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ννPPRRIISSMM Disclaimer

I am not an expert – please shout out if I say 
something wrong, if you have a question, or if 

there's a better way to do something
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ννPPRRIISSMM What is Git?
● Version control software

● DVCS – Distributed Version 
Control System

● CVS is a Centralised version 
control system

● Each copy of the repository 
has the complete history of 
the project and fully mirrors 
everything in the original 
version

● No single repository is the 
'official' repository

● Can have multiple remote 
repositories - allows easy 
collaboration
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ννPPRRIISSMM What is GitHub?
● Web-based Git repository host

● Graphical interface to Git repositories

● Allows easy bug tracking, documentation and feature requests

● Introduces a more 'official' version of the repository

● Allows more centralised control of repositories

● Used by WCSim and Hyper-K – we will follow their work flow system

● https://github.com/nuPRISM - this is the nuPRISM organisation

● You should create an account and 'fork' each repository from the 
nuPRISM organisation to your personal account

● A 'fork' is the GitHub name for the 'git clone' command – it creates a copy 
of the repository in your account

https://github.com/nuPRISM
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ννPPRRIISSMM Git branches
● In git, when you work on some new code you make a new branch

● A cheap operation, unlike CVS

● Lets you work separately on multiple features at once – each on a 
different branch

● Allows collaborative 
working
– You can commit code 

to your branch that 
stops the software 
compiling without 
affecting anyone else

– Many people can work 
on a single branch

● You should always submit new code from a new branch
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ννPPRRIISSMM Using Git(Hub)
● We are following this branching model

● Used by WCSim

● According to the internet it works 
very well...

● Two main branches:

● master – the production branch, 
should only be modified when we 
perform a production release

● master branch should always 
compile and work!

● develop – the branch which is the 
basis for any software 
development

● develop is not guaranteed to 
compile or work – similar to the 
HEAD version in CVS

http://nvie.com/posts/a-successful-git-branching-model/
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ννPPRRIISSMM Developing a feature
● First, clone your GitHub repository to your local machine (should have 

been done yesterday by the nuPRISM installation script)

git clone git@github.com:mscott201/WCSim.git 
● Next, check which branch you are on

git branch –  this lists all the branches in your local repository, and the * 
indicates which branch you are on

● Now, create a new branch, called myFeature

git checkout -b feature/myFeature develop

– 'git checkout -b' will switch to a branch, and create a new branch if 
it doesn't exist

– The next argument is the branch name
– The final argument is the branch you want your new branch to be 

created from
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ννPPRRIISSMM Developing a feature - 2
● Type 'git branch' again – we're now on the feature/myFeature branch

● Now, make any code changes you want – commit often and with 
informative commit messages (these are all stored in the repo history)

git commit filename.cxx
● There are other ways of committing things, but this is fairly foolproof

● Try the 'git status' command at some point

● Lists all modified files and files not being tracked by git – use                  
'git add file.cxx' to add a new file to the repository
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ννPPRRIISSMM Remote repositories
● We've made the changes we want, and tested that everything works

● Now, need to 'push' these changes to your GitHub repository.  First, check 
which remote repositories you have set up

git remote -v
● Remote repositories are repositories that you can 'push' updates to or 

'pull' updates from

– One of the good things about git!
● Collaborate with Mark Hartz on something...

git remote add hartz https://github.com/markhartz/Analysis.git 
● Adds a repo call 'hartz' that points to Mark's Analysis repository

● By default, when cloning a repo, a remote repository called origin is 
added, pointing to the remote repo you cloned from
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ννPPRRIISSMM Remote repositories - 2
● So, I now have two remote repositories, my repo on GitHub and Mark's

● If we're both working on one thing, if Mark makes a change to his repo I 
can 'pull' that change over to my local code

git fetch mhartz

● 'git fetch' create a local copy of the remote repository, stored under 
repo_name/branch_name

● Can then merge changes into my current branch

git merge mhartz/develop – it always merges into your current branch
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ννPPRRIISSMM Pushing a feature
● Want to 'push' my last changes up to my GitHub repository so that Mark 

can get them

git status – check everything I want to 'push' has been committed

git push origin feature/myFeature

● You now have a new branch in your GitHub account called 
feature/myFeature

● Carry on committing, pushing and pulling code between people's personal 
repositories until the myFeature branch is finished and validated
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ννPPRRIISSMM Pull requests
● When a feature is complete, you can use GitHub to submit a pull request 

to the nuPRISM organisation repository

● First, select your feature branch
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ννPPRRIISSMM Pull requests
● When a feature is complete, you can use GitHub to submit a pull request 

to the nuPRISM organisation repository

● First, select your feature branch

● Then, click the green button on the left
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ννPPRRIISSMM Pull requests
● See a screen like this
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ννPPRRIISSMM Pull requests
● See a screen like this

The base branch, which would pull our 
changes (the nuPRISM/develop branch 
in almost all cases)
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ννPPRRIISSMM Pull requests
● See a screen like thisThe repository and branch we are 
sending the request from – it has our 
new feature
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ννPPRRIISSMM Pull requests
● See a screen like this

A summary of the changes and commit 
messages
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ννPPRRIISSMM Pull requests
● See a screen like this

The actual changes to the code
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ννPPRRIISSMM Pull requests
● See a screen like this

The button to submit the request
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ννPPRRIISSMM Pull requests
● Submitted request sent to the nuPRISM repository 

● Request appears, detail changes (very similar to last slide)

● Allows users to comment on changes and suggest improvements etc.

● See here for an example - https://github.com/nuPRISM/WCSim/pull/1

● A repository manager will decide if the pull request should be merged or 
not

● Will iterate with comments and might ask you to fix any conflicts that 
appear

● Any change you make to your feature/myFeature branch will also 
be included in the pull request – if you want to do more work start a 
new branch

● Please do not push directly to the nuPRISM repository

● Please do not merge your own pull request without discussing it first

https://github.com/nuPRISM/WCSim/pull/1
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ννPPRRIISSMM Pull requests
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ννPPRRIISSMM Cleaning up
● Your pull request was accepted, and so your change is now in the 

develop branch of the nuPRISM repo – need to do a cleanup

● First, delete the old feature branch on your local machine

git checkout develop –  move to the develop branch

git branch -d feature/myFeature –  delete the old branch

● Notice the first warning – I had not merged all my changes from that 
branch onto another, so I can't just delete it by accident

git push origin :feature/myFeature –  delete the feature/myFeature 
branch from the origin repository
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ννPPRRIISSMM Updating your repo
● Now want to merge back this new feature into my local and GitHub repo's

● First, add the nuPRISM repo as a remote repository called 'upstream'

git remote add upstream https://github.com/nuPRISM/Analysis.git

● Make sure you are on your develop branch

git fetch upstream 

git merge upstream/develop
● Now your develop branch is level with the nuPRISM develop branch

git push origin develop
● Now your GitHub repo matches the nuPRISM develop branch as well

● Make a new branch and start the process over again!
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ννPPRRIISSMM Our branching model
● Feature branches:

● Must be branched from the 
develop branch

● Must merge (pull request) back 
into the develop branch

● Release branch is used to release 
software

● Branches from develop

● Merges into develop and master

● Hotfix branch – maybe not needed?

● Branches from master

● Merges into master and develop

● Any time a change merges into the 
master branch this is a software 
release – tag a version
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ννPPRRIISSMM Further reading...
● Just a quick overview to help people get started

● Lots of help available online

● Strongly recommend you read these pages:

● http://git-scm.com/book/en/v2

● http://nvie.com/posts/a-successful-git-branching-model/

● Some useful commands:

● 'git status' – shows any changes and what is being tracked by git

● 'git branch -a' – shows all branches available, including remote ones

● 'git remote -v' – gives information on all the remote repos you have

● 'git checkout' – switch between different branches

● 'git diff file.cxx' – shows the difference between your current file and 
whatever was last committed to git (the local repository)

http://git-scm.com/book/en/v2
http://nvie.com/posts/a-successful-git-branching-model/
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