### A 3D grid-like neutrino near detector with a water target, WAGASCI

A. Minamino (Kyoto Univ.) 6<sup>th</sup> Open Meeting for Hyper-K Project Jan. 31, 2015 @ Kavli IPMU, Kashiwa

- Unknowns in v cross-sec. for Hyper-K/J-PARC
  - Good model of Initial nuclear state
    - "Simple relativistic Fermi-Gas model", "Spectral function", ...
    - Existence of multi-nucleon v scattering (MEC)
      - models: Martini, Nieves, ...
    - Charged current  $1\pi$  production
    - Final state interactions within the nucleus
    - Pions' secondary interactions in the detector

Appropriate real data, well-defined control sample, is need to test the above unknowns.

- Unknowns in v cross-sec. for Hyper-K/J-PARC
   Good model of Initial nuclear state
  - "Simple relativistic Fermi-Gas model", "Spectral function", ...



spectral functions momentum distributions for different nuclei

SF has better agreement with electron scattering data.

- Unknowns in v cross-sec. for Hyper-K/J-PARC
  - Existence of multi-nucleon v scattering (MEC)
    - models: Martini, Nieves, ...



MEC models enhance the CCQE-like xsec around 1GeV. -> MiniBooNE Ma = 1.35

• Unknowns in  $\nu$  cross-sec. for Hyper-K/J-PARC – Charged current  $1\pi$  production





- μ is identified as μ-like ~ Invisible π
   Absorption of π
   π is below threshold
- $\pi$  is identified as  $\mu$ -like ~ Invisible  $\mu$   $\mu$  is below threshold

- Unknowns in v cross-sec. for Hyper-K/J-PARC
  - Final state interactions within the nucleus
  - Pions' secondary interactions in the detector



Pion cross section data on C

- Hyper-K
  - Neutrino target:  $H_2O$
  - $4\pi$  acceptance for charged particles
  - Charge ID is difficult
  - Cherenkov thresholds of charged particles in  $H_2O$ 
    - Muon: 118 MeV
    - Charged pions: 157 MeV
    - Proton: 1GeV

- Unknowns in v cross-sec. for Hyper-K/J-PARC
  - Good model of Initial nuclear state
    - "Simple relativistic Fermi-Gas model", "Spectral function", ...
    - Existence of multi-nucleon v scattering (MEC)
      - models: Martini, Nieves, ...
    - Charged current  $1\pi$  production
    - Final state interactions within the nucleus
    - Pions' secondary interactions in the detector

Appropriate real data, well-defined control sample, is need to test the above unknowns.

# Our proposal

- New H<sub>2</sub>O target near detector in UA1 magnet
  - H<sub>2</sub>O target → Same target nucleus as Hyper-K
  - Same  $v_{\mu}$  flux as Hyper-K  $4\pi$  acceptance Same phase space as Hyper-K

  - Lower momentum thre. than Cherenkov det., HK
  - Charge ID is possible
  - **Observables** 
    - Differential (Q<sup>2</sup> or ( $p_{\mu}$ ,  $\theta_{\mu}$ )) CC0 $\pi$  data w/ bin correlations
    - Differential ( $p_{\pi}$ ) CC1 $\pi$  data for non-QE BG estimation

### Our proposal

- 3D grid-like structure + H<sub>2</sub>O target for HK ND
  - x + grid + y + grid + ... layers
  - $4\pi$  angular acceptance for charged particles
  - Lower momentum thre. than Cherenkov detector
  - Charge identification is possible if operate in UA1 magnet
  - H<sub>2</sub>O(signal):CH(BG) = 79:21 (= 46:54 -> T2K ND280)





### **Current status**

# Water Grid And SCIntillator detector WAGASCI

### H<sub>2</sub>O/CH detector (3D grid-like structure)

### Box for Japanese sweets (Wagashi)





The project starts on August, 2013. Approved as a test experiment, T-59, at J-PARC PAC. 12

### **Project members**

- 8 institutes, 41 collaborators
  - Institute for Nuclear Research of the Russian Academy of Science
    - I. Ayzenberg, A. Izmaylov, I. Karpikov, M. Khabibullin, A. Khotjantsev, Y. Kudenko, S. Martynenko, A. Mefodiev, O. Mineev, T. Ovsjannikova, S. Suvorov, N. Yershov
  - KEK
    - T. Ishida, T. Kobayashi
  - Kyoto University
    - T. Hayashino, A.K. Ichikawa, A. Minamino, K. Nakamura, T. Nakaya, K. Yoshida
  - Laboratoire Leprince-Ringuet, Ecole Polytechnique
    - A. Bonnemaison, R. Cornat, O. Drapier, O. Ferreira, F. Gastaldi, M. Gonin,
      - J. Imber, Th.A. Mueller, B. Quilain
  - Osaka City University
    - K. Kim, Y.Seiya, K. Wakamatsu, K. Yamamoto
  - University of Geneva
    - A. Blondel, E. N. Messomo, M. Rayner
  - University of Tokyo
    - N. Chikuma, F. Hosomi, T. Koga, M. Yokoyama
  - Institute of Cosmic-Ray Research, University of Tokyo
    - Y. Hayato

# **Detector configuration**

- WAGASCI + muon range detectors (MRDs)
  - MRDs are located 50cm away from the WAGASCI detector to identify the charged particle directions from TOF.



# Site

B2 floor of ND hall
Off-axis angle = 1.6 deg.



# MRDs

- Side MRDs (x 2)
  - tracking layers + steel plates
  - $-p_{\mu}$  up to ~1 GeV/c
- Downstream MRD
  - tracking layers + steel plates
  - $-p_{\mu}$  up to ~ 2 GeV/c
  - magnetized steel (optional)
    - $\mu$  charge ID for anti- $\nu$  run



# Goals

- Basic performance test of 3-D grid-like detector — Track recon. efficiency, PID capability, TOF cut for BG
- Cross section ratio, H<sub>2</sub>O/CH
  - $-4\pi$  acceptance
  - 3% accuracy
  - CC-inclusive channel, then, exclusive channels.
- Absolute cross section on H<sub>2</sub>O (and CH)
  - $-4\pi$  acceptance
  - 10% accuracy (Flux error is dominant.)
  - Double differential cross sections for ( $T_{\mu}$ ,  $cos\theta_{\mu}$ )
  - CC-inclusive channel, then, exclusive channels.

### MC study

# Event display

#### T. Koga, N. Chikuma (Univ. Tokyo)

### w/o grid layer



/export/scbn07/data2inchikuma/T2K/B2/B2\_lattice/B2lattice\_test.root

19

177

### **Event display**

#### T. Koga, N. Chikuma (Univ. Tokyo)

### with grid layer



20

1

### **Event selection for CC-inclusive**

- WAGASCI/MRD matched track, stopped in MRDs
  - Select a long muon track from CC interaction.
- TOF ( $t_1 < t_2$ ) cut for charged particle BGs
- WAGASCI fiducial volume cut





# Performance for CC-inclusive (MC)

### neutrino run

T. Koga (Univ. Tokyo)



|                             | CC     | NC   | BG from<br>outside | All   |
|-----------------------------|--------|------|--------------------|-------|
| Events/10 <sup>21</sup> POT | 31466  | 1608 | 1832               | 43440 |
| Fraction                    | 90.1%  | 4.7% | 5.2%               | 100%  |
|                             | low BG |      |                    |       |

# R&D of detector components

### 3mm-thick scinti. for WAGASCI

• Positron beam test at Tohoku Univ. on Dec., 2014.

Scinti.: test production @ Fermi lab  $2^{nd}$  gen. MPPC ( $\Delta V$ =4.0V)







### Mechanical design

A. Bonnemaison/ O. Ferreira (LLR)



# Schedule

### • WAGASCI

- May, 2015: Final mechanical drawing
- Aug. Nov., 2015: Construction
- Side (Downstream) MRDs
  - May, 2015 (Jul., 2015): Final mechanical drawing
  - Dec. Feb., 2016 (Mar. May, 2016): Construction
- Installation/Commissioning @ ND hall
  - Mar. –Sep., 2016
- Start operation
  - Oct., 2016

### Possible upgrade

- Install an upgraded WAGASCI into ND280 magnet.
  - $4\pi$ -acceptance water-target near detector



### Discussion is just getting started.

### Summary

- We are developing a new water-target neutrino detector, WAGASCI.
- WAGASCI was approved by J-PARC PAC as a test experiment.
- Start operation on Oct. 2016.
- Possible upgrade: WAGASCI into ND280 magnet

### Backup

- An ideal near detector for Hyper-K/J-PARC
  - Momentum thresholds of charged particles are lower than Cherenkov thresholds in H<sub>2</sub>O

