Spin-I particle and the ATLAS Diboson excess

Tomohiro Abe (KEK)

based on the works 1507.01681: TA, Teppei Kitahara, Mihoko Nojiri

Kavli-IPMU-Durham-KIAS workshop: New particle searches confronting the first LHC run-2 data 2015.9.9

ATLAS diboson excess

ATLAS EXOT-2013-008

• $pp \rightarrow X \rightarrow WZ/WW/ZZ \rightarrow two fat jets$

- * mass of X ~ 2TeV ?
- * local significance: WZ 3.4 σ , WW 2.6 σ , ZZ 2.9 σ
- * global significance: WZ 2.5 σ

No CMS excess in the same process

Situation of diboson in each channel

final states	ATLAS	CMS
$VV \rightarrow jets$	excess	no excess
$WZ \rightarrow \ell v$ $WZ \rightarrow jets + \ell \ell$ $WZ \rightarrow \ell v +$	no excess	no excess

- Excess is only in pp \rightarrow VV \rightarrow jets at the ATLAS
 - * logal: WZ 3.4σ, WW 2.6σ, ZZ 2.9σ
 - * global: WZ 2.5σ
- Excess might be statistical fluctuation
- *But* it is good exercise to consider what kind of BSM can explain the excess

What we know about the excess

• New particles (X) is a boson

★ It decays into WZ/WW/ZZ

• WZ/WW/ZZ are not good separated

- * $|m_j m_V| < 13 \text{GeV}$
- ★ one or two channels are enough to be explained

In this talk

• focus on spin 1 new particle (W' and Z')

- ★ add new SU(2) gauge symmetry
- $\star W' \to WZ, Z' \to WW$
- ★ no ZZ final state
- ★ many models can be constructed (choice of Higgs and fermion sectors)

pick up one specific model

- ★ renormalizable and perturbative model
- ★ (non perturbative model \rightarrow talk by Dr. Fukano)
- ★ (model independent feature \rightarrow talk by Mr. Nagai)

discuss prospect for LHC run-2

- ★ model independent feature of $W' \rightarrow WZ \rightarrow$ hadrons channel
- ★ (for another channel \rightarrow talk by Mr. Liew)

model

model setup

TA and Kitano '13

schematic picture (moose notation)

- $SU(2)_0 \times SU(2)_1 \times U(1)_2 \rightarrow U(1)_{QED}$
- three Higgs doublets
 - ★ H_1 : SU(2)₀ x SU(2)₁ → SU(2)_v
 - ★ H_2 : SU(2)₁ × U(1)₂ → U(1)_y
 - ★ H_3 : SU(2)₀ × U(1)₂ → U(1)_v

- ★ 12 reals scalars (6 of them are eaten by gauge boson)
- ★ 6 physical scalar (3 CP-even + 1 CP-odd + 1 pair of charged Higgs)

• fermion

- * ψ_L : (SU(2)₀, SU(2)₁, U(1)₂) = (2, 1, 1/6) or (2, 1, -1/2)
- * ψ_R : (SU(2)₀, SU(2)₁, U(1)₂) =(1, 1, Q_{QED})
- ***** Yukawa is given by H_3

$$\mathcal{L}^{\text{Yukawa}} = -\bar{Q}^{i}H_{3}\begin{pmatrix} y_{u}^{ij} & 0\\ 0 & y_{d}^{ij} \end{pmatrix} \begin{pmatrix} u_{R}^{j}\\ d_{R}^{j} \end{pmatrix} + (h.c.) + (\text{lepton sector})$$

0

★ $m_{H} = m_{H'} = m_{A} = 2 \text{TeV}$

★ width is narrow (20 GeV for $m_{W'}$ = 2TeV)

results

prospect for LHC run-2

95% exclusion limit at LHC run-2

- ★ WZ → hadrons
- \star W' width = 25GeV
- ★ model independent result (as long as width is narrow)

Summary

Summary

diboson excess around 2TeV by the ATLAS

- \star CMS does not find the excess
- ★ no excess with leptonic decay channel
- \star nice exercise to consider BSM

an example model (W' and Z')

- ★ renormalizable model
- * $\sigma(pp \rightarrow V' \rightarrow lv)$ and $\sigma(pp \rightarrow V' \rightarrow Vh)$ give strong bound
- * $\sigma(pp \rightarrow V' \rightarrow VV) = 6$ fb is possible

• prospect for LHC run-2

★ less than 10 fb-1 is enough to exclude the 2TeV excess

Backup slides

Other final states from diboson

Works in market (more than 30 papers)

• Spin 0 (S \rightarrow WW, S \rightarrow ZZ)

1507.02483, 1507.03553, 1507.04431, 1507.05028, 1507.05310, 1507.06312, 1508.04814, 1508.05632

• Spin 1 (W' \rightarrow WZ, Z' \rightarrow WW)

1506.03751, 1506.03931, 1506.04392, 1506.05994, 1506.06064, 1506.06736, 1506.06767, 1506.07511, 1506.08688, 1507.00013, 1507.0268, 1507.00900, 1507.01185, 1507.01638, 1507.01681, 1507.01914, 1507.01923, 1507.02483, 1507.03098, 1507.03428, 1507.03553, 1507.03940, 1507.04431, 1507.05028, 1507.05299, 1507.05310, 1507.06018, 1507.06312, 1507.07102, 1507.07406, 1507.07557, 1507.08273, 1508.00174, 1508.02277, 1508.03544, 1508.04129, 1508.05940

• Spin 2

1507.03553, 1507.06312, 1508.04814

• others (tri-boson can mimic diboson signal)

1506.06739

Monte Carlo part

What we did in MC part

• Monte Carlo

- * QCD dijet as BG (1.73 10^6 ~ 5fb-1, $E_{CM} > 1$ TeV, pT>400GeV, sqrt[s] =13TeV) by PYTHIA8.205
- \star signal (pp \rightarrow W' \rightarrow WZ) $m_{W'}$ = 1.8TeV to 3.2 TeV, width =25GeV
- ★ Tune 4C for fragmentation and hadronization
- ★ detector simulator DeLPHES3 is modified using FastJet3
- \star cuts: same as the cuts used by ATLAS

• Our MC result

- ★ we checked signal distributions agree with the ATLAS result (8TeV)
- ★ we found # of back ground is twice of the ATLAS result (8TeV)
- ★ we scale our BG 1/2 for 13TeV analysis

More on our model

model parameters

- 4 masses: $m_{Z'}$, m_H , $m_{H'}$, m_A * $m_{Z'} = 2\text{TeV}$ (for the excess) * $m_H = m_{H'} = m_A = 2\text{TeV}$ (for simplicity)
- **3 couplings:** $\kappa_{F}, \kappa_{Z}, g_{WW'H'}$ * $\kappa_{F} = 1, \kappa_{Z} \sim 1, g_{WW'H'} = 0$

$$(\kappa_F = g_{hff}/g_{hff}^{SM}, \kappa_Z = g_{hZZ}/g_{hZZ}^{SM})$$

• 2 others VEVs: r, v_3

 $(r = v_2/v_1)$

★ we treat them as free parameter in our analysis

constraint on (r, v₃)-plane

$$m_{Z'} = m_{heavy Higgs} = 2 \text{ TeV}, \kappa_F = 1.00$$

$\sigma(pp \rightarrow W' \rightarrow WZ) + \sigma(pp \rightarrow Z' \rightarrow WW)$ [fb]

$$m_{Z'} = m_{heavy Higgs} = 2$$
 TeV, $\kappa_F = 1.00$

 $\star \sigma > 5$ fb for small *r* region

95% exclusion limit at I3TeV

