nue appearance plans

Jacob Calcutt, Kendall Mahn, Greg Ponti, Sean Wainwright MSU

Goals

- Using the disappearance analysis code as a starting point for extrapolating the appearance+intrinsic background
- Development of the cross-section ratio measurement and evaluation of the flux systematic uncertainties
- Development of the nu_mu to nu_e "extrapolation"
 - What are the best variables to use?
 - Additive, multiplicative or migration type correction?

Using the software tutorial from July 2014:

http://indico.ipmu.jp/indico/getFile.py/access? contribId=8&sessionId=6&resId=0&materialId=slides&confId=43

And partial notes from the software tutorial Feb 2015:

https://www.evernote.com/shard/s435/nl/79831013/4fcd666bf72c-4ece-8979-320723aee976/

Short term goals (workshop)

Get the disappearance code running

- Have all the files and software
 - SK files (sk_mc) and nuprism_numode_1km flux, genev files
 - Do we need set1 set6 of the SK ntuple files? What is this?
 - Any significant software updates since Feb meeting?
- Ran and produced coeffs for beam nue + osc using fit_spectrum_SKNue.cc
 - Plots reasonable, will want to check this after we rebuilt
- Ran numu_nuprism_selection executable
 - plots reasonable
- Started to run nuprism_numu_disappearance_analysis

Look into what the best variable is which minimizes mass effects

 For the same energy, plot the lepton kinematics for CCQE muons and electrons; use the NEUT nuPRISM files