Constraining the Charm Yukawa and Higgs–quark Universality

MG5_aMC@NLO Femto workshop Kavli IPMU March 26, 2015

Kohsaku Tobioka KEK, Tel Aviv U, Weizmann Institute

with Gilad Perez, Yotam Soreq, Emmanuel Stamou (arXiv:1503.00290)

Constraining the Charm Yukawa and Higgs–quark Universality

MG5_aMC@NLO Femto workshop, Kavli IPMU March 26, 2015

Kohsaku Tobioka IPM KEK, Tel Aviv U, Weizmann Institute

with Gilad Perez, Yotam Soreq, Emmanuel Stamou (arXiv:1503.00290)

Introduction

why charm-Yukawa?

Spin, Charge Mass Coupling

Higgs in Standard Model

Neutral Scalar: Higgs?

Higgs in Standard Model

Peskin 2012/ ILC-TDR

Peskin 2012/ ILC-TDR

Outline

- Recasting $VH \rightarrow bb$ study for charm Yukawa
- Other measurements: Total width, J/psi+γ,
 Global Analysis
- Future prospects

Recast

b-tagging to study $H \rightarrow bb$

b-jet is distinguished from other jets Secondary Vertex: B-meson is long-lived ~440µm/c fly in the detector

main *issue*: Mistag

D-meson, also long-lived ~120-310µm/c

> c-jet 4-40%, light jet: O(0.1-1)%

VH (Associated) production

$$S^{VH} = \mathcal{L} \cdot \sigma \cdot \operatorname{Br}_b \cdot \epsilon_{b_1} \epsilon_{b_2} \cdot \epsilon$$

Signal strength

$$\mu_b = \frac{S_{obs}^{VH}}{S_{exp}^{VH}} = \frac{\mathcal{L} \cdot \sigma \cdot \operatorname{Br}_b \cdot \epsilon_{b_1} \epsilon_{b_2} \cdot \epsilon}{\mathcal{L} \cdot \sigma_{SM} \cdot \operatorname{Br}_b^{SM} \cdot \epsilon_{b_1} \epsilon_{b_2} \cdot \epsilon} = \frac{\sigma \cdot \operatorname{Br}_b}{\sigma_{SM} \cdot \operatorname{Br}_b^{SM}}$$

VH (Associated) production

$$S^{VH} = \mathcal{L} \cdot \sigma \cdot \operatorname{Br}_b \cdot \epsilon_{b_1} \epsilon_{b_2} \cdot \epsilon$$

Signal strength

$$\begin{split} \mu_{bb}^{\rm ATLAS} &= 0.52 \pm 0.32 \pm 0.24, \\ \mu_{bb}^{\rm CMS} &= 1.0 \pm 0.5 \ , \end{split}$$

info of H-bb coupling

ATLAS [arXiv:1409.6212] CMS [arXiv:1310.3687] Phys.Rev. **D89** (2014) 012003

What if $H \rightarrow cc$ is enhanced?

Large $\epsilon_{c/b}$, more sensitive to μ_c but only constrain a combination (degeneracy) \longrightarrow Need very different working points $\epsilon_{c/b}$

Collect info from ATLAS, use S/B>2.5%

Collect info from CMS, use S/B>2.5%

^{0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95} BDT output

Collect info from CMS, use S/B>2.5%

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

$$L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$$

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

$$L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$$

$L(\mu) = \prod$	$P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$
\overline{i}	

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

$$L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$$

	1st Tag	2nd Tag	$\epsilon_{c/b}$
(a)ATLAS	Med	Med	8.2×10^{-2}
(b)ATLAS	Tight	Tight	5.9×10^{-3}
(c)CMS	Med1	Med1	0.18
(d)CMS	Med2	Loose	0.19
(e)CMS	Med1	Loose	0.23
(f)CMS	Med3	Loose	0.16

$$L(\mu) = \prod_{i} P_{poiss}(k_i, N_{SM,i}^{BG} + \mu N_{SM,i}^{signal}).$$

New Production

Decay Br(H \rightarrow cc)=100%, still μ_c =34

At large coupling $\kappa_c = y_c/y_c^{SM} \sim 100$ switch on new production

First direct bound on Charm Yukawa

EW precision + Other Higgs measurements

Current LHC constraints

Top-charm coupling is non-universal, yt ≠ yc!!

Future LHC

Future LHC

Future prospect of $VH \rightarrow bb$

use charm-tagging for 1-lep to disentangle μ_c

 $\begin{array}{cccc} \epsilon_b & \epsilon_c & \epsilon_{\text{light}} \\ \text{Med: } 70, \ 20, \ 1.25 \quad (\%) \\ & \downarrow & \downarrow & \downarrow \\ \text{C-tag: } 13, \ 19, \ 0.5 \end{array}$

Scharm study[arXiv:1501.01325]

Future LHC

Future prospect of $VH \rightarrow bb$

 $\Delta \mu_b = 0.14 @ \text{ATLAS Med} \\ \text{ATL-PHYS-PUB-2014-011} (I- and 2-lep channels) \\ \text{Thanks ATLAS for providing tables!}$

use charm-tagging for 1-lep to disentangle μ_c

Summary

• Recasting VH study gives first bound on μ_c To extract it, we need different tagging points

$$\mu_c = 95^{+90(175)}_{-95(180)}$$
 at $68.3(95)\%$ CL.

• charm-Yukawa bounds

• Future sensitivity with charm-tagging

$$\Delta \mu_c = 23 \text{ Run II}$$

= 6.5 HL-LHC

Thank you תודה רבה

Backup

