

Tuning fiTQun

Cristóvão Vilela

nuPRISM workshop 16 – 20 March 2015

Introduction

- fiTQun was originally written and tuned for Super-K and SKDETSIM
- It has been updated to run on WCSim
 - We can now run on nuPRISM, Hyper-K, ...
- Need to tune reconstruction parameters for each detector configuration
 - Photosensor response, geometry
 - Detector geometry
- The tuning procedures have been adapted to WCSim
 - Several modifications required which will be condensed into nuPRISM/WCSim
 - Work in progress: first attempt at full retune this week!

* Stony Brook University

Cristóvão Vilela

FiTQun reminder

$\mathcal{L}(\mathbf{x}) = \prod_{i_{unhit}} P(unhit \mid \mathbf{x}) \prod_{i_{hit}} P(hit \mid \mathbf{x}) f_q(q_i \mid \mathbf{x}) f_t(t_i \mid \mathbf{x})$

- Maximum \mathcal{L} gives best estimate of track parameters x:
 - Particle type, momentum, direction, vertex position and time
- For a given hypothesis \mathbf{x} , charge (f_q) and time (f_t) probability distributions are generated for each photosensor in the detector
 - f_t is determined by the photosensor and associated electronics' response, particle type and kinematics
 - • f_q depends on:
 - μ , the predicted number of photons arriving at the photosensor (both direct and scattered or reflected)
 - response of the photosensor + electronics

FiTQun reminder

• The predicted charge from direct light is given by:

Lookup tables are used for scattered and reflected light

Components to be tuned

- In fiTQun/const:
 - Scattered light tables
 - PMT charge response
 - Time PDFs
- Parameters in parameters.dat:
 - Water attenuation length
 - PMT quantum efficiency
- Hardcoded in fiTQun.cc (to be changed!):
 - PMT angular response

Scattered light tables

Scattering Tables

- Take advantage of cylindrical geometry
- A_{scat} will depend on
 - Source direction (θ_s, ϕ_s)
 - Source position $(\Theta_{ts}, \mathbf{R}_{s}, \mathbf{Z}_{s})$
 - 🔀 for PMTs on the sides
 - $\mathbf{A}_{side}(\theta_{s}, \phi_{s}, \Theta_{ts}, \mathbf{R}_{s}, \mathbf{Z}_{s}, \mathbf{Z}_{t})$
 - Rt for PMTs on the ends
 - Aend (0s, os, Ots, Rs, Zs, Rt)

• Must tabulate 6-dimensional scattering tables using the detector MC

Mike @ Hyper-K 5th

Stony Brook University

Cristóvão Vilela

25 Feb 2015

Scattered light tables

- WCSim modification by Blair allows for the optical photon history to be stored
 - /opInfo/Enabled true
- Generate 1 billion 3 MeV electrons all over the detector with randomized directions
- Use photons which have scattered/reflected and made a hit to build tables

Photosensor charge response

- I have modified WCS im by adding an option which will add to each of the PMTs in the detector a number of photoelectrons distributed according to a Poisson distribution with a mean μ :
 - /mygen/pmtPoisson true
 - /mygen/poissonMean 5
 - Used with dummy primary particles (*e.g.*, below Cherenkov threshold) and with the dark rate set to zero
- The PMT charge response (probability distribution, $P_{\rm hit}$, $P_{\rm unhit}$) for a given μ can be obtained by reading out the digitised charge in the standard WCS im output
- This method treats photosensors as black-boxes and should work even if the digitisation procedures are changed significantly

Stony Brook University

Cristóvão Vilela

Photosensor charge response

Photosensor charge response

Water attenuation length and PMT QE

- For now tuning these parameters to remove bias in (rec – true)/true
- In principle we should be able to extract these parameters from the data generated to produce the scattered light tables

PMT angular response

- Using direct light only, generate 3 MeV electrons with the vertex position spanning a range of angles to the PMT axis
- Extract observed charge and plot against angle

• In principle can be extracted from scattered light table data

Cristóvão Vilela

Time PDFs for direct light

- Blair's WCSim modification allows running in a mode where only direct photons produce hits
 - /opInfo/KillScatterRef true
- For each particle type generate particle gun events with randomised position and direction scanning over a range of momenta
- Time PDFs are the distribution of $t_0 \left(t_{hit} \frac{Ln}{c} \frac{s}{2c}\right)$ binned in μ need charge pdf part tuned!

Time PDFs for direct light

- Fit distributions with gaussians
- \bullet Fit gaussian parameters as a function of p and μ

* Stony Brook University

Summary and status

- Tools to tune fiTQun to SKDETSIM have been translated for WCSim
 - Soon all these tools will be placed in the fiTQun github repository
 - Modifications to WCSim will be in the nuPRISM repository, at least for now
- nuPRISM is the first WCSim re-tune of fiTQun
 - Work in progress . . .
 - A few issues to iron out

