NEW AVENUES TO RHN PAIR @ HADRONIC COLLIDERS

THE JOINT KAVLI IPMU / DURHAM / KIAS WORKSHOP: NEW PARTICLE SEARCHES CONFRONTING THE FIRST LHC RUN-2 DATA

ZHAOFENG KANG, KIAS, 10/09/2015

CONTENTS

- Low scale type-I seesaw and the search
- Dynamics of RHN leads to pair production
- RHN pair @ 14 &100 TeV colliders
- Conclusions

Low scale type-I seesaw and the search

Type-I seesaw: elegance in the dark

The most elegant way to understand non-zero mass of neutrinos, but they are subject to decoupling at low energy

either light RHN (~TeV) & very small coupling (<10⁻⁶) or heavy RHN (~GUT) & large coupling (~1), both hopeless at colliders

Large L-R mixing and same sign di-lepton (SSDL)

For a single family, the sterile and active mixing angle $(m_v/Mv_R)^{1/2} \ll 1$ but RHN flavor structure may allow a sizable mixing angle at the price of fine-tuning

suppressed by one mixing angle

Low scale type-I seesaw and the search

RHN search: the current and future

For heavy RHN above the weak scale, EWPT almost negates the potential at LHC

ILC may reach mixing with electron~10⁻⁴

But neutrinoless double beta decay (0βνν) at GERDA shadows this potential, which already rules out mixing above 10⁻⁶ for heavy RHN

For other modes, mixing with μ has slightly better prospect at 14 TeV LHC; and it is hopeless for the mixing with τ

Dynamics of RHN leads to pair production

• Why new dynamics?

Fermions may be arranged by gauge anomaly cancelation, thus RHNs having new gauge interactions

RHNs mass may origin in a Higgs-like mechanism and thus they participate in new Yukawa interaction with heavy Higgs bosons.

Simplified model description:

$$-\mathcal{L}_X = \frac{1}{2} M_X^2 X_\mu X^\mu + g_N \bar{N} \gamma_\mu P_R N X^\mu + g_q \bar{q} \gamma_\mu q X^\mu, \qquad -\mathcal{L}_\phi = \frac{1}{2} m_\phi^2 \phi^2 + \lambda_N \phi \bar{N} P_R N + \theta \frac{\alpha_s}{m_t} \phi G G$$

Benchmark: local B-L SM, giving both resonances

	q_L	u_R	d_R	l_L	e_R	ν_R	H	Φ	
$SU(3)_c$	3	3	3	1	1	1	1	1	
$SU(2)_L$	2	1	1	2	1	1	2	1	
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	0	1/2	0	
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0	2	

<Φ>~TeV breaks B-L, giving mass to Z' and RHNs

$$\mathcal{L}_Y = -y^{\nu} \bar{\ell}_L \nu_R \tilde{H} - \frac{1}{2} y^M \bar{\nu}_R^c \nu_R \Phi + h.c.$$

$$\Gamma(Z' \to \bar{f}f) = \frac{M_{Z'}}{12\pi} C_f (\mathcal{Q}_f g_{B-L})^2 \left(1 + 2\frac{m_f^2}{M_{Z'}^2}\right) \sqrt{1 - \frac{4m_f^2}{M_{Z'}^2}}$$

Dynamics of RHN leads to pair production

- Pair production via S-channel resonance
- RHN Decay: specified by equivalence theorem

$$\Gamma(N_{\alpha} \to W^{-}\ell_{i}^{+}) = \Gamma(N_{\alpha} \to W^{+}\ell_{i}^{-}) \approx \frac{g^{2}}{64\pi M_{W}^{2}} M_{N}^{3} |(U_{\nu N})_{i\alpha}|^{2}.$$

$$\Gamma(N_{\alpha} \to Z\nu_{i}) \approx \Gamma(N_{\alpha} \to h\nu_{i}) \approx \frac{g^{2}}{64\pi M_{W}^{2}} M_{N}^{3} |(U_{PMNS}^{\dagger}U_{\nu N})_{i\alpha}|^{2}.$$

• 3-channels: di-W & di-Higgs & the hybrid, hW

Hold in the massless limit.

RHN pair @ 14 &100 TeV colliders

5-signal regions

Attempt to explore a wide region on the M_X - $2Mv_R$ plane.

We consider five signal regions, corresponding to 5 patters of kinematic features of the final states

Cuts are optimized with to 5 benchmarks points then applied to all other grids

- S1: M_{Z'} = 0.35 TeV and M_{ν_R} = 150 GeV Both particles are light, so neither ν_R nor its secondary decay product h/W is boosted. The resulting relatively soft jets and leptons are not easy to reconstructed.
- S2: $M_{Z'} = 1.45$ TeV and $M_{\nu_R} = 700$ GeV Both are heavy but Z' mass is near the threshold $2M_{\nu_R}$ such that ν_R is non-boosted; h/W is well boosted.
- S3: M_{Z'} = 1 TeV and M_{ν_R} = 150 GeV For this pattern ν_R is highly boosted while h/W is not. Its remarkable feature is that the final states from ν_R are substantially collimated, rendering the jets/leptons more or less overlapping:

$$\Delta R_{\ell W} \sim \frac{2M_{\nu_R}}{M_{Z'}/2} \sim 0.6.$$
 (16)

- features of the final states S4: $M_{Z'} = 5$ TeV and $M_{\nu_R} = 700$ GeV. Both ν_R and h/W are boosted. Like S3, there is a mild collimation effect, but the hardness of jets/leptons helps to overcome it.
 - S5: $M_{Z'} = 10.05$ TeV and $M_{\nu_R} = 5$ TeV It corresponds to a non-boosted ν_R nevertheless super boosted h/W. This pattern is only specific for the 100 TeV collider where that heavy ν_R is accessible.
- Using multi variable analysis (MVA)

RHN pair @ 14 &100 TeV colliders

Benchmark reaches @ 14&100 TeV (in bracket)

Di-W channel with trilepton signature: the gold channel

	Cut	ϵ (SIG)	$\sigma(BG)(fb)$	signal reach(fb)@ 3000 fb^{-1}	
S1	BDT > 0.2[0.2]	0.0195[0.013]	0.27[9.9]	2.5[115]	S4=
S2	BDT > 0.5[0.4]	0.069[0.06]	$7.9\times 10^{-3}[0.52]$	0.073[1.5]	S1_
S3	BDT > 0.4[0.3]	0.016[0.016]	$5.0\times 10^{-3}[0.96]$	0.25[9.6]	51-
S4	$\mathrm{BDT}{>}0.6[0.5]$	0.125[0.15]	$8.8\times 10^{-4} [0.062]$	0.013[0.11]	the h
S5	BDT>NO[0.5]	NO[0.21]	NO[0.042]	NO[0.061]	

S4=(5,0.7)TeV is the best~0.013 (0.11) /fb; S1=(0.35,0.15) TeV is the worst. In models the heavy S4 production is suppressed

The boosted di-*h* plus MET: lepton flavor independent

For boosted Higgs like S2/S4/S5, sensitivity is a few times weaker than that of the di-W channel, but it improves @ 100 TeV, except for S5.

hW-channel: DL+boosted h+MET

compared to the gold channel, even better like S2 @ 100 TeV

	Cut	ϵ (SIG)	$\sigma(BG)(fb)$	signal reach(fb)@ 3000 fb^{-1}
S2	$\mathrm{BDT}{>0.2}[0.2]$	0.015[0.0078]	0.012[0.067]	0.42[2.2]
S3	BDT > 0.2[0.2]	0.01[0.0045]	0.39[2.01]	6.8[69.2]
S 4	BDT > 0.2[0.2]	0.048[0.029]	0.034[0.067]	0.24[0.6]
S5	BDT > NO[0.3]	NO[0.028]	NO[2.73]	NO[15.0]

S5 gives super boosted Higgs,

substructure technique fails

-	Cut	ϵ [SIG]	$\sigma[BG][fb]$	signal reach[fb]@ 3000 fb ⁻¹
SR2	BDT> 0.2[0.2]	0.02[0.0075]	0.001 [0.015]	0.087[0.94]
SR3	BDT>0.2[0.15]	0.013[0.0063]	0.0076[0.49]	0.38[13.2]
SR4	BDT>0.2[0.2]	0.038[0.029]	$2.5\times 10^{-4} [0.082]$	0.023[0.18]
SR5	BDT>NO[0.3]	NO[0.055]	NO[0.47]	NO[1.4]

RHN pair @ 14 &100 TeV colliders

• Preliminary results on the M_X -2 Mv_R plane

@ the end of 14 TeV, combine three channels (the di-*W* and *hW* channels dominate).

Fixing g'=0.6 (NWA limit) gets much better reach

@ the 100 TeV collider with 3000/fb NWA breaks down for Z' mass above ~6 TeV

Conclusions

- The conventional search for RHN relies on large sterile-active neutrino mixing which requires fine-tuning in the flavor structure.
- Moreover, the search hardly reaches the TeV region
- It is well expected that RHNs are not sterile beyond SM, and new gauge/Yuakawa interactions lead to RHN pair production with resonant enhancement
- We explore di-W with trilepton, di-h with boosted di Higgs bosons plus MET and the hW channel at the 14 & 100 TeV colliders.