Factor 2.4
2012 method* Runs 12 OId 5.7% 8.7% > Fronieiil e
2012 method** Runs 1-3  Old 5.0% 8.5% Improved SK

2012 method  Runs 1-3  New 4.9% 6.5% " rejection
New ND280

2012 method*™** Runs 1-3 New 4.7% 6.1% ’ reconstruction,

2013 method  Runs 1-3  New 3.5% 5.2% € selection, binning

Factor 2.2 more
2013 method Runs 1-4 New 3.0% 4.9% ) ND280 POT

*Results presented at Neutrino 2012 conference
**Published results, arXiv:1304.0841v2
***Update to NEUT tuning with MiniBooNE data

These are very nice constraints!
(if the current parametrization is to be believed)




