NuPRISM Proposal to the J-PARC PAC

Mike Wilking NuPRISM Workshop March 14th, 2015

Overview

- We have already submitted an LOI document to the J-PARC PAC
 - This will form the basis of the full proposal
- Full proposal is date on June 15th, 2015
- There are no minimum requirements for additional studies
 - (i.e. we will submit what is available by June)
 - but further progress on existing analyses will help to strengthen our case
- In particular, we need to make the case for:
 - Substantial improvement to the T2K θ_{23} measurement
 - Sterile neutrino sensitivity comparable to the Fermilab short baseline program with reasonable systematic assumptions
 - v_e and anti-v_e sensitivity for Hyper-K measurements

Physics Inputs

- Accomplished:
 - Reduction of multinucleon uncertainty in v_{μ} disappearance to 1% level
 - v_{μ} flux fits for v_e appearance and anti-neutrino analysis
 - Initial (conservative) sterile neutrino sensitivities
- Not yet available:
 - Reduction of overall flux+xsec uncertainty in v_{μ} disappearance to ~3% level
 - v_e appearance constraints
 - Oscillation physics assuming $\sigma(v_e)/\sigma(v_\mu) = 1$
 - Double differential $\sigma(v_e)/\sigma(v_\mu)$ measurement
 - Sterile neutrino sensitivities with realistic guesses of systematic error reduction
- In the T2K era, NuPRISM's main impact will be to improve the θ_{23} measurement
 - A more clear explanation of how θ_{23} impacts T2K's sensitivity to δ_{CP} is needed
- Also need to emphasize how cross section modeling affects δ_{CP} sensitivity from v_e appearance in the Hyper-K era
 - Need to begin understanding NuPRISM now to ensure the success of Hyper-K
- Can also include MH and CP sensitivity from atmospheric neutrinos in the Super-K era
 - This is currently completely absent

ν_{μ} Disappearance

- Main NuPRISM physics result:
 - Insensitivity to multinucleon effects
- However, it would be useful to demonstrate that other systematics can also be controlled at this level
- So far, sensitivity is not as strong as expected
 - Should be possible, since HK LOI achieves very small uncertainties
 - (depends on assumptions)

M. Scott, 6th HK Meeting

je

S

Anti-neutrinos

- The LOI contained only these flux fits of the v-mode vµ to the wrongsign vµ bkg in anti-v-mode running
 - It would be useful to quantify how well this works
- We will also make the case that ND280 can provide sign selection
 - Demonstrating NuPRISM-only sensitivity to wrong-sign background would be helpful
- Need to discuss this week whether there is sufficient manpower to pursue this

Cross Section Measurements

- Monoenergetic beams are now available for study
 - First ever measurements of NC events with E_{ν}
 - First ever "correct" measurements of CC events with E_{ν}
 - Do not rely on final state for E_{ν}
- How precisely can we measure various final states?
 - e.g. using fiTQun μ/π separation
- Of critical importance are the background processes for the ν_e selections
- Lots of room for people to participate!
 - Many processes to study!

ve Event

- Current PID ass Super-K efficier
 - Improvement would 0 be very helpful for NuPRISM

600

400

200

0.5

oWall (cm)

- Low purity
 - Too much NC background
- Need to understand performance with realistic reconstruction

0.16 0.14 0.14

0.12

1

Sterile Analysis

- Goal is to properly compare NuPRISM with other sterile neutrino sensitivites
 - Fermilab SBN
 - J-PARC MLF experiment
- Reproducing these plots for NuPRISM will be important to contextualize our sensitivites
- Some short term studies are planned
 - Investigate uncertainties on each bkgd
 - Explore how reducing particular bkgds with NuPRISM control samples can improve sensitivity

Fermilab LAr SB Sensitivity

Simulation and Reconstruction

- One of the main goals of this meeting is to incorporate WCSim+FiTQun in the analyses
- Currently, the NuPRISM geometry is using the default WCSim 8" PMT (more from M. Scott)
 - In WCSim, 8" PMT = 20" PMT with one parameter modified (time resolution constant)
- FiTQun tuning requires several code modifications that exist in a separate copy of WCSim
 - Currently attempting to replicated official NuPRISM geometry in this version of the code
 - We should merge all needed WCSim code this week
- All tuning MC and analysis scripts have been produced
 - PMT charge response inputs are ready
 - Scattering table files are generated
 - PMT angular distribution MC has been generated
 - All the time pdf MC has been generated, and the analysis scripts have been adapted to WCSim
 - Need to finish assembling these pieces this week
- In the future we should explore other options
 - HPDs & HQE PMTS
 - Different sizes: 8", 5", etc.
- For the proposal, we likely only have time to stick with the existing 8" PMTs

Detector Design

- Building a very large PMT structure that can move vertically is a very challenging engineering problem
 - Very large volume filled with water that must maintain structural integrity while being pulled through the pit
 - Must use materials that can withstand ultrapure water (expensive!)
 - Also must ensure that PMTs are not damaged while moving the structure
- Currently working with an engineer at Stony Brook to put together some strawman designs of the tank and PMT array
 - Plastic housing around PMTs to act as a shock absorber, and allow for individual removal and maintenance
 - A series of I-beams (not pictured) to provide structural support for the structure
- We may try to have somewhat regular meetings if others are interested in discussing plausible designs that can be included in the proposal

Cost Estimates

- LOI had a very crude cost estimate of the entire project
- Cost drivers (PMTs and civil construction) were based on real numbers from companies
 - Although the civil construction depends on a geological survey of the eventual site
- Most of the remaining costs were taken from the T2K 2 km proposal
 - Exchange rate of 107 yen / \$
 - 2005 prices assumed (i.e. flat Japanese inflation rate)
- We must decide which items need more precise cost estimates for the proposal
 - PMT support structure cost may be underestimated

TABLE IV. Summary of nuPRISM project costs, excluding any contingency. Costs taken directly from the T2K 2 km proposal are labeled with *

Item	Cost (US M \$)
Cavity Construction, Including HDPE Liner	6.00
*Surface Buildings	0.77
*Air-Conditioning, Water, and Services	0.50
*Power Facilities	0.68
*Cranes and Elevator	0.31
*PMT Support Structure	1.27
3,215 8-inch PMTs	4.30
PMT Electronics	1.45
*PMT Cables and Connectors	0.13
Scintillator Panels	0.36
Water System	0.35
Gd Water Option	0.15
*GPS System	0.04
Total	16.31

Summary

- The NuPRISM proposal will be submitted in just under 3 months
 - Time is short to make significant analysis upgrades
- Implementing simulation & reconstruction this week should enhance several analyses
 - Particularly the sterile and long-baseline v_e analyses
- For the proposal, we should be sure to explain what NuPRISM might reasonably achieve (not just what we can already prove today)
- Let's try to strengthen our physics case over the next three months!