

Recasting LHC analyses with MADANALYSIS 5

Fuks Benjamin

IPHC - U. Strasbourg

With E. Conte, B. Dumont, T. Schmitt & the PAD team (S. Kraml et al., K. Mawatari, K. de Causmaecker)

MADGRAPH5_aMC@NLO Femto workshop

IPMU, Kashiwanoha - March 27, 2015

Outline

- I. MADANALYSIS 5 in a nutshell
- 2. Reinterpretation of LHC analyses with MADANALYSIS 5 and DELPHES

- 3. The PAD (public analysis database) and examples
- 4. Summary

Monte Carlo tools and discoveries at the LHC

Assumption

There is some new physics to be discovered

A new physics LHC story

- A priori preparation
 - Model building
 - Phenomenological studies
 - Prospective collider analyses

- → A posteriori reactions to announcements
 - Model building
 - Recasting experimental analyses
 - Measurements (precision predictions)

- Monte Carlo tools play a key role!
- How to easily analyze their output?

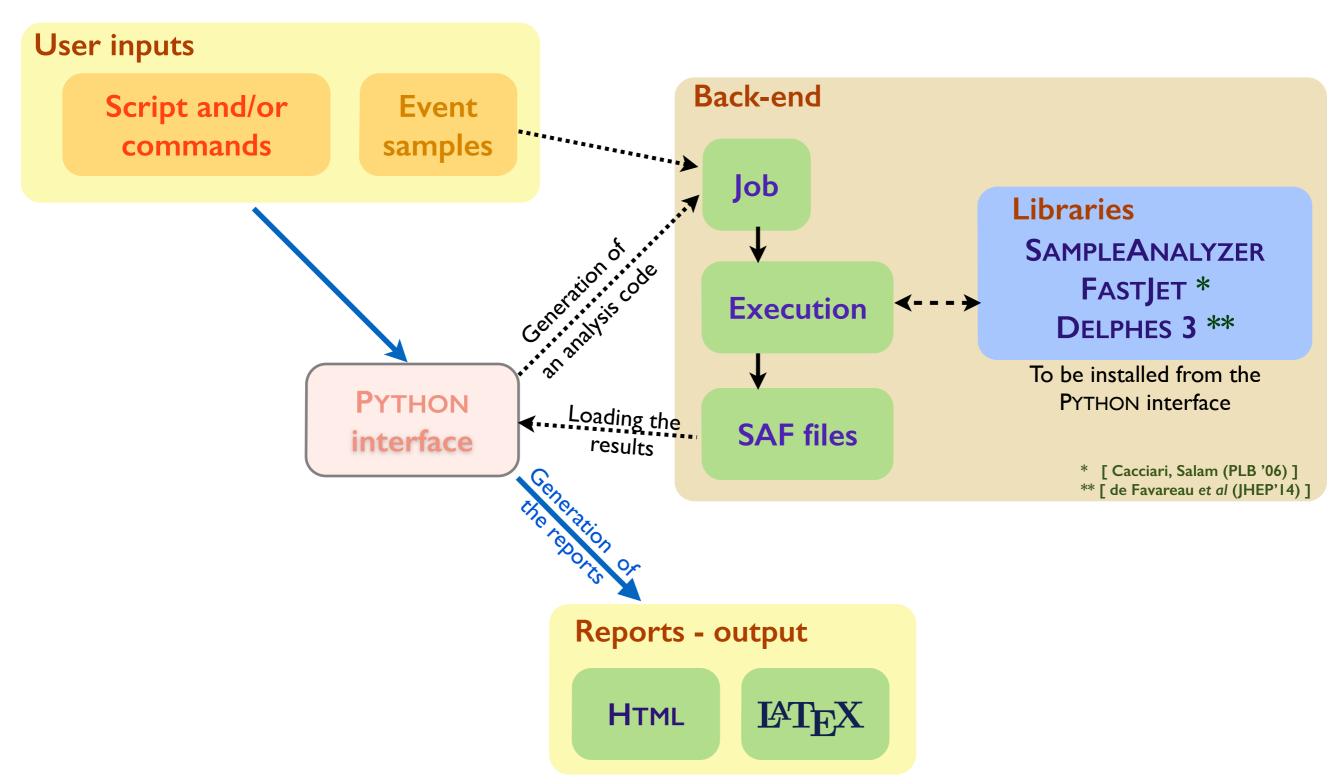
MADANALYSIS 5 in a nutshell (1)

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14)]

- What is MADANALYSIS 5?
 - A framework for phenomenological analyses
 - * Any level of sophistication: partonic, hadronic, detector, reconstructed
 - * Several input format: STDHEP, HEPMC, LHE, LHCO, ROOT (from DELPHES)
 - User-friendly, flexible and fast
 - ❖ Interfaces to other HEP packages (fast detector simulation, jet clustering, etc.)

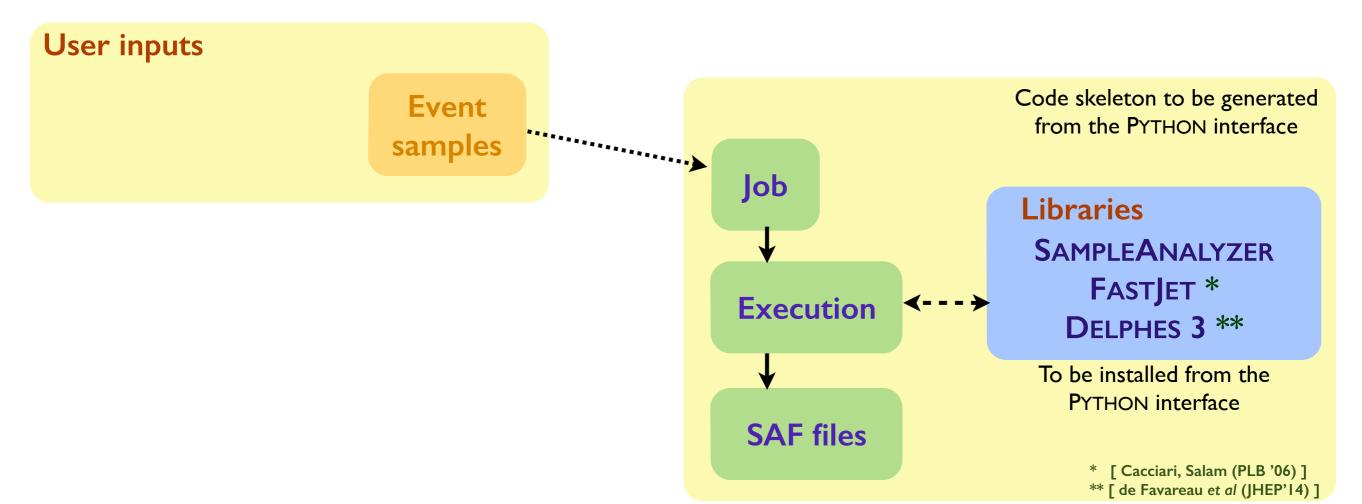
- Two modules
 - **A PYTHON** command line interface (interactive)
 - **♦** A C++/ROOT core module, SAMPLEANALYZER

MADANALYSIS 5 in a nutshell (2)


[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14)]

- Normal mode
 - Intuitive commands typed in the PYTHON interface
 - Analysis performed behind the scenes (black box)
 - ♣ Human readable output: HTML and LATEX

- Expert mode: recently extended for recasting existing LHC analyses
 - ♣ C++/ROOT programming within the SAMPLEANALYZER framework
 - Support for multiple sub-analyses, an efficient way for handling cuts and histograms, etc.


MADANALYSIS 5: normal mode

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14)]

MADANALYSIS 5: expert mode

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14)]

Reimplementing new physics LHC searches (I)

- Many search channels are investigated by CMS and ATLAS
 - Limits set on popular new physics theories and/or simplified models
 - *There are plethora of new physics realizations that deserve to be studied
 - ★ The simplified model approach is not sufficient (e.g., different topologies)
 - ★ Need for implementations of LHC analyses in public tools
 - ★ Need to rely on public detector simulation

- ◆ The MADANALYSIS 5 way
 - ❖ Use of the expert mode of the program as a framework
 - ❖ Use of DELPHES 3 for detector simulation

Reimplementing new physics LHC searches (2)

- ◆ Validation of the reimplementations
 - * Built-in differences: DELPHES versus ATLAS and CMS detector simulations
 - ❖ Comparison of cut-flows, kinematical distributions for specific benchmarks
 - Aiming for a 20%-30% agreement

- ◆ Complications: incomplete experimental documentation
 - * The material is better and better
 - Loss of months in exchanges with ATLAS and CMS
 - Sometimes dead ends

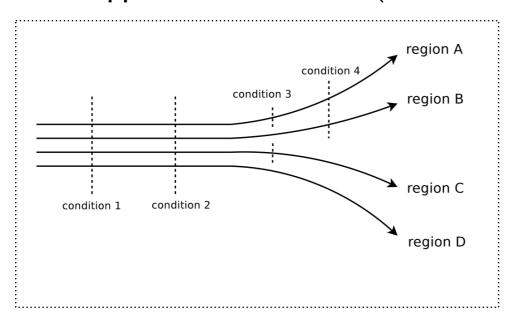
Detector simulation with DELPHES and MADANALYSIS (I)

[Dumont, BF, Kraml et al. (EPJC '15)]

- ◆ Fast detector simulation with MADANALYSIS 5
 - MADANALYSIS 5 has been interfaced to DELPHES 3
 - ❖ Starts from events at the hadron level and produces ROOT files (DELPHES)
 - ◆ DELPHES is modular ➤ MADANALYSIS 5 includes extra modules (DELPHES-MA5Tune)
 - ★ Extra information on lepton isolation
 - **★** Track information
 - * Exported to the output file and in the analysis code
 - ★ Smaller output ROOT files (DELPHES)
 - ★ This version of DELPHES can be executed from MADANALYSIS 5

Detector simulation with DELPHES and MADANALYSIS (2)

[Dumont, BF, Kraml et al. (EPJC '15)

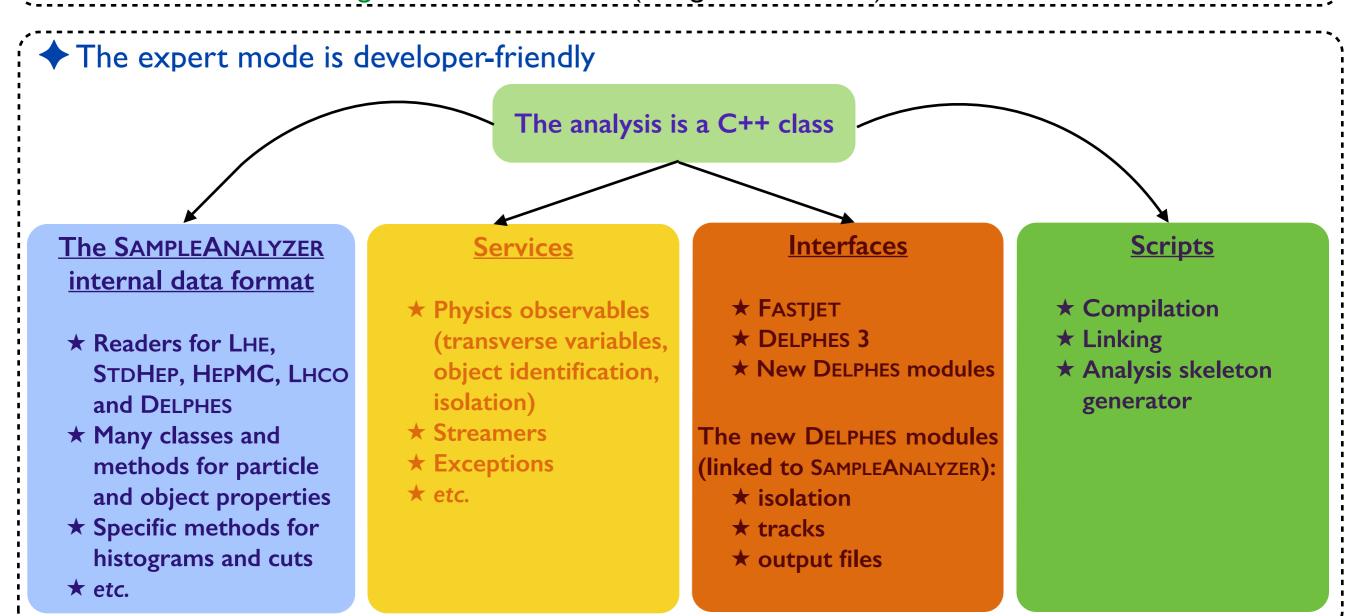

- → Running DELPHES in MADANALYSIS 5
 - * Running of DELPHES via the MADANALYSIS 5 interpreter (in the reco mode)
 - Choice of ATLAS or CMS; pile-up can be included
 - ❖ Different cards could be necessary for different analyses
 - ❖ The ROOT output file is stored

- → Future developments
 - ♣ In collaboration with CHECKMATE people
 - Use of the standard DELPHES with a DELPHES-recasting card

The expert mode of MADANALYSIS 5 (I)

[Conte, Dumont, BF, Wymant (EPJC 'I4)]

- → Main features (enable an easy recast of cut-based LHC analyses)
 - ❖ Support for multiple sub-analyses (signal and control regions)
 - ❖ New ready-to-use observables (M_{T2}, M_{T2W}, etc.)
 - ❖ New optimized handling of cuts and histograms
- → Handling cuts and histograms
 - ❖ Naive approach not efficient (see cut #4 for instance)

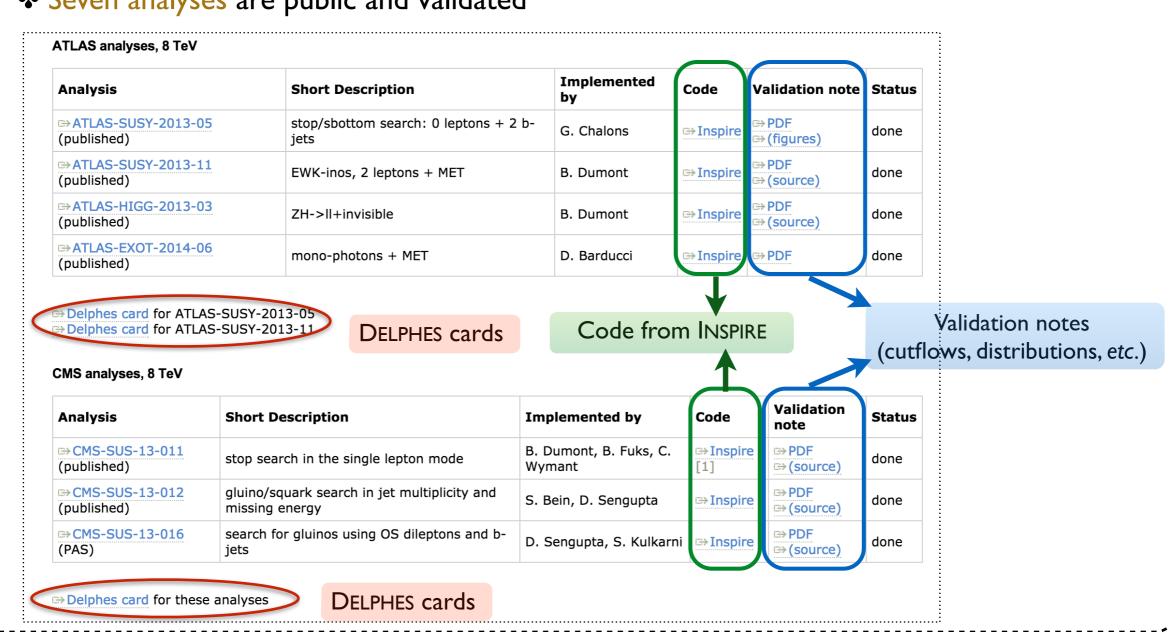

```
count the event in region D
if (condition 3)
{
   count the event in region C
   if (condition 4)
   {
     count the event in region A
   }
}
if (condition 4)
{
   count the event in region B
}
```

- * A more efficient algorithm has been implemented
 - ★ Each cut condition is only evaluated once
 - ★ It is applied to all <u>surviving</u> regions simultaneously
- Similar treatment for histograms

The expert mode of MADANALYSIS 5 (2)

Conte, Dumont, BF, Wymant (EPJC '14)

- ◆ MADANALYSIS 5 is used without its PYTHON interface
 - ❖ More freedom in the observables (only some of them can be called from the PYTHON console)
 - Complicated cuts can be implemented
 - ♣ More suitable for large numbers of events (using several cores)

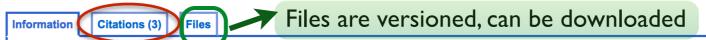


In a nutshell The PAD Summary

The Physics Analysis Database (PAD) of MADANALYSIS

Dumont, BF, Kraml et al. (EPJC '15)

- ◆ A database with MADANALYSIS 5 implementations of LHC analyses has been initiated
 - http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase
 - **❖** Easy to install (install PAD)
 - Seven analyses are public and validated



MADANALYSIS 5 analyses on INSPIRE

[Dumont, BF, Kraml et al. (EPJC '15)]

❖ DOI are assigned: can be cited, searched for, etc.

MadAnalysis 5 implementation of CMS-SUS-13-011: search for stops in the single lepton final state at 8 TeV

Dumont, Beranger (LPSC, Grenoble); Fuks, Benjamin (CERN); Wymant, Chris (Annecy, LAPTH)

Cite as: (2014) authors, http://doi.org/10.7484/INSPIREHEP.DATA.LR5T.2RR3

Description: This is the MadAnalysis 5 implementation of the CMS search for top-squark pair production in the single lepton final state with 19.5/fb at 8 TeV, to be used for re-interpretation studies. The C++ code contains extensive comments and can thus easily be used as a template for implementing other analyses.

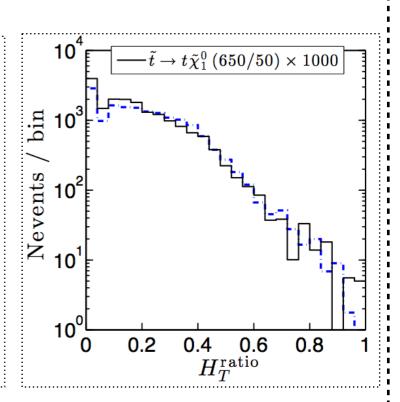
Note: This analysis requires MINUIT libraries. Therefore, the line <LIBFLAGS += -IMinuit> should be added to the Makefile of the Build/ directory before compilation. More information how to use this code as well as a detailed validation summary are available at http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase

Cite as: Dumont, B., Fuks, B., Wymant, C. (2014) MadAnalysis 5 implementation of CMS-SUS-13-011: search for stops in the single lepton final state at 8 TeV. doi: 10.7484/INSPIREHEP.DATA.LR5T.2RR3

This dataset complements the following publication:

Toward a public analysis database for LHC new physics searches using MADANALYSIS 5

Record added 2014-06-19, last modified 2014-07-17

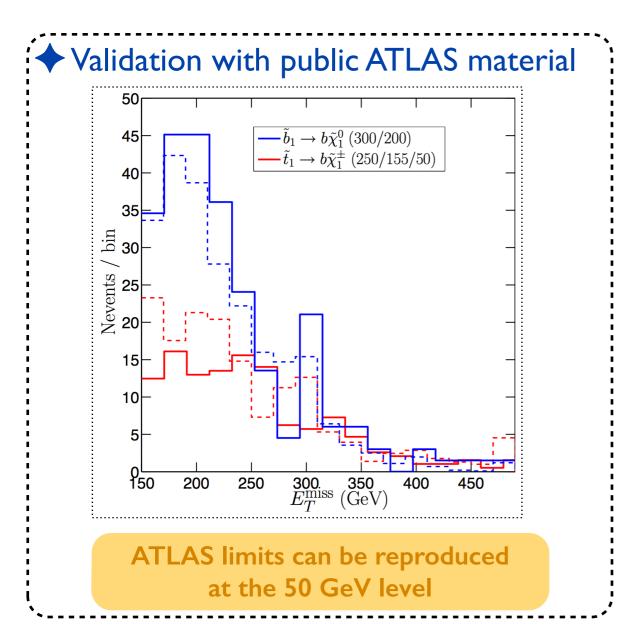

CMS-SUS-13-011

[Dumont, BF, Wymant (2014)]

- ◆ CMS search for stops in the single lepton channel
 - ❖ Benchmark: stop of 650 GeV and neutralino of 50 GeV

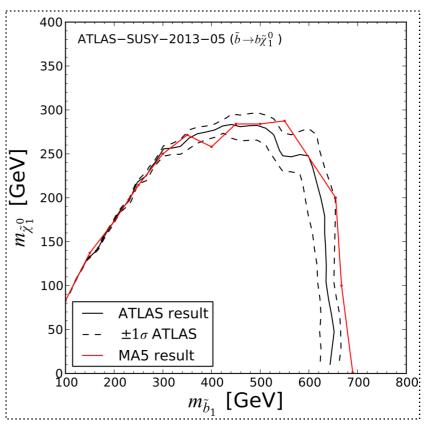
◆ Validation with public material from CMS

Cut	MadAnalysis 5	CMS
At least one lepton, four jets and 100 GeV of missing transverse energy	31.4	29.7
At least one b -tagged jet	27.1	25.2
No extra loosely-isolated lepton or track	22.5	21.0
No hadronic tau	22.0	20.6
Angular separation between the missing momentum and the two hardest jets	18.9	17.8
Hadronic top quark reconstruction	12.7	11.9
The transverse mass M_T (defined in the text) is larger than 120 GeV	10.4	9.6
At least 300 GeV of missing transverse energy and $M_{T2}^W > 200$ GeV	5.1	4.2



CMS results can be reproduced at the 20%-30% level

ATLAS-SUS-2013-05


[Chalons (2014)]

- ATLAS search for stops and sbottoms in the zero lepton plus 2 b-jets channel
 - ❖ Benchmarks: sbottom/neutralino (300/200 GeV) and stop/chargino/neutralino (250/155/50 GeV);

- CLs: from observed and expected numbers
- ♣ Best expected signal region is employed
 - ➤ Conservative

Summary

- MADANALYSIS 5 in a nutshell
 - * A unique framework for collider phenomenology at all levels (parton, hadron, reconstructed)
 - User-friendly by means of its PYTHON interface (normal mode)
 - Flexible thanks to its C++ kernel (expert mode)
 - ♣ Interfaced to several other HEP packages (DELPHES, FASTJET)
- ◆ MADANALYSIS 5 and LHC analyses
 - ❖ The expert mode has been extended to facilitate the implementation of LHC analyses
 - Seven analyses are validated and public
 - >ATLAS and CMS results are recovered at the 20-30% level
 - ❖ O(20) analyses are being validated
 - ♣ An interface with CHECKMATE is being developed
- Please use and contribute to the database
 - http://launchpad.net/madanalysis5
 - http://madanalysis.irmp.ucl.ac.be/wiki/PhysicsAnalysisDatabase