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Mono-chromatic beams for 
νPRISM
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Mono-energetic beams

Motivation
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❖ We know that there are large uncertainties 
in the modeling of nuclear effects, 
especially in the CC0pi cross section around 
1 GeV

❖ Nuclear effects introduce tails to 
reconstructed energy distribution away 
from the quasi-elastic peak - source of 
systematic uncertainty in oscillation 
measurements

❖ In electron scattering, these tails can be studied because the four momenta of the initial 
and final state leptons are measured

❖ If we know the initial neutrino energy, we can do similar measurements for neutrinos

❖ We can also directly study the energy dependence of the NC cross-sections
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Mono-chromatic widths
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❖ How narrow should the mono-energetic beams be?

❖ The dominant np-nh effects are at ~300 MeV below the peak energy in the 
700-1000 MeV neutrino energy range - We should have a resolution smaller than 
this

❖ In principle, it should be possible to have significantly better resolution
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Study Procedure
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❖ Use the coefficient fitting code to make mono-energetic beams at 600, 900 and 
1200 GeV
❖ 60 bins of off-axis flux from 1 to 4 degrees  

 

❖ Apply the coefficients to the simulated nuPRISM interactions and evaluate flux 
systematic and statistical errors
❖ For now statistical errors are calculated as the sum in quadrature of the 

weights (including the coefficients) for each event in the bin.  Will check 
against the poisson throwing method

❖ For the flux uncertainty, calculate a normalization and “shape” uncertainty
❖ Normalization uncertainty: spread of the integral of the linear 

combination event rate for each flux throw
❖ Shape uncertainty: spread on each bin after each flux throw has been 

renormalized to the nominal event distribution
❖ Using full MC stats, but statistical error bars are for 4.5e20 POT



Mono-energetic beams

600 MeV Flux Fit
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❖ Can achieve reasonable smoothness of the coefficients with a 70 MeV wide 
monoenergetic beam

❖ Here the fluxes are weighted by the energy to approximate the effect of the cross-section
❖ Haven’t completely studied the trade-off between beam width and flux & statistical 

errors (narrower beam may be possible)
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600 MeV Beam Event Rate (Eν)
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❖ The flux normalization error is consistent with T2K cross section measurements
❖ The shape error is reduced near the peak, but not so much in the tails

❖ Flux systematic variations:
❖ Norm: 11% RMS
❖ Mean: 3 MeV RMS
❖ Width: 5 MeV RMS
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600 MeV Beam Event Rate (Erec)
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❖ A significant excess due to non-QE at low reconstructed energy can be observed
❖ Should update the study using the Nieves model to have more non-QE events
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Comment on Flux Uncertainties
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❖ A significant fraction of the flux uncertainty in the tails is coming from the horn absolute current 
uncertainty

❖ This error is made with regenerated nuPRISM fluxes at +5kA horn current
❖ Could this be a statistical effect?  Need to investigate
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900 MeV Flux Fit
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❖ Can achieve reasonable smoothness of the coefficients with a ~110 MeV wide 
monoenergetic beam
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900 MeV Event Rates
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❖ The flux uncertainties (left) are rather larger around 600-700 MeV (the region of interest for nuclear effects)
❖ Turning of the horn current uncertainty (right) greatly reduces the error
❖ Once again, not sure if this is a statistical effect.  For now, try choosing coefficients to spread out the 

contribution to the 600-700 MeV bins from multiple off-axis angles

All flux uncertainties Excluding absolute horn current uncertainty

 (GeV)νE
1 2 3

Ev
en

ts/
50

 M
eV

0

500

1000

1500
 Event Spectrumµ1 Ring 

Absolute Flux Error

Shape Flux Error

Statistical Error

Gaussian Fit
Fit Mean: 0.90 GeV
Fit RMS: 0.11 GeV

Linear Combination, 0.9 GeV Mean

 (GeV)νE
1 2 3

Ev
en

ts/
50

 M
eV

0

500

1000

 Event Spectrumµ1 Ring 

Absolute Flux Error

Shape Flux Error

Statistical Error

Gaussian Fit
Fit Mean: 0.89 GeV
Fit RMS: 0.11 GeV

Linear Combination, 0.9 GeV Mean



Mono-energetic beams

900 MeV Flux Fit, Take 2
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❖ The coefficient distribution is 
broader with smaller overall 
magnitude

❖ At the cost of a slightly wider mon-
energetic beam
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900 MeV Beam Event Rate (Eν)
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❖ The flux normalization error is rather larger compared to T2K cross section 
measurements

❖ The flux error in 600-700 MeV is improved

❖ Flux systematic variations:
❖ Norm: 19% RMS
❖ Mean: 15 MeV RMS
❖ Width: 4 MeV RMS
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900 MeV Beam Event Rate (Erec)
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❖ We can clearly measure the feed-down contribution from non-QE processes
❖ The flux uncertainty relative to the peak is well controlled
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1200 MeV Flux Fit
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❖ 1200 MeV is about the limit of what we can achieve with a narrow band beam fit
❖ Even so, it is hard to completely reduce the high energy tail
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1200 MeV Beam Event Rate (Eν)
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❖ Once again the error bars on the 500-600 MeV region are large. 

❖ Flux systematic variations:
❖ Norm: 11% RMS
❖ Mean: 14 MeV RMS
❖ Width: 23 MeV RMS
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1200 MeV Beam Event Rate (Erec)
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❖ The reconstructed distributions nicely shows the ability to observe the tail from nuclear 
effects

❖ The flux shape errors are smaller here (indicating it is statistical effect that is cancelled 
out in the smearing due to the reconstruction).
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Electron Scattering Variables
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Douglas W. Higinbotham
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Energy Transfer Distribution
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Douglas W. Higinbotham

At fixed Q2
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Application to nuPRISM
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❖ In nuPRISM, we measure the charged lepton kinematics and know the neutrino 
kinematics (with some resolution) from the mono-chromatic beam method

❖ We should be able to construct ω and Q2 for a given event
❖ Only limited by the resolution of the charged lepton measurement and the 

mono-energetic beam
❖ Can we see the structure of the QE peak, dip region and resonant peak with 

nuPRISM?
❖ Ideally, we should do the study with CC-inclusive but only 1 ring 

candidates at the moment
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900 MeV Beam
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Conclusion
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❖ Mono-chromatic beams up to 1.2 GeV appear to work well
❖ Flux systematic errors are well controlled 

❖ Need further investigation into the horn current systematic error 
around 500 MeV

❖ Statistical errors are not too large
❖ Investigating electron scattering variables


