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General motivations

I Quantum gravity
I Address conceptual issues of quantum gravity

I Black holes (thermodynamics, evaporation, information loss, microstate
counting, entanglement entropy, firewalls, ...)

I String theory (is it the right theory? can there be any alternative? ...)
I Holography

I Holographic principle realized in Nature? (yes/no)

I Quantum gravity via AdS/CFT? (define quantum gravity in AdS by
constructing/postulating dual CFT)

I How general is holography? (non-unitary holography, higher spin
holography, flat space holography, non-AdS holography, ...)

I Applications
I Gauge gravity correspondence (plasmas, condensed matter, ...)
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Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions
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Goals of this talk

1. Review general aspects of holography in 3D

2. Summarize non-unitary holography (AdS3/log CFT2)

3. Address flat space holography

4. Generalize to higher spin holography

5. List selected open issues

Address these issues in 3D!
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Assumptions

Working assumptions:

I 3D

I Restrict to “pure gravity” theories

I Define quantum gravity by its dual field theory

Interesting dichotomy:

I Either dual field theory exists → useful toy model for quantum gravity

I Or gravitational theory needs UV completion (within string theory) →
indication of inevitability of string theory

This talk:

I Remain agnostic about dichotomy

I Focus on generic features of dual field theories that do not require
string theory embedding
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Gravity in 3D
AdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Simple microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

I Simple checks of Ryu–Takayanagi proposal

Caveat: while there are many string compactifications with AdS3 factor,
applying holography just to AdS3 factor does not capture everything!
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Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle

Example: bulk theory = EH

I ∼
∫

d3x
√
|g|
(
R+ 2/`2

)
use Dirichlet boundary value problem (keep fixed δg at boundary)

2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc’s
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Apply algorithm above to 3D (higher spin)
gravity in Chern–Simons formulation

In this talk:
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6. Study unitary representations of quantum ASA
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2G
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6. Study unitary representations of quantum ASA
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Bulk theory and variational principle

Chern–Simons theory with some gauge algebra that contains either
sl(2)× sl(2) or isl(2)

I =
k

4π

∫
M

Tr(A ∧ dA+ 2
3A ∧A ∧A) +B[A]

with boundary term B[A] = 0 or

B[A] =
k

4π

∫
∂M

Tr(A+ dx+A− dx−)

Variational principle consistent for Dirichlet, Neumann or more general
boundary conditions (assume topology of cylinder or torus).

Field equations:
F = dA+ [A, A] = 0

A locally pure gauge ⇒ physics largely defined by boundary behavior!
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Picturesque analogy: soap films

Both soap films and Chern–Simons
theories have

I essentially no bulk dynamics

I highly non-trivial boundary
dynamics

I most of the physics determined
by boundary conditions

I esthetic appeal (at least for me)
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Examples

I Einstein gravity in AdS3

Brown, Henneaux ’86
Bañados ’99

I Conformal gravity in AdS3

I Flat space Einstein gravity

I Flat space chiral gravity

I Higher spin gravity in AdS3

I Non-AdS higher spin gravity

I Lobachevsky holography

I Higher spin Lifshitz holography

I Flat space higher spin gravity

I ... and many more (Schrödinger, warped AdS, more general
backgrounds with anisotropic scale invariance, less symmetric
asymptotic backgrounds, to be discovered)
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Background and fluctuations

Take suitable group element b (often: b = eρL0) and make Ansatz for
connection

A = b−1
(

d+â(0) + a(0) + a(1)
)
b

I â(0) ∼ O(1): determines asymptotic background

I a(0) ∼ O(1): determines state-dependent fluctuations

I a(1) ∼ o(1): sub-leading fluctuations

Boundary-condition preserving gauge transformations generated by ε

ε = b−1
(
ε(0) + ε(1)

)
b

with ε(0) ∼ O(1) (subject to constraints) and ε(1) ∼ o(1)
Metric is then determined from

gµν =
1

2
Tr
[
AeµA

e
ν

]
where Ae is a suitable projection of A identified with the (zu-)vielbein
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Example: AdS holography in Einstein gravity

Cartoon of AdS3: Asymptotic AdS background:

ds2 ∼ dρ2 + e2ρ 2 dx+ dx−

Connection decomposed into two sl(2) parts,
A = b−1(d+â(0) + a(0))b and similarly for Ā:

â(0)ρ = 0 ⇒ Âρ = L0

â
(0)
+ = L1 ⇒ Â+ = eρL1

â
(0)
− = 0 ⇒ Â− = 0

State-dependent contribution A = Â+ ∆A:

a
(0)
+ = L(x+)L−1 ⇒ ∆A+ = e−ρ L(x+)L−1

Metric:

gµν =
1

2
Tr
[
(Aµ − Āµ)(Aν − Āν)

]
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â
(0)
+ = L1 ⇒ Â+ = eρL1
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â
(0)
− = 0 ⇒ Â− = 0
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Canonical analysis and boundary charges

Story a la Brown–Henneaux: bulk generators of gauge transformations
acquire boundary pieces, the canonical boundary charges Q[ε]

Background independent result:

δQ[ε] =
k

2π

∮
Tr (ε(0) δa(0)ϕ dϕ)

I Manifestly finite! (|δQ| <∞)

I Non-trivial? (δQ state-dependent?)

I Integrable? (δQ→ Q?)

I Conserved? (∂tQ = 0?)

If any of these is answered with ‘no’
then back to square one in algorithm!
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Example: AdS holography in Einstein gravity
Consider again only the A-sector (Ā-sector is analogous)

Split gauge parameter into components:

ε(0) = ε1 L1 + ε0 L0 + ε−1 L−1

Solve constraint that local gauge trafos generated by ε(0) preserve
boundary conditions

∂µε
(0) a + fabc

(
â(0)µ + a(0)µ

)b
ε(0) c = O(a(0)µ )a

Result for components of ε(0):

ε1 = ε(x+) ε0 = ε′(x+) ε−1 = ε′′(x+) + L(x+)ε(x+)

Canonical charges:

Q[ε(0)] =
k

2π

∮
dϕL(x+)ε(x+)

Fourier modes:
L(x+) ∼

∑
n

Lne
inx+
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Classical asymptotic symmetry algebra

Dirac bracket algebra of canonical boundary charges:

{Q[ε1], Q[ε2]} = δε2 Q[ε1]

I Either evaluate left hand side directly (Dirac brackets)

I Or evaluate right hand side (usually easier)

Exactly like in seminal Brown–Henneaux work!
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Example: AdS holography in Einstein gravity

I Variation of state-dependent function:

δεL = L′ ε+ 2L ε′ + k

2π
ε′′′

I Coincides with anomalous trafo of (holomorphic part of) stress tensor
in CFT with Brown–Henneaux central charge (8k = `/G)

c =
3`

2G

I Alternatively: Dirac bracket algebra of canonical boundary charges:

{L(x+),L(x̄+)} = L′δ(x+− x̄+) + 2Lδ′(x+− x̄+) +
k

2π
δ′′′(x+− x̄+)

I Converting i{ , } → [ , ] and introducing Fourier modes yields

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn+m, 0

I Again, the bar-sector is completely analogous
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Quantum asymptotic symmetry algebra

I Analysis so far only reliable in limit k →∞!

I Introducing normal ordering in expressions like∑
p∈Z

: Jn−pJp :=
∑
p≥0

Jn−pJp +
∑
p<0

JpJn−p

can make semi-classical algebra inconsistent

I First example I am aware of: Henneaux–Rey 2010 in spin-3 AdS
gravity

Quantum violations of Jacobi-identities possible!

I Resolution: deform suitable structure constants/functions and
demand validity of Jacobi identities

I Result is quantum asymptotic symmetry algebra, valid also at finite
Chern–Simons level k
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Example: Lobachevsky holography in spin-3 gravity
see Afshar, Gary, DG, Rashkov, Riegler ’12 for details

Solving Jacobi identities yields (quantum) Polyakov–Bershadsky algebra

[Jn, Jm] =
2k̂ + 3

3
nδn+m,0

[Jn, L̂m] = nJn+m

[Jn, Ĝ
±
m] = ±G±m+n

[L̂n, L̂m] = (n−m)L̂m+n +
ĉ

12
n(n2 − 1)δn+m,0

[L̂n, Ĝ
±
m] =

(n
2
−m

)
Ĝ±n+m

[Ĝ+
n , Ĝ

−
m] = −(k̂ + 3)L̂m+n +

3

2
(k̂ + 1)(n−m)Jm+n + 3

∑
p∈Z

: Jm+n−pJp :

+
(k̂ + 1)(2k̂ + 3)

2
(n2 − 1

4
)δm+n,0

with central charge ĉ = −(2k̂ + 3)(3k̂ + 1)/(k̂ + 3) = −6k̂ +O(1)
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Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle

2. Fix background and impose suitable boundary conditions

3. Perform canonical analysis and check consistency of bc’s

4. Derive (classical) asymptotic symmetry algebra and central charges

5. Improve to quantum ASA

6. Study unitary representations of quantum ASA

7. Identify/constrain dual field theory
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Unitary representations of quantum asymptotic symmetry algebra

Standard questions:

I Is current algebra level non-negative?

I Is central charge non-negative?

I Are there any negative norm states?

I Are there null states?

To be decided case-by-case!

Example: AdS holography in Einstein gravity

I ASA: two copies of Virasoro with central charge c = 3`
2G

I Minimal requirement: `/G ≥ 0

I Usual analysis of unitary representations of Virasoro
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Example: AdS holography in Einstein gravity

Fact:

ASA is 2d conformal algebra with central charges c = c̄ = 3`
2G

Consequence:

Dual field theory (if it exists) must be a CFT2

Key open issue at this stage:

Identify precisely dual CFT
or show its (non-)existence
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Non-unitary holography

Quoted from workshop webpage “Bits, Branes, Black Holes - Black Holes
and Information” (KITP Santa Barbara 2012):

1. How general is holography?

To what extent do (previous) lessons rely on the particular constructions
used to date? Are they tied to stringy effects and to string theory in
particular, or are they general lessons for quantum gravity?

Historically: holography intimately related to/derived from unitarity
(’t Hooft ’93, Susskind ’94)

Specific question addressed here:

Does holography apply only to unitary theories?
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Short answer: no
Example: critical topologically massive gravity (review: DG, Riedler, Rosseel, Zojer ’13)

I Action (Deser, Jackiw, Templeton ’82):

ITMG =
1

16πG

∫
d3x
√
−g
[
R+

2

`2
+

1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)]

I Critical tuning: µ` = 1 (Li, Song, Strominger ’08)

c =
3`

2G

(
1 +

1

µ`

)
c̄ =

3`

2G

(
1− 1

µ`

)
= 0

I Conjecture (DG, Johansson ’08): dual field theory is log CFT2, with
log partner for stress tensor (see my upcoming talk at IPMU)

I More recent analysis (Vafa ’14): holography for CFTs with
U(N + k|k) gauge group (perturbatively in 1/N indistinguishable
from unitary theories)

I Holography logically independent from unitarity
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

I Works straightforwardly sometimes, otherwise not

I Example where it works nicely: asymptotic symmetry algebra
I Take linear combinations of Virasoro generators Ln, L̄n

Ln = Ln − L̄−n Mn =
1

`

(
Ln + L̄−n

)
I Make Inönü–Wigner contraction `→∞ on ASA

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Mn, Mm] = 0

I This is nothing but the BMS3 algebra (or GCA2, URCA2, CCA2)!
I Example where it does not work easily: boundary conditions!
I Example where it does not work at all: highest weight conditions!
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Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true ⇒ must work in flat space

Just take large AdS radius limit of 104 AdS/CFT papers?

Not in general! Must (also) work intrinsically in flat space!
Interesting example:

I unitarity of flat space quantum gravity

I extrapolate from AdS: should be unitary (?)

I extrapolate from dS: should be non-unitary (?)

I directly in flat space: both options realized, depending on details of
model

Many open issues in flat space holography!

Next few slides: mention a couple of recent results
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Flat space chiral gravity
Bagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 '
chiral extremal CFT with central charge c = 24

ICSG =
k

4π

∫ (
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)
I Trace and gravitational anomalies match
I Perturbative states match (Virasoro descendants of vacuum)
I Gaps in spectra match
I Microscopic counting of SFSC reproduced by chiral Cardy formula
I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =
1

q
+ 196884 q +O(q2)
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Entanglement entropy of Galilean CFTs and flat space holography
Bagchi, Basu, DG, Riegler ’14

Using methods similar to CFT:

SGCFT
EE =

cL
6

ln
`x
a︸ ︷︷ ︸

like CFT

+
cM
6

`y
`x︸ ︷︷ ︸

like grav anomaly

I flat space chiral gravity: cL 6= 0, cM = 0

I flat space Einstein gravity: cL = 0, cM 6= 0

Same results obtained holographically!

I Using methods similar to Ammon, Castro Iqbal ’13, de Boer, Jottar
’13, Castro, Detournay, Iqbal, Perlmutter ’14

I geodesics ⇒ Wilson lines
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Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)

I Flat space: similar!

Sflat
CS =

k

4π

∫
CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)
(

d+a(t, ϕ) + o(1)
)
b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =
(
M1 −M(ϕ)M−1 − V (ϕ)V−2

)
dt

+
(
L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)
dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼
∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ)
)
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Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or İnönü–Wigner
contraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +
cM
12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +
192

cM
(n−m)Λn+m

−
96
(
cL+ 44

5

)
c2M

(n−m)Θn+m +
cL
12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +
96

cM
(n−m)Θn+m

+
cM
12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras
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12
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Λn =
∑
p

: LpMn−p : − 3
10

(n+ 2)(n+ 3)Mn Θn =
∑
p

MpMn−p

other commutators as in isl(3) with n ∈ Z

I Note quantum shift and poles in central terms!
I Analysis generalizes to flat space contractions of other W -algebras

Daniel Grumiller — Holography in three dimensions Applications 37/42



Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or İnönü–Wigner
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Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:
I Unitarity in GCA requires cM = 0 (see paper for caveats!)

I Non-triviality requires then cL 6= 0
I Generalization to contracted higher spin algebras straightforward
I All of them contain GCA as subalgebra
I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un
Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)
∑
p

MpMn−p

Higher spin states decouple and become null states!
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Unitarity in flat space
Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!
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Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Generic flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:
Generically (see paper) you can have only two out of three:

I Unitarity
I Flat space
I Non-trivial higher spin states

Example:
Flat space higher spin gravity (Galilean W3 algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Compatible with “spirit” of various
no-go results in higher dimensions!

2. YES–GO:
There is (at least) one counter-example, namely a Vasiliev-type of theory,
where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?
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Unitarity in flat space
Flat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...

I ...but its existence is at least not ruled out by the no-go result!
I If it exists, this must be its asymptotic symmetry algebra:

[
V im,Vjn

]
=

b i+j
2 c∑

r=0

gij2r(m,n)V i+j−2rm+n + ciV(m) δij δm+n,0

[
V im,Wj

n

]
=

b i+j
2 c∑

r=0

gij2r(m,n)W i+j−2r
m+n

[
W i
m,Wj

n

]
= 0

where
ciV(m) = #(i, m) × c and c = −c̄

I Vacuum descendants W i
m|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly
(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)
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Flat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14
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Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:
I further checks of flat space chiral gravity (2-, 3-point correlators,

semi-classical partition function, ...)
I existence of flat space chiral higher spin gravity?
I Bondi news and holography?
I (holographic) entanglement entropy in other non-CFT contexts?
I other non-AdS holography examples?

Still missing: comprehensive family of simple models such that
I dual (conformal) field theory identified

I exists for c ∼ O(1) (ultra-quantum limit)

I exists for c→∞ (semi-classical limit)
... or prove that no such model ∃, unless UV-completed to string theory!
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Thanks for your attention!

Vladimir Bulatov, M.C.Escher Circle Limit III in a rectangle
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