Summary and Prospect of software session

2015/01/30 M.Miura 6th HK open meeting

1. Current status of software group

- Convener: M.Miura (ICRR), C. Walter (Duke),
 F. Di Lodovico (QMUL)
- Member: 51 persons
 - Japan: 18
 - ≻ US: 10
 - ≻ UK: 12
 - Canada: 8
- Regular meeting: Thursday (JST)/Wednesday (US) in every two weeks.

2. WCSim

Modularize photo-sensor part and digitizer part.

Can prepare several photo-sensor options.
 Available for DAQ+electronics studies.

• WCSim is ready to study optimization of detector setup.

3. Reconstruction tools

• fiTQun

Tuned scattering table and solve momentum shift problem.

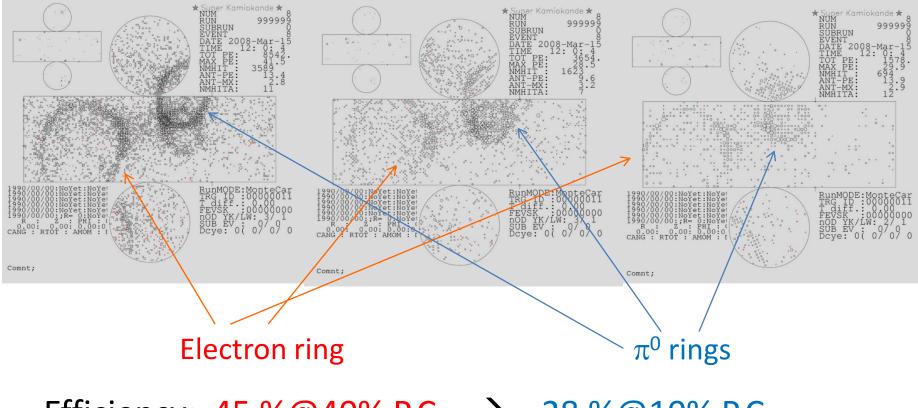
- > It works reasonable for default HK setup.
- Bonsai-fit
 - > 1st version for WCSim can work.
 - Performance was a little bit worse than SK-II. Need more study
- May need tune for each detector setup.

4. Computing

- Release the latest version of software (WCSim v1.2.0, fiTQun v4r2).
- Generate Hyper-K (base design) beam events and reconstruct by fiTQun:
 - ➢ v mode: 100 k
 - ➤ anti-v mode: 100k

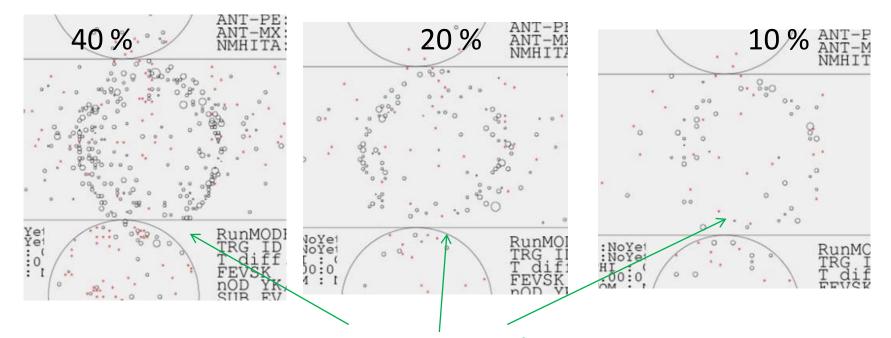
Please check and give feedback \rightarrow physics group.

- Getting ready for mass production.
- Developing generalized neutrino event generator, adopt to various geometries, flux models, cross section models.


5. Prospect

- New candidates of detector setup from cavity&tank group
 - Cylindrical shape, like SK.
 - ➢ No segmentation.
 - ➢ Reduce photo-coverage 20%/1.6→~13%
 - >Use smaller photo-sensor, 20 inch \rightarrow 12~13 inch

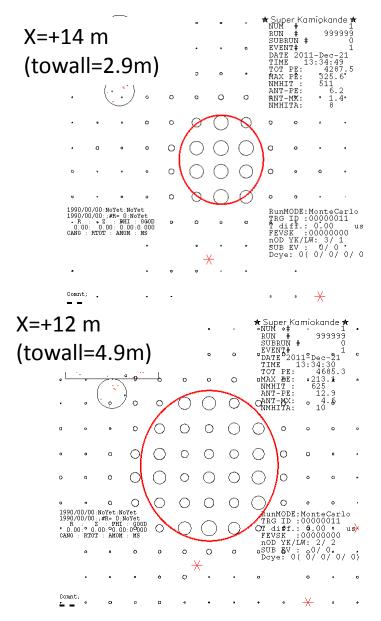
(Reminder: shown in NNN2010)

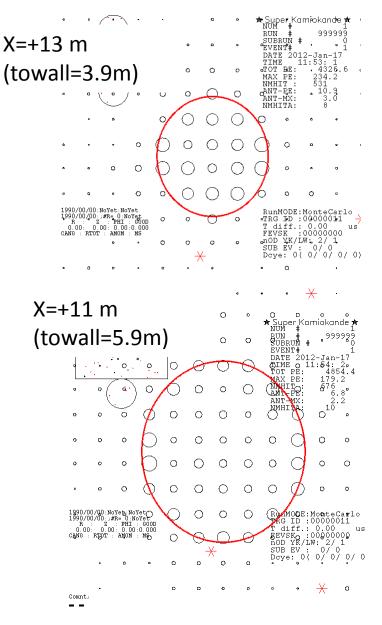

I have studied effects of photo-coverage (using 20inch PMT, change PMT density) on proton decay analysis (based on skdetsim&apfit).

40% $p \rightarrow e^{+} \pi^{0} MC$ 20% 10%

Efficiency: 45 % @40% P.C. $\rightarrow 28 \% @10\%$ P.C.

 $p \rightarrow v K^+ : K^+ \rightarrow v \mu^+$


 μ ring (236 MeV/c, Evis~50 MeV)


Efficiency: 8.2%@40% P.C. \rightarrow 3.6 %@10% P.C.

PMT density has large impact on physics.

NOTE: In these study, just change number of 20 inch PMT. Never studied seriously to use smaller PMTs keeping number of PMT.

Display of 10 % case (e 1GeV/c)

What we should compare

① Shape of tank: egg-shape vs cylinder

- Guess almost same performance.
- Simple cylinder shape is preferred by software.
- WCSim, fiTQun, and Bonsaifit are ready for this study.

2 Detector size

- Egg shape: 5 compartments vs 1 large tank
- Cylinder: 100x69m, 80x64m 60x74m
- WCSim, fiTQun, and Bonsaifit are ready for this study.

- ③ Photo-sensor: 20inch vs 12inch HPD(high QE) with same photo-coverage as 20inch case.
 - WCSim: Need prepare another photo-sensor, but easy.
 - fiTQun: Need re-tune scatter photon distribution.
 - Bonsaifit: It may work (?)

How to study

- Study basic performance (vertex, momentum, PID, ring counting) by particle gun. Then choose shape, volume, and photo-sensor configuration.
- Generate physics sample for candidate configuration.

Time line

		Feb	Mar	Apr	May	Jun	Jul
①Shape study		← →			S	Gen	7
②Size study					Select	lerate	Next H
③Sensor study				Gene&Recon	cont		HK m
	WCSim	Make 12'HP	D		configuration	physics	meeting
	fiTQun		ine for 12'		ation	sam	βr
	Bonsai	Tur	ne for 12'			samples	