On LHC "excesses"

Seng Pei Liew (U. of Tokyo)

(based on...) 1502.05712 (JHEP 1505 (2015) 133) 1506.08803 1507.08273 IPMU 2015

08/09

Several excesses at > 2.5σ level are found at ATLAS, CMS and LHCb

(not exhaustive...)

CMS	1407.3683	2.8σ	2I + 2j	RPV SUSY?
	1502.06031	2.6σ	jets plus dilepton plus MET	SUSY?
ATLAS	1503.03290	3.0σ	jets plus on-shell Z plus MET	SUSY?
	1506.00962	3.4σ	WW/WZ/ZZ resonance at ~ 2 I	ev Z?
LHCb-C(DNF-2015-002	2.9σ	B0-> K*0 mu+ mu-	??

Several excesses at > 2.5σ level are found at ATLAS, CMS and LHCb

(not exhaustive...)

CMS jets plus l^+l^- plus MET search (1502.06031)

CMS jets plus l^+l^- plus MET search (1502.06031)

opposite-sign same-flavor (OSSF) leptons are looked for $e^+e^- \text{ or } \mu^+\mu^$ est. bkg: 730 ± 40 events observed: 860 an excess of 130^{+48}_{-49} events

can be interpreted as a triangular "edge" peaked at $m_{l+l-} = 78.7 \text{ GeV}$

*the excess is found to be accompanied by b-tagged jets

Kinematical edge as a classical signature of SUSY

Cascade decay of SUSY particle

jets plus dilepton plus MET

Kinematic edge is formed via decays mediated by slepton

$$\tilde{\chi}_2^0 \to \tilde{\ell}^{\pm} \ell^{\mp} \to \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0,$$

or a Z or Higgs boson

 ${\tilde \chi}_2^0
ightarrow \ell^\pm \ell^\mp {\tilde \chi}_1^0,$

SUSY interpretations (sbottom cascade decay)

Testing the excess with other LHC searches

1502.05712

	channel	search for	arXiv or CONF-ID	refs
	$2-6j+0\ell+E_T$	${\widetilde{q}},{\widetilde{g}}$	ATLAS-CONF-2013-047	[18]
			1405.7875	[19]
libottom +ME1 search	$2b + 0\ell + E_T$	$ec{t}, ec{b}$	1308.2631	[20]
	$4j+1\ell+E_T$	\tilde{t}	ATLAS-CONF-2013-037	[21]
	$\geq 2j + \geq 1\ell + \not\!\!\!E_T$	$ ilde q, ilde g (1 { m or} 2\ell)$	ATLAS-CONF-2013-062	[22]
	$2j+2\ell+E_T$	dilepton edge	CMS-PAS-SUS-12-019	[1, 2]
	$2j + \ell^{\pm}\ell^{\pm} + \not\!\!\!E_T$	$\hat{q}, \tilde{g}, \tilde{t}, \tilde{b}$ (SS lepton)	ATLAS-CONF-2013-007	[23]
stop search	$2j + 2\ell + E_T$	$\tilde{t}(\mathbf{k}\ell)$	ATLAS-CONF-2013-048	[24]
			1403.4853	[25]
	$2, 3\ell + \not\!\! E_T$	$ ilde{\chi}^{\pm}, ilde{\chi}^{0}, ilde{\ell}$	1404.2500	[26]
			1405.7570	[27]
	$3\ell + E_T$	$\tilde{\chi}^{\pm}, \tilde{\chi}^{ar{b}}$	1402.7029	[28]
	$\geq 3\ell + E_T$	$\tilde{\chi}^{\pm}, \tilde{\chi}^{0}$	CMS-PAS-SUS-13-002	[10]
		\setminus		
		$\setminus \setminus$		
		\\norti	oularly appart	ninir
		parti	cularly constra	all III

constrained by stop search

 $\tilde{t} \to W^{(*)}b$

requires

$$\operatorname{Br}(\tilde{b} \to \tilde{\chi}_2/\tilde{\chi}_3) \gtrsim 80\%$$

otherwise, this scenario is constrained by dibottom + MET search

We do not find suitable MSSM scenario to explain the excess

ATLAS jets plus on-Z leptons plus MET search (1503.03290)

ATLAS jets plus on-Z leptons plus MET search (1503.03290)

interpreted with GMSB models in the paper $\tilde{g} \rightarrow jj\tilde{\chi} \rightarrow jj\tilde{G} + Z$

gluino Higgsino gravitino

GMSB models are constrained by other LHC searches

A rather compressed mass spectrum is required to avoid these constraints

ATLAS diboson excess (1506.00962)

(b)

ATLAS diboson excess (1506.00962)

$$pp \to X \to JJ$$

ATLAS looks for **fat jets** with mass approximately the same as W or Z boson

Excesses are seen in WW,ZZ,WZ channels for resonance mass around 2 TeV

see today's talks for NP interpretations

Excesses are only observed in the hadronic channels

 $W \rightarrow jj, \ l\nu$

no excess is observed in the semi-leptonic diboson channel

a variety of final states is expected

1503.04677

We propose to utilize mono-(fat)jet searches to further test the excess 1507.08273

jets are highly boosted and can be tagged as a "fat" jet

 χ

 $\bar{\chi}$

Current limits of mono-(fat)jet search are weak, but optimizing the MET cut can greatly improve the bound

Conclusions

inconclusive.

No clear excesses observed simultaneously by both collaborations

Excesses are constrained in various ways by other LHC searches

Looking forward to the next run of the LHC