$SU(2)_X$ vector DM at the LHC

Takaaki Nomura (KIAS)

Based on the paper: C. H. Chen, T. N. arXiv:1507.00886

2015 9.10 Kavli-IPMU-Durham-KIAS workshop

Many observation indicate the existence of dark matter

(100 👷

V_c (km :

50

150

Rotation of spiral galaxies

 $v(r) \propto \sqrt{M(r)/r}$

 $M(r) \propto r$ in outside of visible region

- Clusters of galaxies
- Gravitational lensing
- Formation of Large scale structure
- Bullet Clusters
- **CMB** anisotropy : WMAP, Planck

Only through gravitational interaction

Vector DM from Hidden SU(2)_x gauge symmetry

SU(2)_x model with quadraplet scalar field

- > SU(2)_X is spontaneously broken to Z_3 symmetry
- Gauge boson can be Z₃ charged : DM candidate

✤ SU(2)_X DM phenomenology

DM annihilate into SM particles via Higgs-dark Higgs mixing

Explaining galactic center gamma-ray excess

(C.H.Chen, T.N. PLB 746 (2015) 351, 1501.07413) $m_{DM} = 40 \sim 100 GeV$

It would be produced at the LHC

Structure of the model

Gauge symmetry : $G_{SM} \times SU(2)_X$

New field contents: X^a_{μ} (a = 1, 2, 3) SU(2)_x gauge fields

$$\Phi_4 = (\phi_{3/2}, \phi_{1/2}, -\phi_{-1/2}, \phi_{-3/2}) / \sqrt{2}$$

Scalar qadruplet for $U(2)_X$ breaking

Lagrangian of the model

$$L = L_{SM} + L_{new}$$

$$L_{new} = -\frac{1}{4} X^{a}_{\mu\nu} X^{a\mu\nu} + (D^{\mu}\Phi_{4})(D_{\mu}\Phi_{4}) + V(H,\Phi_{4})$$

$$\begin{pmatrix} X^{a}_{\mu\nu} = \partial_{\mu}X^{a}_{\nu} - \partial_{\nu}X^{a}_{\mu} + g_{X}\varepsilon_{abc}X^{b}_{\mu}X^{c}_{\nu} \\ D_{\mu}\Phi_{4} = \partial_{\mu}\Phi_{4} - ig_{X}X^{a}_{\mu}T^{a}\Phi_{4} \\ T^{i} = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}, T^{2} = \frac{i}{2} \begin{pmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}, T^{2} = \frac{i}{2} \begin{pmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}, T^{3} = \begin{pmatrix} 3/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & -3/2 \end{pmatrix}$$

$$V(H, \Phi_{4}) = \mu^{2} |H|^{2} + \lambda |H|^{4} + \mu^{2}_{\Phi} |\Phi_{4}|^{2} + \lambda_{\Phi} |\Phi_{4}|^{4} + \lambda^{1} |H|^{2} |\Phi_{4}|^{2}$$

$$\Rightarrow \Phi_{4} \ge (\nu_{4}, 0, 0, \nu_{4})^{T} / \sqrt{2}, \qquad H \ge (0, \nu)^{T} / \sqrt{2}$$

Gauge bosons

• $\chi_{\mu}, \overline{\chi}_{\mu} \quad \bigstar$ Candidate of dark matter

From $T_3 = \pm 1$ component of SU(2)_X gauge fields (Z_3 charged) X_{μ}^3

 $T_3 = 0$ component of SU(2)_X gauge fields (Z_3 non-charged)

 χ

Higgs bosons

 $H \supset \phi = h\cos\theta - H^0\sin\theta \qquad \Phi_4 \supset \phi_r = h\sin\theta + H^0\cos\theta$

Gauge interaction : DM and Higgs bosons

$$\sqrt{3}g_{X}m_{\chi}\sin\theta\chi_{\mu}\overline{\chi}^{\mu}h + \sqrt{3}g_{X}m_{\chi}\cos\theta\chi_{\mu}\overline{\chi}^{\mu}H^{0}$$

$$H^{0}-SM \text{ particle interection}$$

$$SM \text{ h coupling × sinθ}$$

$$\overline{}$$

Parameters in the model

Original parameters

$$g_X, \mu, \mu_{\Phi}, \lambda, \lambda_{\Phi}, \lambda$$

Gauge coupling & parameters in the potential

after SSB

Free parameters in our analysis

 $g_X, m_{\chi}, m_{H^0}, \sin\theta$ $(m_h = 125 \, GeV, v \approx 246 \, GeV)$ Gauge coupling & new particle masses & and mixing angle for scalar bosons

Signal of the dark matter in our model at the LHC

DMs are produced through Higgs bosons h and H⁰

We consider DM mass and H⁰ mass motivated by GC γ-ray excess

$$\implies m_{\chi} = 20 \sim 80 GeV \qquad A: m_{H} \approx m_{\chi} \qquad B: m_{H} \approx 2m_{\chi}$$

Current constraints

Invisible h decay

LHC 8 TeV limit from ATLAS: ATLAS-COM-CONF-2015-004 arXiv:1509.00672

• DM direct detection

$$\sigma_{\chi N} \approx \frac{3g_X^2 f_N^2}{4\pi} (\sin\theta\cos\theta)^2 \left(\frac{m_N}{m_\chi + m_N}\right)^2 \left(\frac{m_{H^0}^2 - m_h^2}{m_h m_{H^0}}\right)^2$$

Compared with LUX constraint (PRL 112, arXiv:1310.8214)

H and H⁰ production processes

- **(1)** Mono-jet production : p p > h/H⁰ + jet
- **(2)** Vector boson fusion (VBF) : p p > h/H⁰ + 2 jets
- **③** Z/W associated production : p p > h/H⁰ + Z/W
- **(4)** Top associated production : p p > h/H⁰ + t tbar

Production cross sections

- ***** H⁰ production σ = SM h production σ × sin²θ
- * Mono jet production σ is largest, however background is huge
- VBF is promising; we can reduce BG with kinematical cuts

Production cross sections Off-shell Higgs 100.0 ----- On-shell Higgs 14 TeV 14 TeV 50.0 We consider 4 cases for VBF $H^0 \rightarrow \overline{\chi}\chi$ $h \rightarrow \overline{\chi} \chi$ $I_A: m_h > 2m_{\chi}, m_{H^0} = 2m_{\chi} + 1 \, GeV$ **On-shell On-shell** $I_B: m_h > 2m_{\chi}, m_{H^0} = m_{\chi} - 1 \, GeV$ **On-shell Off-shell** $II_{A}: m_{h} < 2m_{\chi}, m_{H^{0}} = 2m_{\chi} + 1 \, GeV$ **Off-shell On-shell** $H_B: m_h < 2m_{\gamma}, m_{\mu^0} = m_{\gamma} - 1 \, GeV$ **Off-shell Off-shell**

- ***** H⁰ production σ = SM h production σ × sin²θ
- * Mono jet production σ is largest, however background is huge
- VBF is promising; we can reduce BG with kinematical cuts

Kinematical cuts

Generating events:

- Using MADGRAPH/MADEVENT package
- > PYTHIA6 for ISR/FSR, hadronization, decay of SM particles
- Detector level simulation with PGS 4

SM backgrounds:

- Z + 2jets, Z+ 3jets
- > W+ 2jets, W+ 3jets
- ≻ tWb

 $\Delta \eta_{
m jj}$

We apply kinematical cuts:

 $p_T(j) > 50 \text{ GeV}, \quad |\eta(j)| < 4.7, \quad \eta(j_1) \cdot \eta(j_2) < 0, \quad E_T^{\text{miss}} > 130 \text{ GeV},$ $\Delta \eta_{jj} > 4.5, \quad \Delta \phi_{jj} < 1.5, \quad M_{jj} > 1100 \text{ GeV},$

Similar to CMS analysis : Eur. Phys. J. C 74 , 2980 (2014) [arXiv:1404.1344 [hep-ex]].

Cross sections after cuts

$\sigma_{\rm BG}[{\rm fb}]$	Zjj	Zjjj	Wjj	Wjjj
	32.9	8.54	14.2	2.20
	$m_{\chi}[\text{GeV}]$	40	50	60
	IA	18.6 R_{H^0} + 17.2 R_h	17.5 R_{H^0} + 17.2 R_h	17.3 R_{H^0} + 17.2 R_h
$\sigma_{\rm signal}[{\rm fb}]$	I_B	17.2 R_h	$17.2 R_h$	$17.2 R_h$
	$m_{\chi}[\text{GeV}]$	65	70	75
	II_A	$16.3 R_{H^0}$	$16.0 R_{H^0}$	$15.4 R_{H^0}$
	II_B	$0.689 \ R_{\rm off}$	$0.211 \ R_{\rm off}$	$0.102 \ R_{\rm off}$

$$R_{H^{0}} = \sin^{2} \theta \times Br(H^{0} \to \overline{\chi}\chi)$$
Estimate significance of the signa
$$R_{h} = \cos^{2} \theta \times Br(h \to \overline{\chi}\chi)$$

$$S = N_{S} / \sqrt{N_{B}}$$

$$R_{off} = (g_{X} \sin \theta \cos \theta)^{2}$$

Significance VS coupling

> For simplicity, we took $\cos\theta=1$ because $\sin\theta$ is small

 \succ For I_A, sin θ is larger for smaller $g_{\chi} \rightarrow$ more contribution from H⁰

Significance VS coupling

> For simplicity, we took $\cos\theta=1$ for II_B because we take $\sin\theta$ is small

> For II_A, sin θ is large for smaller g_X

Coupling-DM mass contour for fixed significance

Luminosity = 100 fb^{-1}

LHC 8 TeV limit from ATLAS: ATLAS-COM-CONF-2015-004

Summary

Hidden SU(2) vector DM model

- $\diamond Z_3$ symmetry as a subgroup of SU(2)
- **OM** candidates are massive gauge boson
- **OM** interaction with SM through Higgs mixing
- Possible explanation of galactic gamma-ray excess
 A second part of the LHC
- Search for vector DM at the LHC
 - Collider signature; invisible decay of Higgs bosons
 - **♦On-shell h or H⁰ case is promising**
 - **We can test more parameter space by LHC-run2**

Appendix

Relic density of DM

Relic density calculation

Relic density is obtained by solving Boltzmann equation :

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v_{rel} \rangle (n_{\chi}^2 - n_{\chi eq}^2)$$

Dominant DM annihilation processes

+ t(u)-channel process

Search for the parameter region satisfying observed relic density Planck data (90% C.L.) $0.1159 \le \Omega_D h^2 \le 0.1215$ P.A.R. Ade et al [Planck Collaboration] (2013)

Ω_D is Calculated with MicrOMEGAs

(G. Belanger, F. Boudjema, A. Pukhov and A. Semenov)

Constraint DM-Nucleon scattering

DM-Nucleon scattering through H⁰ and h exchanging processes

Cross section:
$$\sigma_{\chi N} \approx \frac{3g_{\chi}^2 f_N^2}{4\pi} (\sin\theta\cos\theta)^2 \left(\frac{m_N}{m_{\chi} + m_N}\right)^2 \left(\frac{m_{H^0}^2 - m_h^2}{m_h m_{H^0}}\right)^2$$

 $f_N = [1.1, 3.2] \times 10^{-3}$: Higgs-Nucleon coupling H.Y. Cheng, C.W.Chian (2012)

Compare the cross section with DM direct detection search

Value of sin θ is constrained to be smaller than ~ 0.1

 $m_{H^0} \approx 2m_{\chi}$ is required to satisfy constraints from direct detection

Galactic center Gamma-ray from DM annihilation

The flux of Gamma-ray from DM annihilation

$$\frac{d\Phi(E_{\gamma},\psi)}{dE_{\gamma}d\Omega} = \frac{\langle \sigma v_{rel} \rangle}{8\pi m_{\chi}^{2}} \frac{dN_{\gamma}}{dE_{\gamma}} \int_{los} \rho^{2}(r) dl(\psi)$$

$$\frac{dN_{\gamma}/dE_{\gamma} : \text{Gamma-ray spectrum per annihilation}}{\psi} : \text{Observation angle between line-of-sight and GC}$$

$$\rho(r) : \text{Density of DM}$$

DM halo profile is parametrized by $\rho(r) = \rho_O \left(\frac{r_O}{r}\right)^r \left(\frac{1 + r_O/r_S}{1 + r/r_S}\right)^r$ (y=1 is NFW profile)

Dependence of DM density on slope factor y

DM is dense at galactic center for large slope factor

- Gamma-ray flux depends on the factor
- \succ We take γ as free parameter to fit the data

Galactic center Gamma-ray from DM annihilation

satisfying relic density and constraints from direct detection

Branching ratio for invisible decay of Higgs bosons

Invisible decay width

$$\Gamma_{h \to \bar{\chi}\chi} = \frac{3g_{\chi}^{2} \sin^{2}\theta}{64\pi} \frac{m_{\chi}^{2}}{m_{h}} \frac{m_{h}^{4} - 4m_{h}^{2}m_{\chi}^{2} + 12m_{\chi}^{4}}{m_{\chi}^{4}} \sqrt{1 - \frac{4m_{\chi}^{2}}{m_{h}^{2}}}$$
$$\Gamma_{H^{0} \to \bar{\chi}\chi} = \frac{3g_{\chi}^{2} \cos^{2}\theta}{64\pi} \frac{m_{\chi}^{2}}{m_{h}} \frac{m_{H^{0}}^{4} - 4m_{H^{0}}^{2}m_{\chi}^{2} + 12m_{\chi}^{4}}{m_{h}^{4}} \sqrt{1 - \frac{4m_{\chi}^{2}}{m_{H^{0}}^{2}}}$$

Branching ratio

$$Br(h \to \overline{\chi}\chi) = \frac{\Gamma_{h \to \overline{\chi}\chi}}{\Gamma_{h \to \overline{\chi}\chi} + \Gamma_{h \to SM} \cos^2 \theta} = \frac{\Gamma_{h \to \overline{\chi}\chi}^{g_X \sin \theta = 1} (g_X \tan \theta)^2}{\Gamma_{h \to \overline{\chi}\chi}^{g_X \sin \theta = 1} (g_X \tan \theta)^2 + \Gamma_{h \to SM}}$$

$$Br(H^{0} \to \overline{\chi}\chi) = \frac{\Gamma_{H^{0} \to \overline{\chi}\chi}}{\Gamma_{H^{0} \to \overline{\chi}\chi} + \Gamma_{h \to SM}^{m_{H^{0}}} \cos^{2}\theta} = \frac{\Gamma_{H^{0} \to \overline{\chi}\chi}^{g_{X}} \cos^{\theta=1}}{\Gamma_{H^{0} \to \overline{\chi}\chi}^{g_{X}} \cot^{\theta}} (g_{X} \cot^{\theta})^{2} + \Gamma_{h \to SM}^{m_{H^{0}}}$$