
ννPPRRIISSMM

Git and GitHub

Mark Scott for the νPRISM collaboration
νPRISM analysis meeting
17th March 2015 - IPMU

17/03/15 Mark Scott, TRIUMF 2

ννPPRRIISSMM Disclaimer

I am not an expert – please shout out if I say
something wrong, if you have a question, or if

there's a better way to do something

17/03/15 Mark Scott, TRIUMF 3

ννPPRRIISSMM What is Git?
● Version control software

● DVCS – Distributed Version
Control System

● CVS is a Centralised version
control system

● Each copy of the repository
has the complete history of
the project and fully mirrors
everything in the original
version

● No single repository is the
'official' repository

● Can have multiple remote
repositories - allows easy
collaboration

17/03/15 Mark Scott, TRIUMF 4

ννPPRRIISSMM What is GitHub?
● Web-based Git repository host

● Graphical interface to Git repositories

● Allows easy bug tracking, documentation and feature requests

● Introduces a more 'official' version of the repository

● Allows more centralised control of repositories

● Used by WCSim and Hyper-K – we will follow their work flow system

● https://github.com/nuPRISM - this is the nuPRISM organisation

● You should create an account and 'fork' each repository from the
nuPRISM organisation to your personal account

● A 'fork' is the GitHub name for the 'git clone' command – it creates a copy
of the repository in your account

https://github.com/nuPRISM

17/03/15 Mark Scott, TRIUMF 5

ννPPRRIISSMM Git branches
● In git, when you work on some new code you make a new branch

● A cheap operation, unlike CVS

● Lets you work separately on multiple features at once – each on a
different branch

● Allows collaborative
working
– You can commit code

to your branch that
stops the software
compiling without
affecting anyone else

– Many people can work
on a single branch

● You should always submit new code from a new branch

17/03/15 Mark Scott, TRIUMF 6

ννPPRRIISSMM Using Git(Hub)
● We are following this branching model

● Used by WCSim

● According to the internet it works
very well...

● Two main branches:

● master – the production branch,
should only be modified when we
perform a production release

● master branch should always
compile and work!

● develop – the branch which is the
basis for any software
development

● develop is not guaranteed to
compile or work – similar to the
HEAD version in CVS

http://nvie.com/posts/a-successful-git-branching-model/

17/03/15 Mark Scott, TRIUMF 7

ννPPRRIISSMM Developing a feature
● First, clone your GitHub repository to your local machine (should have

been done yesterday by the nuPRISM installation script)

git clone git@github.com:mscott201/WCSim.git
● Next, check which branch you are on

git branch – this lists all the branches in your local repository, and the *
indicates which branch you are on

● Now, create a new branch, called myFeature

git checkout -b feature/myFeature develop

– 'git checkout -b' will switch to a branch, and create a new branch if
it doesn't exist

– The next argument is the branch name
– The final argument is the branch you want your new branch to be

created from

17/03/15 Mark Scott, TRIUMF 8

ννPPRRIISSMM Developing a feature - 2
● Type 'git branch' again – we're now on the feature/myFeature branch

● Now, make any code changes you want – commit often and with
informative commit messages (these are all stored in the repo history)

git commit filename.cxx
● There are other ways of committing things, but this is fairly foolproof

● Try the 'git status' command at some point

● Lists all modified files and files not being tracked by git – use
'git add file.cxx' to add a new file to the repository

17/03/15 Mark Scott, TRIUMF 9

ννPPRRIISSMM Remote repositories
● We've made the changes we want, and tested that everything works

● Now, need to 'push' these changes to your GitHub repository. First, check
which remote repositories you have set up

git remote -v
● Remote repositories are repositories that you can 'push' updates to or

'pull' updates from

– One of the good things about git!
● Collaborate with Mark Hartz on something...

git remote add hartz https://github.com/markhartz/Analysis.git
● Adds a repo call 'hartz' that points to Mark's Analysis repository

● By default, when cloning a repo, a remote repository called origin is
added, pointing to the remote repo you cloned from

17/03/15 Mark Scott, TRIUMF 10

ννPPRRIISSMM Remote repositories - 2
● So, I now have two remote repositories, my repo on GitHub and Mark's

● If we're both working on one thing, if Mark makes a change to his repo I
can 'pull' that change over to my local code

git fetch mhartz

● 'git fetch' create a local copy of the remote repository, stored under
repo_name/branch_name

● Can then merge changes into my current branch

git merge mhartz/develop – it always merges into your current branch

17/03/15 Mark Scott, TRIUMF 11

ννPPRRIISSMM Pushing a feature
● Want to 'push' my last changes up to my GitHub repository so that Mark

can get them

git status – check everything I want to 'push' has been committed

git push origin feature/myFeature

● You now have a new branch in your GitHub account called
feature/myFeature

● Carry on committing, pushing and pulling code between people's personal
repositories until the myFeature branch is finished and validated

17/03/15 Mark Scott, TRIUMF 12

ννPPRRIISSMM Pull requests
● When a feature is complete, you can use GitHub to submit a pull request

to the nuPRISM organisation repository

● First, select your feature branch

17/03/15 Mark Scott, TRIUMF 13

ννPPRRIISSMM Pull requests
● When a feature is complete, you can use GitHub to submit a pull request

to the nuPRISM organisation repository

● First, select your feature branch

● Then, click the green button on the left

17/03/15 Mark Scott, TRIUMF 14

ννPPRRIISSMM Pull requests
● See a screen like this

17/03/15 Mark Scott, TRIUMF 15

ννPPRRIISSMM Pull requests
● See a screen like this

The base branch, which would pull our
changes (the nuPRISM/develop branch
in almost all cases)

17/03/15 Mark Scott, TRIUMF 16

ννPPRRIISSMM Pull requests
● See a screen like thisThe repository and branch we are
sending the request from – it has our
new feature

17/03/15 Mark Scott, TRIUMF 17

ννPPRRIISSMM Pull requests
● See a screen like this

A summary of the changes and commit
messages

17/03/15 Mark Scott, TRIUMF 18

ννPPRRIISSMM Pull requests
● See a screen like this

The actual changes to the code

17/03/15 Mark Scott, TRIUMF 19

ννPPRRIISSMM Pull requests
● See a screen like this

The button to submit the request

17/03/15 Mark Scott, TRIUMF 20

ννPPRRIISSMM Pull requests
● Submitted request sent to the nuPRISM repository

● Request appears, detail changes (very similar to last slide)

● Allows users to comment on changes and suggest improvements etc.

● See here for an example - https://github.com/nuPRISM/WCSim/pull/1

● A repository manager will decide if the pull request should be merged or
not

● Will iterate with comments and might ask you to fix any conflicts that
appear

● Any change you make to your feature/myFeature branch will also
be included in the pull request – if you want to do more work start a
new branch

● Please do not push directly to the nuPRISM repository

● Please do not merge your own pull request without discussing it first

https://github.com/nuPRISM/WCSim/pull/1

17/03/15 Mark Scott, TRIUMF 21

ννPPRRIISSMM Pull requests
● Submitted request sent to the nuPRISM repository

● Request appears, detail changes (very similar to last slide)

● Allows users to comment on changes and suggest improvements etc.

● See here for an example - https://github.com/nuPRISM/WCSim/pull/1

● A repository manager will decide if the pull request should be merged or
not

● Will iterate with comments and might ask you to fix any conflicts that
appear

● Any change you make to your feature/myFeature branch will also
be included in the pull request – if you want to do more work start a
new branch

● Please do not push directly to the nuPRISM repository

● Please do not merge your own pull request without discussing it first

https://github.com/nuPRISM/WCSim/pull/1

17/03/15 Mark Scott, TRIUMF 22

ννPPRRIISSMM Cleaning up
● Your pull request was accepted, and so your change is now in the

develop branch of the nuPRISM repo – need to do a cleanup

● First, delete the old feature branch on your local machine

git checkout develop – move to the develop branch

git branch -d feature/myFeature – delete the old branch

● Notice the first warning – I had not merged all my changes from that
branch onto another, so I can't just delete it by accident

git push origin :feature/myFeature – delete the feature/myFeature
branch from the origin repository

17/03/15 Mark Scott, TRIUMF 23

ννPPRRIISSMM Updating your repo
● Now want to merge back this new feature into my local and GitHub repo's

● First, add the nuPRISM repo as a remote repository called 'upstream'

git remote add upstream https://github.com/nuPRISM/Analysis.git

● Make sure you are on your develop branch

git fetch upstream

git merge upstream/develop
● Now your develop branch is level with the nuPRISM develop branch

git push origin develop
● Now your GitHub repo matches the nuPRISM develop branch as well

● Make a new branch and start the process over again!

17/03/15 Mark Scott, TRIUMF 24

ννPPRRIISSMM Our branching model
● Feature branches:

● Must be branched from the
develop branch

● Must merge (pull request) back
into the develop branch

● Release branch is used to release
software

● Branches from develop

● Merges into develop and master

● Hotfix branch – maybe not needed?

● Branches from master

● Merges into master and develop

● Any time a change merges into the
master branch this is a software
release – tag a version

17/03/15 Mark Scott, TRIUMF 25

ννPPRRIISSMM Further reading...
● Just a quick overview to help people get started

● Lots of help available online

● Strongly recommend you read these pages:

● http://git-scm.com/book/en/v2

● http://nvie.com/posts/a-successful-git-branching-model/

● Some useful commands:

● 'git status' – shows any changes and what is being tracked by git

● 'git branch -a' – shows all branches available, including remote ones

● 'git remote -v' – gives information on all the remote repos you have

● 'git checkout' – switch between different branches

● 'git diff file.cxx' – shows the difference between your current file and
whatever was last committed to git (the local repository)

http://git-scm.com/book/en/v2
http://nvie.com/posts/a-successful-git-branching-model/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

