

TITUS: A Next-Generation Near Detector for the HK Long-Baseline Programme

Matthew Malek (for the TITUS Working Group)

2015 January 31 6th Open Meeting for the Hyper-Kamiokande Project

Outline

TITUS: The Tokai Intermediate Tank with Unoscillated Spectrum

- Introduction & detector description
- Physics goals
- Software: Simulations & reconstruction
- External backgrounds
- Physics analyses:
 - Event selection
 - δ_{CP} sensitivity
 - Cross-sections
 - Sterile analyses
 - Supernova neutrinos

TITUS: A First Look

TITUS Overview

- Proposed new near detector for HK beam programme
- To be located ~2 km from J-PARC neutrino beam
- Baseline design includes:
 - ~2 ktonne water Cherenkov tank
 - 0.1% Gadolinium-doping
 - Partly enclosed by Muon Range Detector
 - See next talk by M. Rayner

- Same target nuclei as Hyper-K – H₂O (and maybe Gd?)
- Nearly same target angle and v energy spectrum
- Many systematics cancel out in Far/Near ratio

TITUS Overview

- Proposed new near detector for HK beam programme
- To be located ~2 km from J-PARC neutrino beam
- Baseline design includes:
 - ~2 ktonne water Cherenkov tank
 - 0.1% Gadolinium-doping
 - Partly enclosed by Muon Range Detector
 - See next talk by M. Rayner

- Likely add-ons / upgrades currently being investigated include:
 - Magnetised MRD (1.5 Tesla field) for charge-sign reconstruction
 - Large Area Picosecond Photo-Detectors (LAPPDs) for high precision timing
 - High quantum efficiency PMTs (HQE PMTs)
- Future possible add-ons / upgrades include:
 - Water-based liquid scintillator
 - TPC inside an aluminium coil air core magnet
 - ??? (New ideas welcome!)

Design Optimisation

- Like Hyper-Kamiokande, TITUS design not yet final.
- Open questions include:
 - Location
 - 1.8 km? 2 km? Other?
 - In line with Tochibora? Mozumi?
 - Off-axis angle?
 - Photosensors (see next two slides)
 - Size?
 - Coverage?
 - Type? (PMTs? HQE? LAPPDs?)
 - Muon Range Detector (see next talk)
 - Coverage?
 - Magnetised?

2015 Jan 31

TITUS Photosensors

- **K**
- 12 basic configurations being tested for cost, reconstruction, etc.
 - Four PMT sizes: 20" PMT, 12" PMT, 10" PMT, 8" PMT
 - Three coverages: 20% (HK), 30%, 40% (SK)

ALSO: Option to add sparser grid of LAPPDs to any of these configurations

TITUS Photosensors

- How many PMTs do we need?
 - For base design (11 m diameter; 22 m length), TITUS surface area is ~10⁷ cm² (1.9 x 10⁶ cm² endcaps + 7.6 x 10⁶ cm² barrel)

	8 inch	10 inch	12 inch	20 inch
40%	12,000	7,500	5,200	1,900
30%	9,000	5,600	3,900	1,400
20%	6,000	3,750	2,600	950

Default configuration for studies presented in this talk is:

- 40% photocathode coverage
- 20" PMTs

2015 Jan 31

TITUS Physics Programme

Measure intrinsic ve component of J-PARC beam

– Dominant background to $\nu_{\rm e}$ appearance measurement

Cross-section measurements

- Inclusive NC π^0 is sub-dominant background to v_e appearance measurement
- Can measure differential cross-sections as a function of neutron number
- CCQE vs. CC-inclusive

Neutron multiplicity measurements

- Provide input to neutrino generator models
- Use v / \overline{v} separation to remove contamination from "wrong-sign" neutrinos
- Distinguish CCQE from other modes
- Enhance Hyper-K proton decay searches via precise BG measurements

Sterile neutrino searches

- Compare NC rates at 280 m & 2 km to look for v_{active} disappearance

Supernova burst neutrinos

- Approx. 650 events expected from SN burst (570 \overline{v}_e IBD + 80 v_e ES)
- Evaluating feasibility as an independent alarm for the SNEWS network

Simulation Software

Currently using TWO different simulation / reconstruction packages:

- WChSandBox is a new fast simulation package for WC detectors)
 - Uses native reconstruction tools (RecoLite)
- WCSim also being used with fiTQun and table-based reconstructions
 - Needs integration of Gd-capture and addition of LAPPDs

WChSandBox: CCQE (1Rµ)

Display by

A. Finch

Reconstruction

- **K**
- Low-energy reconstruction via 'RecoLite' (W. Ma & M. Malek)
 - Vertex based on 4-hit algorithm (similar to BONSAI @ SK & quad-fitter @ SNO)
 - Energy based on total number of hit PMTs

Can be run with:

- PMTs (2.5 ns resolution)
- LAPPDs (0.1 ns resolution)
- Hybrid mode (not shown)

For each 4-hit combination of PMTs, calculate vertex. Evaluate relative goodness to select best vertex:

2015 Jan 31

Reconstruction

High-energy reconstruction via fiTQun (N. Prouse)

Momentum reconstruction for 20" PMTs

Currently experiencing biases in vertex & momentum reconstruction.

NOT seen using fiTQun in Hyper-K.

Perhaps we need a fiTQun tuned specifically for TITUS?

Present work uses a hybrid data sample:

- Low energy:
 - WChSandBox simulation + RecoLite
- High energy:
 - WCSim + fiTQun table-based reconstruction
 - Provided by S. Tobayama; tables based on fiTQun at Super-K

External Backgrounds

• Two main sources:

- Cosmic ray μ

- Can produce spallation neutrons serious BG to Gd-based studies
- At TITUS depth, estimated event rate of ~15 kHz for spallation n
- Currently working on spallation cut following cosmic ray muon events
 - Need reduction power of $\sim 10^{-2-3}$ (should be achievable)
- Sand μ
 - Produced from interactions in sand & rock volume around TITUS
 - Can result in photons, neutrons, muons, electrons, pions, etc.
 - Ongoing studies by J. Łagoda & R. Terri (see next slide)

Neutrons from Sand μ

Top view

Photons from Sand μ

Top view

TITUS Event Selection

Event selection studies (D. Hadley) using table-based reconstuction:

- Uses SK fiTQun efficiencies for $1R\mu \& 1Re$ events

- Large muon contamination in electron sample at *Dwall* < 200 cm
- Low efficiency at *towall* < 200 cm
- Will need to re-optimise cuts when a real high-E reconstruction is available

1Rµ Sample

1Rµ Sample w/ n-tagging

2015 Jan 31

Neutron Tagging

• Including primary and secondary interactions:

- Can institute either 'binary' or 'counting' method of neutron tagging
- How does this affect δ_{CP} fits?

Fit Results

- Pseudo-experiment with true $\delta CP = 0$
- Uncertainty in δ_{CP} evaluated with Bayesian method
- Adding binary neutron tagging gives marked improved
- Full counting of neutron multiplicity does not appear to be much more helpful.
- For full details of fit (incl. uncertainties & likelihood) see Dave's talk from pre-mtg

Oscillation Sensitivity

- Full oscillation sensitivity studies are currently underway
 - Uses joint fit of ND280 + TITUS + Hyper-Kamiokande:

Cross-Sections (NC\pi^{\circ})

- $\pi^0 \rightarrow \gamma \gamma$ is a significant background for: $\underline{\mathfrak{S}}$
 - ν_e appearance in HK
 - intrinsic ν_e meas. in near detectors
- Currently investigating π⁰ reconstruction in TITUS tank (W. Ma & M. Malek)
- Nominal selection based on K2K-style cuts:
 - Fully contained
 - 2-ring ee-like events
 - FV: 200 t (w/ 300 cm Dwall cut)

Initial studies only!

Further improvement should be possible with refined cuts, improved photon selection, etc

2015 Jan 31

Sterile Neutrinos

Sterile signal could manifest at TITUS via ve disappearance (relative to ND280)

Selection being optimised by P. Lasorak; Fit development and validation also in progress

2015 Jan 31

Supernova Neutrinos

- **N V PER**
- Initial studies comparing theoretical models are underway (S. Cartright & M. Lawe)
- Interfacing with Generalised Neutrino Vector Generator developed by C. Kachulis

- Plan to generate vectors for both TITUS and Hyper-K
- Will simulate full SN events (incl. cosmic BG) to evaluate feasibility as SN alarm

Muon Range Detector

- All results presented so far use only the TITUS WC tank!
- For nominal TITUS design, 18% of μ are **not** fully contained
 - Momentum can be measured if they stop in the MRD [Fe + scintillator layers]
 - Adding a magnetic field (1.5 Tesla) allows us to measure curvature to get:
 - Momentum for $\boldsymbol{\mu}$ that penetrate MRD
 - Charge sign reconstruction for all events, based on direction of curvature

Toroidal **B** field to prevent leakage into WC tank

Red = Right-sign muons exiting Blue = Wrong-sign muons exiting Green = Right-sign muons contained Purple = Wrong-sign muons contained

Conclusions

- Hyper-Kamiokande's increased statistics require smaller systematics
 - New near detector(s) necessary for HK beam programme
- TITUS is new proposal for an HK near detector
 - Uses elements of older proposals (e.g., WC tank at 2 km distance)
 - Incorporates new ideas:
 - Gd-loaded water
 - First magnetised MRD to be used with WC
 - Enhanced photosenors (LAPPDs)

Initial simulation studies look promising

- v / \overline{v} separation via neutron tagging
- Enhanced CCQE sample using neutron multiplicity
- NC π^0 measurement
- Intrinsic ve measurement
- Oscillation sensitivity studies in progress; improvements look likely

Other physics studies underway

- Sterile neutrinos: Compare NC & CC rates at 280 m & 2 km to look for ν_{active} disappearance
- Supernova burst simulations to evaluate feasibility of using TITUS as an independent SN alarm

Thank you for listening!

Titus Flavius: Emperor of Rome (79 – 81)

Titus Andronicus: A Play by William Shakespeare (1594)

TITUS: Gd-doped WC + MRD (2020?)

BACK-UP SLIDES

2015 Jan 31

WChSandBox Basics

- **N K**
- WChSandBox is a new fast simulation package for WC detectors
- Beta version released in April 2014
- Primary package developers are M. Wetstein (University of Chicago) and M. Malek (Imperial)
- Significant contributions from also from:
 - R. Terri (Queen Mary)
 - T. Gregoire (Imperial)
 - W. Ma (Imperial)

WChSandBox Basics

- WChSandBox is a new fast simulation package for WC detectors
- Uses basic Geant detector objects
- Inherits water model (*i.e.*, scattering, absorption, etc.) from WCSim (which inherited in turn from Super-Kamiokande)
- Neutron simulations being developed in collaboration with other experiments:
 - ANNIE
 - WATCHMAN
- Native reconstruction tools (high & low E) being developed
 - RecoLite

Cosmic BG Sources

- **N K**
- Use numbers from PRC 72, 025807 for the cosmic ray muon flux (and induced neutrino rates)
- Primary numbers:
 - μ : 6 x 10 $^{5}\,\mu$ / m 2 / h
 - n: 7.2 x 10^6 events / ktonne / day
- Scale these numbers to per spill & per bunch values
 - Assume that:
 - μ scales with cross-sectional area
 - n scales with volume
- Can ignore atmospheric neutrino background
 - Approx. 1 / day, based on scaling Super-Kamiokande rate

1Re Sample

2015 Jan 31

Physics Benefits of Gd

- "Wrong sign" neutrino discrimination
 - From T2K sensitivity studies, we know that running a mix of neutrino mode & antineutrino mode enhances δ_{CP} sensitivity
 - Antineutrino mode has greater contamination from neutrinos
 - With Gd-doping, can separate v from \overline{v} in TITUS to understand contamination, characterize beam, and reduce systematics for Hyper-K
- Neutron capture can be used to separate CCQE from CC MEC and CC Other, to enhance purity of CCQE in $CC0\pi$ sample:
 - $\nu\mu$ CCQE: 0 neutrons
 - − ν_{μ} CC MEC: 0.2 neutrons (average): ν_{μ} + (n-n) → μ^{-} + p + n
 - $\overline{\nu}_{\mu}$ CCQE: 1 neutron
 - $\overline{\nu}_{\mu}$ CC MEC: 1.8 neutrons (average):

 $\bar{\nu}_{\mu}$ + (p-n) $\rightarrow \mu^{+}$ + n + n (~80%) $\bar{\nu}_{\mu}$ + (p-p) $\rightarrow \mu^{+}$ + p + n (~10%)

Neutron Multiplicity

- Studies of neutron capture demonstrate the power that gadolinium-doping adds to TITUS
- Ingredients in these figures:
 - 90% of neutrons capture on Gd
 - Neutrons from secondary interactions are included
- Clear differences can be seen between v_{μ} and \overline{v}_{μ} ; backgrounds from CC MEC and CC Other are reduced
- Enhanced sample purities:
 - ν_{μ} CCQE: 36% \rightarrow 67% with n = 0 requirement
 - $\overline{\nu}_{\mu}$ CCQE: 63% \rightarrow 88% with n = 1 requirement

Beam Mode & Selection	CC QE	CC MEC	CC 1π	CC Other	NC	'Wrong-Sign' CC
νμ all	36%	10%	25%	18%	4%	7%
$\nu\mu$ with n = 0 (CCQE-enhanced)	67%	8%	9%	14%	2%	< 1%
$\nu\mu$ with n > 0 (CCQE-enhanced)	22%	10%	32%	20%	6%	10%
$\overline{\nu}_{\mu}$ all	63%	7%	5%	2%	3%	20%
$\overline{\nu}\mu$ with n = 0	27%	< 1%	< 1%	< 1%	10%	63%
$\overline{\nu}\mu$ with n = 1	88%	< 1%	1%	2%	< 1%	8%
$\overline{\nu}\mu$ with n > 1	57%	13%	8%	2%	2%	18%

N.B. Each sample (row) sums to 100%

Muons in the MRD

- Muons that escape the water tank enter the MRD
- Range within MRD provides μ momentum
- Example shown is 10,000 event sample in v-mode
 - Nearly no backwards exiting events
 - Most wrong-sign muons contained

