Electrical Machinery Room

ess Tunnel

A Magnetized Muon Range Detector for TITUS

Mark Rayner (Université de Genève) for TITUS 6th Open Meeting for the Hyper-Kamiokande Project 31 January 2015, Kavli IPMU, University of Tokyo, Kashiwa

N.B. Lots of work here by Etam Noah and Alain Blondel

There is a significant wrong-sign component in anti-neutrino mode

<u>A near detector with the right nucleus and the capacity to directly</u> <u>constrain the wrong-sign component is quite a rational proposition for a</u> <u>superbeam experiment focussed on CP violation</u>

Gadolinium is exciting, but somewhat untested, and not 100% efficient

A magnetized MRD can achieve very high charge reconstruction efficiencies

18% of muons escape the tank

red: mu- leave tank

NB Many interesting muons don't escape (The nature of a large detector, and indeed by design...)

Reconstructing the charge of long, high energy, tracks is easy

Let's optimize reconstruction in the interesting $E_v < 2$ GeV region

Compare χ^2 in the + and – hypotheses (well known from past experiments)

Reconstructing the charge of long, high energy, tracks is easy

Let's optimize reconstruction in the interesting $E_v < 2$ GeV region

Compare χ^2 in the + and – hypotheses (well known from past experiments)

$\begin{array}{l} \mbox{Muon kinematics of } \upsilon_{\mu} \ CC \\ \mbox{events entering the MRD} \end{array}$

 $0 \text{ GeV} < E_{v} < 0.6 \text{ GeV}$ $0.6 \text{ GeV} < E_{u} < 1.0 \text{ GeV}$ $1.0 \text{ GeV} < E_u < 1.5 \text{ GeV}$ **E**_u > **1.5 GeV**

Muon kinematics normal to the first MRD plane

Muon kinematics normal to the first MRD plane

Muon kinematics of v_{μ} CC events entering the MRD ZOOM to oscillation region

 $\begin{array}{l} 0 \; GeV < E_{\upsilon} < 0.6 \; GeV \\ 0.6 \; GeV < E_{\upsilon} < 1.0 \; GeV \\ 1.0 \; GeV < E_{\upsilon} < 1.5 \; GeV \\ E_{\upsilon} > 1.5 \; GeV \end{array}$

SIDF MR

1.5

Kinetic Energy T_u (GeV)

Muon kinematics normal to the first MRD plane

Muon kinematics normal to the first MRD plane

Multiple Scattering is the one unavoidable obstacle to charge reconstruction

In practice, however, track sampling resolution is just as big an effect

We can greatly improve the charge reconstruction of short tracks by including and optimizing a gap L between the initial few measurement planes

Reconstruction with just three 5cm magnetized planes (L=10cm)

muons which stop in or before the fourth iron plane

all muons with $E_{v} < 2 \text{ GeV}$

Estimated 94% charge reconstruction efficiency in the oscillation region Need to demonstrate this with a detailed Monte Carlo

We can take advantage of the symmetry along the z-axis

We can take advantage of the symmetry along the z-axis

We can take advantage of the symmetry along the z-axis

We can take advantage of the symmetry along the z-axis

Savings, and still reduced systematics on high-angle cross sections?

The cost of the end and one sixth of a side are now equal

muon range to include muons which exit the tank downstream

Rough, 'Ballpark' Cost Estimates

Magnetization of the MRD

Summary

There are three main benefits to adding an MRD to TITUS

1 Increased sample size *via* calorimetry by muon range

- Include muons which exit the tank but range out in MRD
- Possibility to save money by shrinking the tank, with same statistics?

2 Direct constraint on wrong-sign contamination

<u>Pro</u>: Well understood physics, high reconstruction efficiency <u>Con</u>: Sample limited to muons which exit the tank

3 Validation of gadolinium performance

- Gd is a relatively new analysis technique
- Cross-checking with **2** will give us the confidence to really exploit it
- The sensitivity of several options needs to be investigated
- We will learn from the Wagasci experience with a low-E magnetized MRD

Backup slides

The B2 experiment / 'WAGASCI'

And finally, a fascinating suggestion from Gabriella and Emilio: → CHORUS style toroidal air core magnets

Can neglect multiple scattering in air as $X_0 = 300$ m, compared to 1.8 cm in Fe

The front and back coils are 2.5 mm thick and present 5.6% z/X_0 each

CERN-PPE/94-176, 10 November 1994, F. Bergsma et al.

→ High efficiency and no energy threshold problem

ND280 upgrades: The AIDA baby-MIND and WAGASCI

Baby-MIND and TASD: H8 beamline in North Area

Could also be a practical demonstration of the TITUS MRD charge reconstruction

Contact: Etam Noah, University of Geneva

Option 1)

2 large coils – one upper, one lower coil each coil wound around half the height of the iron plate assembly,

Pros: field lines are "in principle" very uniform over a wide surface area,

Cons: coil assembly is large and difficult to manipulate. Integration of detector modules is challenging.

Option 2)

Each "half-plate" has its own coil **Pros:** Straightforward assembly of detector planes,

Cons: Need technical solution to wind coils.

Some numbers

18% of muons escape the tank

- ► Of these ³⁄₄ leave through through the sides
- But the sides have eight times the area of the end, and the event rate is much lower
- ► However a partial side MRD could be thinner as there are few high energy muons

Calculations predict good charge reconstruction for a TITUS end-MRD

- \blacktriangleright ~100% in the high energy tail (could test the ~80% efficient Gd method)
 - ► ~95% efficiency in the oscillation region to be demonstrated with full Monte Carlo!
- Optimum low-energy charge reconstruction at t = 5 cm iron plate thickness, but this is not a very sensitive parameter both θ_{MS} and θ_{B} increase with iron thickness

Charge reconstruction in a magnetized side-MRD is trickier

► The angle to the MRD normal vector is higher → reconstruction efficiency is lower Magnetizing the MRD is not trivial

- ► I suggest it would be ambitious to magnetize more than a portion of a side-MRD
- Gaps between plates may significantly increase power requirements
- ▶ Still in the process of being understood we can learn from the Wagasci experience
- ► Wagasci has CERN's support for design and construction and a timescale of ~ 1 year