
Bryan Webber, MCEG for Run 2 KIPMU-Durham-KIAS Workshop 2015

Monte Carlo Event 
Generation for Run 2

1

Bryan Webber



Bryan Webber, MCEG for Run 2 KIPMU-Durham-KIAS Workshop 2015

Outline
• Monte Carlo event generators	



✤ Components and theoretical status	



✤ Parton showers	



✤ Hadronization and Underlying Event models	



• Matching generators to higher-order calculations	



✤ NLO: MC@NLO, POWHEG; automation	



✤ NNLO: NNLOPS, UN2LOPS, Geneva, …	



• Merging/matching multiple fixed orders	



✤ MEPS@NLO, FxFx, UNLOPS,…	



• Conclusions
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Monte Carlo Event Generation
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• Aim is to produce simulated (particle-level) datasets like 
those from real collider events	



✤ i.e. lists of particle identities, momenta, ...	



✤ simulate quantum effects by (pseudo)random numbers	



• Essential for:	



✤ Designing new experiments and data analyses	



✤ Correcting for detector and selection effects	



✤ Testing the SM and measuring its parameters	



✤ Estimating new signals and their backgrounds
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A high-mass dijet event
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Figure 2: The reconstructed resonance mass spectrum generated with the PYTHIA MC simula-
tion and Tune D6T for qq ⇥ G ⇥ qq, qg ⇥ q� ⇥ qg, gg ⇥ G ⇥ gg for resonance masses of
1.0, 2.0, 3.0, 4.0, and 5.0 TeV.

Figure 3: The event with the highest invariant mass: 3D view (left) and 2D view (right). The
invariant mass of the two wide jets is 5.15 TeV.• Mjj = 5.15 TeV

CMS PAS EXO-12-059
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LHC dijet
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Theoretical Status
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Theoretical Status
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QCD Factorization

momentum 
fractions

parton 
distributions 

at scale 

hard process 
cross section

(
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0
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2) fj(x2, µ
2) �̂ij!X(x1x2E

2
pp, µ
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µ2

• Jet formation and underlying event take place over a much 
longer time scale, with unit probability	



• Hence they cannot affect the cross section	



• Scale dependences of parton distributions and hard process 
cross section are perturbatively calculable, and cancel order 
by order
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Parton Showers
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Parton Shower Approximation
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• Keep only most singular parts of QCD matrix elements:	



• Collinear	



• Soft d�n+1 ⇡ ↵S
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AO parton shower

• Coherent emission from (jk)
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i
j

k

Coherent parton shower

1 One soft gluon emission

Denoting the 4-momentum of soft gluon i by pµi = (!i,qi), we can write the
coherent emission from (jk) as

d�(jk)
n+1 = g2s d�n

d3qi

(2⇡)32!i
(�Tj ·Tk)

pj · pk
pj · pi , pk · pi
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d�n
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+ 1

◆
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then the term shown has no collinear divergence along pk. Furthermore
when we integrate it over �ij , and the other term over �ik, we get exactly

d⇠ij
⇠ij

⇥(⇠jk � ⇠ij) +
d⇠ik
⇠ik

⇥(⇠jk � ⇠ik) (3)

so that each leg radiates into a cone bounded by ✓jk and radiation outside
the cones averages to zero. Thus after azimuthal averaging we can write the
emission as a sum over individual legs

d�n+1 =
X

j

d�(j)
n+1 (4)
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1.1 e+e� ! qq̄g

We have Tq +Tq̄ = 0 and hence

�Tq ·Tq̄ =
1
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q +T2
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⌘
= CF . (6)

The condition to resolve the gluon emission using the kt-algorithm is

yiq = 2!2
i ⇠iq/Q

2 > yc (7)

and similarly for yiq̄, so the three-jet rate at resolution yc is
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where L = ln yc.
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1

• Each parton j,k radiates into cone qij , qik < qjk  

exactly
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AO parton shower

• Coherent emission from (jk)
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• Each parton j,k radiates into cone qij , qik < qjk  
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• Two gluon emission

2 Two soft gluon emissions

We saw that one soft gluon emission i can be written as a sum over individual
legs. Consider the term associated with leg j when another (softer) gluon `
is emitted. On emission of i, the colour operator of j became T0

j = Tj �Ti.
After azimuthal averaging we therefore have
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Collecting terms in ⇠`i and ⇠`j and using
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The terms on the first line represent incoherent emission from i and j inside
cones bounded by ✓ij . The term on the second line represents coherent
emission from i and j outside the cones, described as if it came from j
before the emission of i. Therefore it is already included in the previous
stage of an angular-ordered shower. The term on the last line is neglected in
the angular-ordered shower. It has no collinear divergences and is therefore
suppressed by two logarithms relative to the terms included. In fact

I(⇠jk) ⌘
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!

=
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡
ln

⇠ik
⇠jk

= �
Z ⇠jk

0

d⇠ij
⇠ij

ln
✓
1� 1

2
⇠ij

◆
= Li2

✓
1

2
⇠jk

◆
. (12)

2.1 e+e� ! qq̄gg

Neglecting the last term in (12), we have
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e+e   qqgg

• Compare with MadGraph5 at 1 TeV	



✤ Mij >100 MeV        L < 18.4

21

• 4-jet rate (kt-algorithm) vs L = log(1/ycut)

C = ?? (NNLL fitted)
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Figure 1: Parton branching diagrams for e+e� ! 4 jets. Here only the small
angles and momentum fractions (giving the leading logs) are shown. All the
others are ⇠ 1.

1 q2
-ordered shower

For a branching a ! b+ c we have the kinematic relation

q2a =
q2b
zb

+
q2c
zc

+
q2T
zbzc

(1)

where q2i are the virtualities, zb and zc = 1�zb are the momentum fractions,
qT ' zbzcq0a✓a is the relative transverse momentum and ✓a is the splitting
angle.

When the branching is generated, we assume q2b = q2c = 0. So

q2a ' zbzc(q
0
a✓a)

2 . (2)

Now we generate the next branching, say c ! d+ e. We have

q2c ' zdze(q
0
c✓c)

2 (3)

where q0c = zcq0a and by kinematics q2c < zcq2a. Thus q
2-ordering means

zdze✓
2
c < zb✓

2
a . (4)

1.1 Four jets in e+e� annihilation

Now consider the contribution (b) in Fig. 1. We have zb = z1, zc ⇠ 1,
zd = z2, ze ⇠ 1, ✓a = ✓1, ✓c = ✓2. So q2-ordering corresponds to

z2✓
2
2 < z1✓

2
1 . (5)

To resolve 4 jets with the kT -algorithm we need z1✓1 , z2✓2 > ✏ where
✏ =

p
ycut. So the contribution of (b) to the 4-jet rate, with q2- ordering but

1
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e+e   qqgg

• Dashed is Leading Colour: CF=3/2 (refitting NNLL)

22



Bryan Webber, MCEG for Run 2 KIPMU-Durham-KIAS Workshop 2015

Shower ordering

23
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Virtuality-ordered shower
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Coherence tests
• Z0    4 jets (LEP OPAL data)

24

Fischer et al., 1505.01636

• Virtuality ordering is worst
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Figure 8: The distribution of the difference in opening angles ⇢ = M

2

L/M
2

H for a) HERWIG++
and b) PYTHIA 8 and VINCIA. The asymmetry with respect to the dividing point ⇢

0

is shown for
c) HERWIG++ and d) PYTHIA 8 and VINCIA. The thin solid lines correspond to HERWIG++ with
angular-ordering (q̃2), the thick solid lines to the dipole shower of HERWIG++ with ordering in p
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,
and the dash-dotted lines to ordering in q
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. VINCIA with ordering in p
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is shown with medium
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with dashed lines and PYTHIA 8 is shown with dotted lines. The error
bars limited by the horizontal lines indicate the statistical uncertainties, while the total uncertainties
correspond to the full error bars. The ratio plots show the deviation of the predictions from the data in
units of the total uncertainty.
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correspond to the full error bars. The ratio plots show the deviation of the predictions from the data in
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20



Bryan Webber, MCEG for Run 2 KIPMU-Durham-KIAS Workshop 2015

Spin in showers

• No effect in q   qg (helicity conservation)	



• Opposite in g   gg and g   qq	



✤ Cancel when Nf = Nc	



✤ Neglected in parton showers
25

2pipj = −
k2
⊥

z(1 − z)
, k⊥ → 0 . (4.8)

In Eq. (4.8) the light-like (p2 = 0) vector pµ denotes the collinear direction, while nµ is
an auxiliary light-like vector which is necessary to specify the transverse component k⊥

(k2
⊥ < 0) (k⊥p = k⊥n = 0) or, equivalently, how the collinear direction is approached. In

the small-k⊥-limit (i.e. neglecting terms that are less singular than 1/k2
⊥), the m+1-parton

matrix element behaves as follows [25]

m+1,a..< 1, ...., m + 1; a, ...||1, ...., m + 1; a, ... >m+1,a..→
1

pipj

4πµ2ϵαS m,a..< 1, ..., m + 1; a, ..| P̂(ij),i(z, k⊥; ϵ) |1, ...., m + 1; a, ... >m,a.. .(4.9)

The m-parton matrix element on the right-hand side of Eq. (4.9) is obtained by replacing
the partons i and j in Mm+1,a... with a single parton denoted by ij. This parton carries the
quantum numbers of the pair i + j in the collinear limit. In other words, its momentum is
pµ and its other quantum numbers (flavour, colour) are obtained according to the following
rule: anything + gluon gives anything and quark + antiquark gives gluon.

The kernel P̂(ij),i in Eq. (4.9) is the d-dimensional Altarelli-Parisi splitting function. It
depends not only on the momentum fraction z involved in the collinear splitting ij → i+j,
but also on the transverse momentum k⊥ and on the helicity of the parton ij in the m-
parton matrix element. More precisely, P̂(ij),i is a matrix acting on the spin indices of the
parton ij in m,a..< 1, ..., m + 1; a, ..| and |1, ...., m + 1; a, ... >m,a... Because of these spin
correlations, the square of the m-parton matrix element cannot be simply factorized on the
right-hand side of Eq. (4.9).

The explicit expressions of P̂ab(z, k⊥; ϵ) for the splitting processes

a(p) → b(zp + k⊥ + O(k2
⊥)) + c((1 − z)p − k⊥ + O(k2

⊥)) (4.10)

are as follows

< s|P̂qq(z, k⊥; ϵ)|s′ >= δss′ CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (4.11)

< s|P̂qg(z, k⊥; ϵ)|s′ >= δss′ CF

[
1 + (1 − z)2

z
− ϵz

]

, (4.12)

< µ|P̂gq(z, k⊥; ϵ)|ν >= TR

[

−gµν + 4z(1 − z)
kµ
⊥kν

⊥

k2
⊥

]

, (4.13)

< µ|P̂gg(z, k⊥; ϵ)|ν >= 2CA

[

−gµν
(

z

1 − z
+

1 − z

z

)
− 2(1 − ϵ)z(1 − z)

kµ
⊥kν

⊥

k2
⊥

]

, (4.14)

where the spin indices of the parent parton a have been denoted by s, s′ if a is a fermion
and µ, ν if a is a gluon.

19



Bryan Webber, MCEG for Run 2 KIPMU-Durham-KIAS Workshop 2015

Spin in showers

• Bengtsson-Zerwas angle in e+e   4 jets
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• In parton shower, relative transverse momenta 
evolve from a high scale Q towards lower values	



• At a scale near LQCD~200 MeV, perturbation 
theory breaks down and hadrons are formed	



• Before that, at scales Q0 ~ few x LQCD, there is 
universal preconfinement of colour	



• Colour, flavour and momentum flows are only 
locally redistributed by hadronization
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Hadronization Models

LHC Simulations 2 Bryan Webber

Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet pairs 

end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically 

independent of energy, production mechanism, …

Peaked at low mass
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LHC Simulations 2 Bryan Webber

Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet pairs 

end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically 

independent of energy, production mechanism, …

Peaked at low mass

• In parton shower, relative transverse momenta 
evolve from a high scale Q towards lower values	



• At a scale near LQCD~200 MeV, perturbation 
theory breaks down and hadrons are formed	



• Before that, at scales Q0 ~ few x LQCD, there is 
universal preconfinement of colour	



• Colour, flavour and momentum flows are only 
locally redistributed by hadronization
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LHC Simulations 2 Bryan Webber

Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet pairs 

end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically 

independent of energy, production mechanism, …

Peaked at low mass

• In parton shower, relative transverse momenta 
evolve from a high scale Q towards lower values	



• At a scale near LQCD~200 MeV, perturbation 
theory breaks down and hadrons are formed	



• Before that, at scales Q0 ~ few x LQCD, there is 
universal preconfinement of colour	



• Colour flow dictates how to connect hadronic 
string (width ~ few x LQCD) with shower
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String Hadronization Model
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LHC Simulations 2 Bryan Webber

Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet pairs 

end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically 

independent of energy, production mechanism, …

Peaked at low mass

• In parton shower, relative transverse momenta 
evolve from a high scale Q towards lower values	



• At a scale near LQCD~200 MeV, perturbation 
theory breaks down and hadrons are formed	



• Before that, at scales Q0 ~ few x LQCD, there is 
universal preconfinement of colour	



• Colour flow dictates how to connect hadronic 
string (width ~ few x LQCD) with shower
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String Hadronization Model
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LHC Simulations 2 Bryan Webber

Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet pairs 

end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically 

independent of energy, production mechanism, …

Peaked at low mass

• In parton shower, relative transverse momenta 
evolve from a high scale Q towards lower values	



• At a scale near LQCD~200 MeV, perturbation 
theory breaks down and hadrons are formed	



• Before that, at scales Q0 ~ few x LQCD, there is 
universal preconfinement of colour	



• Decay of preconfined clusters provides a direct 
basis for hadronization
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Cluster Hadronization Model
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LHC Simulations 2 Bryan Webber

Preconfinement

Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet pairs 

end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically 

independent of energy, production mechanism, …

Peaked at low mass

• In parton shower, relative transverse momenta 
evolve from a high scale Q towards lower values	



• At a scale near LQCD~200 MeV, perturbation 
theory breaks down and hadrons are formed	



• Before that, at scales Q0 ~ few x LQCD, there is 
universal preconfinement of colour	



• Decay of preconfined clusters provides a direct 
basis for hadronization
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Cluster Hadronization Model
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• Mass distribution of preconfined clusters is universal	



• Phase-space decay model for most clusters	



• High-mass tail decays anisotropically (string-like)
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Colour Preconfinement
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• No fundamental progress since 1980s	



✤ Available non-perturbative methods (lattice,  
AdS/QCD, ...) are inapplicable	



• Less important in some respects in LHC era	



✤ Jets, leptons and photons are observed 
objects, not hadrons	



• But still important for	



✤ Track-based observables (multiplicity …) 	



✤ Detector effects: jet response, heavy-flavour 
tagging, lepton and photon isolation, ...
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Hadronization Status
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Underlying Event

35

• Multiple parton interactions in same collision	



✤ Depends on density profile of proton	



• Assume QCD 2-to-2 secondary collisions	



✤ Need cutoff at low pT	



• Need to model colour flow	



✤ Colour reconnections are necessary

LHC Simulations 3 Bryan Webber

Multiparton Interaction Model (PYTHIA/JIMMY)

For small pt min and high energy inclusive parton—parton 

cross section is larger than total proton—proton cross 

section.

!More than one parton—parton scatter per proton—proton

Need a model of spatial distribution within proton

! Perturbation theory gives n-scatter distributions
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• Herwig++ EE5 tuning (0.96-7 TeV only)
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Figure 3: Comparison of detector level data and MC predictions for average track multiplicity density
values, hd2

Nch/d⌘ d�i (left column) and average scalar pT sum density of tracks, hd2P
pT/d⌘ d�i (right

column) as a function of leading track transverse momentum, p

lead
T , in the transverse (top row) and

toward (bottom row) regions. The bottom panels in each plot show the ratio of MC predictions to data.
The shaded bands represent the combined statistical and systematic uncertainties, while the error bars
show the statistical uncertainties.
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Figure 1: Definition of UE regions as a function of the azimuthal angle with respect to the leading track

2 Event and object selection

The ATLAS detector covers almost the whole solid angle around the collision point with layers of
tracking detectors, calorimeters and muon chambers. It is described in detail elsewhere [11]. For the
measurements presented in this paper, the tracking devices and the trigger system are of particular im-
portance. The innermost pixel layer, the insertable B-layer (IBL) [12, 13], was added between Run 1
and Run 2 of the LHC, around a new thinner (radius of 25 mm) beam pipe. It is composed of 14 azi-
muthal lightweight staves, each of them made of 12 silicon planar sensors in its central region and 2⇥4
3D sensors at the ends. The pixel sizes are smaller than for the other pixel layers giving better longit-
udinal impact parameter resolution. The smaller radius gives rise to better transverse impact parameter
resolution. Furthermore new service quarter panels have been implemented which significantly reduce
the material at the boundaries of the active tracking volume.

This analysis uses the same dataset and follows the ATLAS charged particle distribution ana-
lysis [14] regarding event and track selections. Events were collected from colliding proton bunches
where the Minimum Bias Trigger Scintillators recorded one or more counters above threshold on either
side of the detector.

The data sample corresponds to an integrated luminosity of 170 µb�1. The only additional require-
ment for this analysis was the presence of a leading track with a pT of at least 1 GeV. This requirement
results in a fully e�cient trigger, hence no trigger requirement is imposed in MC events.

To reduce the contribution from background events and additional interactions, events are required
to contain a primary vertex [15] and no second vertex with four or more tracks. The rate of background
events from non-colliding beams is estimated to be less than 0.01% and the contribution from tracks
from additional interactions is less than 0.01% after this requirement.

2
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this ansatz with a power law, see also e.g. [61],

pmin

? (s) = pmin

?,0

✓p
s

E
0

◆b

. (7)

This is the default parametrization of the energy de-
pendence from Herwig++ release 2.6 [62]. The default
value of E

0

is 7 TeV. For the collider energies at consid-
eration in our tunes there are no significant di↵erences
in all observables due to this change. The values for b
and pmin

?,0 , which we find by fitting Eq. (7) to the pmin

?
values from Tab. 1, are summarized in the last two rows
of Table 2.

Fig. 19 Energy extrapolation of p

min

? in the ue-ee-3-
cteq6l1 tune.

For the preparation of the energy-extrapolated
tunes we did not use any MB observables. Nevertheless,
we show a comparison of the ue-ee-3-cteq6l1 and ue-
ee-scr-cteq6l1 tunes to the di↵raction-reduced AT-
LAS MB data at 7 TeV (with N

ch

� 6) in Fig. 20.
We see that the data is described slightly better by the
SCR than by the PCR tune. Moreover, although these
data sets were not taken into account in both tunes,
the results are close to the experimental data.

In the future, we plan to study the energy scal-
ing of the model parameters using di↵raction-reduced
minimum-bias data, and then, in more detail, the pos-
sibility of achieving a common description of the UE
and MB data, cf. [63]. As can be seen in Fig. 21, the
UE tunes fail to reproduce the ATLAS MB data at
7 TeV with a less tight cut on the number of charged
particles, N

ch

� 2, and where all charged particles with
p? > 100 MeV are taken into account. This is not sur-
prising, however, since Herwig lacks a model for soft
di↵ractive physics so far. That explains the poor de-
scription of both the charged multiplicity and the aver-
age transverse momentum in the low-multiplicity bins.
On the other hand, the unsatisfactory description of
the shown observables in the high multiplicity tail may
indicate missing physics in the model. It might, how-
ever, as well be resolved by a dedicated MB tune. Both
possibilities are left for future work. In particular, we
point out the lack of an explicit model for di↵ractive
events. A more complete description of the MB data
should also include a modelling of these.

5 Conclusions

We have introduced two di↵erent models for non-
perturbative colour reconnections in Herwig. The
models are of slightly di↵erent computational complex-
ity but give very similar results. The tuning results have
shown that the SCR is preferred to have parameters
that force a quick ‘cooling’ of the system and there-
fore results in a very similar model evolution as in the
simpler PCR model. We therefore consider the PCR
as a special case of the SCR model for quick cooling
and keep the SCR as the more flexible model for future
versions of Herwig++. As a consequence, we under-
stand that the data demands a final state that does not
obey a perfectly minimized colour length. We interpret
this as a model limitation. At some point the picture
of colour lines breaks down. Colour lines themselves
are only a valid prescription up to leading order in the
NC ! 1 limit. Furthermore, the mechanism addresses
the non-perturbative regime where the picture of the
colour triplet charges themselves is already a model by
itself and possibly completely washed out.

We have studied the mechanism of colour recon-
nection in detail and found that in fact the non-
perturbative parts of the simulation demand the colour
reconnection mechanism in order to repair the lack of
information on the colour flow. The intuitive picture we
have based our model on could be verified. The idea of
colour preconfinement is meaningful in the context of
the hadronization model and has to be rectified when a

(E0 = 7TeV)

pmin
?,0 = 3.91GeV, b = 0.33

pmin
? (13TeV) = 4.80GeV

Underlying Event at 13 TeV
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• No sign of deviation from Standard Model (yet)	



• But see later for jet substructure … 
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Dijet Mass Distribution
the significance is plotted as positive (negative). In certain cases, the significance for individual bins is

not plotted. 2

2000 3000 4000
1

10

210

310

410

510 Data
Background

 [GeV]jjReconstructed m
2000 3000 4000

Ev
en

ts
Si

gn
ifi

ca
nc

e

-2

0

2

ATLAS Preliminary

-1 = 13.0 fbdtL
  ∫
 = 8 TeVs

Figure 1: The reconstructed dijet mass distribution with statistical uncertainties (filled points with error

bars) fitted with a smooth functional form (solid line). The bin-by-bin significance of the data-fit differ-

ence in Gaussian standard deviations is shown in the lower panel, using positive values for excesses and

negative values for deficits. If a p-value greater than 50% is found the corresponding significance is not

shown (see text).

The choice of dijet mass binning was motivated by the absolute resolution of the signal in the dijet

mass distribution. The m j j resolution was evaluated using Monte Carlo as described in Ref. [3] and it

was found to improve from 7% at 1 TeV to less than 4% at 3 TeV. The analysis of the mass spectrum

begins with this distribution normalised to events per bin. The maximum-likelihood fit to determine the

four parameters of the smooth function is intended to be applied to a distribution in events per GeV,

while retaining integer bin contents to account for Poisson statistics. The bin-width correction required

to bridge these units is performed within the fitting procedure.

To test the degree of global consistency between the data and the fitted background, the p-value of

the fit is determined by calculating the χ2-value from the data and comparing this result to the χ2 distri-

bution obtained from pseudo-experiments drawn from the background fit, as described in the previous

publication [1]. In the current analysis, the χ2/NDF = 15.5/18 = 0.86, corresponding to a p-value of

0.61, showing that there is good agreement between the data and the fit.

The BumpHunter algorithm [14, 15] is used to establish the presence or absence of a localised res-

onance in the dijet mass spectrum, assuming Poisson statistics, and taking proper account of the “look-

elsewhere effect” [16], as described in greater detail in previous publications [10, 17]. Furthermore, to

prevent any new physics signal from biasing the background estimate, the region corresponding to the

2 In mass bins with a small expected number of events, where the observed number of events is similar to the expectation,

the Poisson probability of a fluctuation at least as high (low) as the observed excess (deficit) can be greater than 50%, as a result

of the asymmetry of the Poisson distribution. When the significance is below zero in a bin, it is not meaningful, and the bar is

not drawn in this case.

3

3

large tail at low mass values.

A data-driven method is used to estimate the background from QCD multijet production. We
fit the following parameterization to the data:

d⇥

dmjj
=

P0(1 � x)P1

xP2+P3 ln (x) , (1)

with the variable x = mjj/
⇥

s and four free parameters P0, P1, P2, and P3. This functional
form was used in previous searches [1, 5, 6, 36] to describe both data and QCD predictions. In
Fig. 1 we show the fit, which has a chi-squared (�2) of 30.65 for 35 degrees of freedom, and the
difference between the data and the fit value, normalized to the statistical uncertainty of the
data. No deviations that are statistically significant are observed between the distribution of
the data points and the smooth fit through all the data. The highest mass event (5.15 TeV) is
shown in Fig. 3. We proceed to set upper limits on the cross section of new physics processes.
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Figure 1: Dijet mass spectrum from wide jets (points) compared to a smooth fit (solid) and
to predictions [31] including detector simulation of QCD and signal resonances. The QCD
prediction has been normalized to the data (see text). The error bars are statistical only. The
bin-by-bin fit residuals, (data-fit)/⇥data, are shown at the bottom.

4 Limits
We use the dijet mass spectrum from wide jets, the background parameterization, and the dijet
resonance shapes to set specific limits on new particles decaying to the parton pairs qq (or
qq̄), qg, and gg. A separate limit is determined for each final state (qq, qg, gg) because of the
dependence of the dijet resonance shape on the number of gluons.

The dominant sources of systematic uncertainty are described below:
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Figure 1: The dijet mass distribution (filled points) for events in with |y⇤ | < 0.6 and pT > 410 (50) GeV for the
leading (subleading) jets fitted with a function described by Eq. 2 (solid line) discussed in the text. Predictions from
BlackMax for two Quantum Black Hole signals are shown above the fit, normalized to the predicted cross section.
The vertical lines indicate the most discrepant interval identified by the BumpHunter algorithm. The bottom panel
shows the bin-by-bin significance of the data-fit di↵erence, considering statistical uncertainties only.

p4 set to zero will remain a good description of the m j j distribution until substantially more data are col-
lected, and thus the log z term is removed from the fit. To avoid bias from a BSM process that contributes
in a single, contiguous range of bins, any such range is automatically excluded from the fit if an excess in
those bins decreases the fit probability below 0.01.

The function in Eq. 2 is fit to this distribution with a probability of 0.45. The result is also shown in the
figure. The bottom panel of the figure shows the significances of bin by bin di↵erences between the data
and the fit. These Gaussian significances are calculated from the Poisson probability. The significance
takes statistical uncertainties but no systematic uncertainties into account.

We search for statistical evidence of any localized excess in this distribution using the BumpHunter
algorithm [38, 39]. The algorithm operates on the binned m j j distribution, comparing the data with the

5

ATLAS CONF-2015-042
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Event Generators

PYTHIA

HERWIG

SHERPA

Dipole-type parton shower, string hadronization

v6 Fortran; v8 C++

v6 Fortran; Herwig++

Angular-ordered parton shower, cluster hadronization

Dipole-type parton shower, cluster hadronization

C++

38

http://projects.hepforge.org/herwig/

http://www.thep.lu.se/∼torbjorn/Pythia.html

http://projects.hepforge.org/sherpa/

“General-purpose event generators for LHC physics”, 	


A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

http://projects.hepforge.org/herwig/
http://www.thep.lu.se
http://projects.hepforge.org/sherpa/
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Other relevant software Other Relevant Software

Some examples (with apologies for many omissions):
Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia

Matrix-element generators: MadGraph/MadEvent, CompHep, CalcHep,
Helac, Whizard, Sherpa, GoSam, aMC@NLO

Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++,
VBFNLO, BlackHat, Rocket

Special BSM scenarios: Prospino, Charybdis, TrueNoir

Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay

Feynman rule generators: FeynRules

PDF libraries: LHAPDF

Resummed (p?) spectra: ResBos

Approximate loops: LoopSim

Jet finders: anti-k? and FastJet

Analysis packages: Rivet, Professor, MCPLOTS

Detector simulation: GEANT, Delphes

Constraints (from cosmology etc): DarkSUSY, MicrOmegas

Standards: PDF identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Can be meaningfully combined and used for LHC physics!

Torbjörn Sjöstrand Challenges for QCD Theory slide 21/2439

Sjöstrand, Nobel Symposium, May 2013



Bryan Webber, MCEG for Run 2 KIPMU-Durham-KIAS Workshop 201540

Parton Shower Monte Carlo
http://mcplots.cern.ch/

• Leading-order (LO) normalization        need next-to-LO (NLO)	



• Worse for high pT and/or extra jets        need multijet merging

• Hard subprocess: qq̄ ! Z0/W±

http://projects.hepforge.org/herwig/
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• Fairly good overall description of data, but…	



• Hard subprocess: LO no longer adequate	



• Parton showers: need matching to NLO	



✤ Also multijet merging	



✤ NLO showering?	



• Hadronization: string and cluster models	



✤ Need new ideas/methods	



• Underlying event due to multiple interactions

41

Summary on Event Generators
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Matching & Merging

• Two rather different objectives:	



• Matching parton showers to NLO matrix elements, 
without double counting	



✤ MC@NLO	



✤ POWHEG	



• Merging parton showers with LO n-jet matrix 
elements, minimizing jet resolution dependence	



✤ CKKW	



✤ Dipole	



✤ MLM merging

42

Frixione, BW, 2002

Nason, 2004

Catani, Krauss, Kühn, BW, 2001

Lönnblad, 2001

Mangano, 2002



Bryan Webber, MCEG for Run 2 KIPMU-Durham-KIAS Workshop 2015

NLO matching

43
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NLO matching

• Full inclusive NLO, extra jet LO	



• Still mostly MC@NLO or POWHEG	



• MC@NLO: 	



✤ Subtract NLO PS terms from matrix element 	



✤ PS-specific; beyond NLO is PS only; some negative weights	



• POWHEG:	



✤ Generate hardest emission using matrix element	



✤ Any PS; extra terms beyond NLO; positive weights

44
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MC@NLO matching

• Compute parton shower contributions (real and virtual) at NLO	



✤ Generator-dependent	



• Subtract these from exact NLO	



✤ Cancels divergences of exact NLO!	



• Generate modified no-emission (LO+virtual) and real-emission 
hard process configurations	



✤ Some may have negative weight	



• Pass these through parton shower etc.	



✤ Only shower-generated terms beyond NLO

45

S Frixione & BW, JHEP 06(2002)029
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POWHEG matching

• POsitive Weight Hardest Emission Generator	



• Use exact real-emission matrix element to generate 
hardest (highest relative pT) emission configurations	



✤ No-emission probability implicitly modified	



✤ (Almost) eliminates negative weights	



✤ Some uncontrolled terms generated beyond NLO	



• Pass configurations through parton shower etc

46

P Nason, JHEP 11(2004)040
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Top pairs at 8 TeV

• Differences are small!
47

CMS, 1505.04480
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Figure 11: Normalized differential tt production cross section in the `+jets channels as a func-
tion of the ptt

T (top left), ytt (top right), and mtt (bottom) of the tt system. The data points are
placed at the midpoint of the bins. The inner (outer) error bars indicate the statistical (combined
statistical and systematic) uncertainties. The measurements are compared to predictions from
MADGRAPH+PYTHIA6, POWHEG+PYTHIA6, POWHEG+HERWIG6, MC@NLO+HERWIG6, and to
NLO+NNLL [14, 15] calculations, when available. The lower part of each plot shows the ratio
of the predictions to data.
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Figure 9: Normalized differential tt production cross section in the `+jets channels as a function
of the pt

T (top left), the tt rest frame pt⇤
T (top right), and the rapidity yt (bottom left) of the

top quarks or antiquarks, and the difference in the azimuthal angle between the top quark
and the antiquark Df(t,t̄) (bottom right). The data points are placed at the midpoint of the
bins. The inner (outer) error bars indicate the statistical (combined statistical and systematic)
uncertainties. The measurements are compared to predictions from MADGRAPH+PYTHIA6,
POWHEG+PYTHIA6, POWHEG+HERWIG6, MC@NLO+HERWIG6, and to approximate NNLO [16]
calculations, when available. The lower part of each plot shows the ratio of the predictions to
data.
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of the pt

T (top left), the tt rest frame pt⇤
T (top right), and the rapidity yt (bottom left) of the

top quarks or antiquarks, and the difference in the azimuthal angle between the top quark
and the antiquark Df(t,t̄) (bottom right). The data points are placed at the midpoint of the
bins. The inner (outer) error bars indicate the statistical (combined statistical and systematic)
uncertainties. The measurements are compared to predictions from MADGRAPH+PYTHIA6,
POWHEG+PYTHIA6, POWHEG+HERWIG6, MC@NLO+HERWIG6, and to approximate NNLO [16]
calculations, when available. The lower part of each plot shows the ratio of the predictions to
data.
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Z Production at 13 TeV

• MC = POWHEG+Pythia8
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Figure 9: Dilepton mass distribution after the Z ! e+e� selection (left) and the Z ! µ+µ� selection (right).
Each electron or muon is required to satisfy pT > 25 GeV, and the dilepton mass is required to satisfy 66 GeV <
m`` < 116 GeV. The expected contributions from all backgrounds are estimated with Monte Carlo simulations.
Systematic uncertainties for the signal and background distributions are combined in the shaded band, and statistical
uncertainties are shown on the data points. Luminosity uncertainties are not included.
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Figure 10: Z boson transverse momentum distribution after the Z ! e+e� selection (left) and the Z ! µ+µ�

selection (right). Each electron or muon is required to satisfy pT > 25 GeV, and the dilepton mass is required to
satisfy 66 GeV < m`` < 116 GeV. The expected contributions from all backgrounds are estimated with Monte
Carlo simulations. Systematic uncertainties for the signal and background distributions are combined in the shaded
band, and statistical uncertainties are shown on the data points. Luminosity uncertainties are not included.
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Automatic NLO matching
• MC@NLO-type	



✤ MadGraph5_aMC@NLO (MadLoop5)	



	

 	

 	

 Alwall et al., 1405.0301	



✤ Sherpa+OpenLoops	



	

 	

 	

 Höche et al., 1111.1220; 1201.5882	



✤ Herwig++ Matchbox+OpenLoops/GoSam	



	

 	

 Plätzer, Gieseke, 1109.6256; Bellm et al., 1310.6877	



• POWHEG-type	



✤ MadGraph4+POWHEG+MCFM/GoSam	



	

 	

 	

 Campbell et al.,1202.5475; Luisoni et al., 1502.01213	



✤ Herwig++ Matchbox+OpenLoops/GoSam
49
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MG5_aMC@NLO

• Sampled from 172 processes	



• Mostly new at NLO
50

Alwall et al., 1405.0301

Process Syntax Cross section (pb)

Heavy quarks+vector bosons LO 13 TeV NLO 13 TeV

e.1 pp→W± bb̄ (4f) p p > wpm b b∼ 3.074± 0.002 · 102 +42.3%
−29.2%

+2.0%
−1.6% 8.162± 0.034 · 102 +29.8%

−23.6%
+1.5%
−1.2%

e.2 pp→Z bb̄ (4f) p p > z b b∼ 6.993± 0.003 · 102 +33.5%
−24.4%

+1.0%
−1.4% 1.235± 0.004 · 103 +19.9%

−17.4%
+1.0%
−1.4%

e.3 pp→ γ bb̄ (4f) p p > a b b∼ 1.731± 0.001 · 103 +51.9%
−34.8%

+1.6%
−2.1% 4.171± 0.015 · 103 +33.7%

−27.1%
+1.4%
−1.9%

e.4∗ pp→W± bb̄ j (4f) p p > wpm b b∼ j 1.861± 0.003 · 102 +42.5%
−27.7%

+0.7%
−0.7% 3.957± 0.013 · 102 +27.0%

−21.0%
+0.7%
−0.6%

e.5∗ pp→Z bb̄ j (4f) p p > z b b∼ j 1.604± 0.001 · 102 +42.4%
−27.6%

+0.9%
−1.1%

2.805± 0.009 · 102 +21.0%
−17.6%

+0.8%
−1.0%

e.6∗ pp→ γ bb̄ j (4f) p p > a b b∼ j 7.812± 0.017 · 102 +51.2%
−32.0%

+1.0%
−1.5% 1.233± 0.004 · 103 +18.9%

−19.9%
+1.0%
−1.5%

e.7 pp→ tt̄W± p p > t t∼ wpm 3.777± 0.003 · 10−1 +23.9%
−18.0%

+2.1%
−1.6% 5.662± 0.021 · 10−1 +11.2%

−10.6%
+1.7%
−1.3%

e.8 pp→ tt̄ Z p p > t t∼ z 5.273± 0.004 · 10−1 +30.5%
−21.8%

+1.8%
−2.1% 7.598± 0.026 · 10−1 +9.7%

−11.1%
+1.9%
−2.2%

e.9 pp→ tt̄ γ p p > t t∼ a 1.204± 0.001 · 100 +29.6%
−21.3%

+1.6%
−1.8%

1.744± 0.005 · 100 +9.8%
−11.0%

+1.7%
−2.0%

e.10∗ pp→ tt̄W±j p p > t t∼ wpm j 2.352± 0.002 · 10−1 +40.9%
−27.1%

+1.3%
−1.0%

3.404± 0.011 · 10−1 +11.2%
−14.0%

+1.2%
−0.9%

e.11∗ pp→ tt̄ Zj p p > t t∼ z j 3.953± 0.004 · 10−1 +46.2%
−29.5%

+2.7%
−3.0% 5.074± 0.016 · 10−1 +7.0%

−12.3%
+2.5%
−2.9%

e.12∗ pp→ tt̄ γj p p > t t∼ a j 8.726± 0.010 · 10−1 +45.4%
−29.1%

+2.3%
−2.6% 1.135± 0.004 · 100 +7.5%

−12.2%
+2.2%
−2.5%

e.13∗ pp→ tt̄W−W+ (4f) p p > t t∼ w+ w- 6.675± 0.006 · 10−3 +30.9%
−21.9%

+2.1%
−2.0% 9.904± 0.026 · 10−3 +10.9%

−11.8%
+2.1%
−2.1%

e.14∗ pp→ tt̄W±Z p p > t t∼ wpm z 2.404± 0.002 · 10−3 +26.6%
−19.6%

+2.5%
−1.8%

3.525± 0.010 · 10−3 +10.6%
−10.8%

+2.3%
−1.6%

e.15∗ pp→ tt̄W±γ p p > t t∼ wpm a 2.718± 0.003 · 10−3 +25.4%
−18.9%

+2.3%
−1.8% 3.927± 0.013 · 10−3 +10.3%

−10.4%
+2.0%
−1.5%

e.16∗ pp→ tt̄ ZZ p p > t t∼ z z 1.349± 0.014 · 10−3 +29.3%
−21.1%

+1.7%
−1.5%

1.840± 0.007 · 10−3 +7.9%
−9.9%

+1.7%
−1.5%

e.17∗ pp→ tt̄ Zγ p p > t t∼ z a 2.548± 0.003 · 10−3 +30.1%
−21.5%

+1.7%
−1.6% 3.656± 0.012 · 10−3 +9.7%

−11.0%
+1.8%
−1.9%

e.18∗ pp→ tt̄ γγ p p > t t∼ a a 3.272± 0.006 · 10−3 +28.4%
−20.6%

+1.3%
−1.1%

4.402± 0.015 · 10−3 +7.8%
−9.7%

+1.4%
−1.4%

Table 6: Sample of LO and NLO total rates for the production of heavy quarks in association with vector bosons, possibly within cuts

and in association with jets, at the 13-TeV LHC; we also report the integration errors, and the fractional scale (left) and PDF (right)

uncertainties. Processes that explicitly involve b-quarks in the final state, and process e.13, are calculated in the four-flavour scheme,

while all of the others are in the five-flavour scheme. Results are available in the literature for Wbb̄ [66, 305–308], Zbb̄ [66, 307, 309],

tt̄γ [310], tt̄Z [66,311,312], tt̄W [66,312,313] production. For the majority of the processes in this table, NLO corrections are calculated

in this work for the first time.

–
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MG5_aMC@NLO

51

Process Syntax Cross section (pb)

Top quarks +bosons LO 1 TeV NLO 1 TeV

j.1 e+e−→ tt̄H e+ e- > t t∼ h 2.018± 0.003 · 10−3 +0.0%
−0.0%

1.911± 0.006 · 10−3 +0.4%
−0.5%

j.2∗ e+e−→ tt̄Hj e+ e- > t t∼ h j 2.533± 0.003 · 10−4 +9.2%
−7.8% 2.658± 0.009 · 10−4 +0.5%

−1.5%

j.3∗ e+e−→ tt̄Hjj e+ e- > t t∼ h j j 2.663± 0.004 · 10−5 +19.3%
−14.9%

3.278± 0.017 · 10−5 +4.0%
−5.7%

j.4∗ e+e−→ tt̄γ e+ e- > t t∼ a 1.270± 0.002 · 10−2 +0.0%
−0.0% 1.335± 0.004 · 10−2 +0.5%

−0.4%

j.5∗ e+e−→ tt̄γj e+ e- > t t∼ a j 2.355± 0.002 · 10−3 +9.3%
−7.9% 2.617± 0.010 · 10−3 +1.6%

−2.4%

j.6∗ e+e−→ tt̄γjj e+ e- > t t∼ a j j 3.103± 0.005 · 10−4 +19.5%
−15.0% 4.002± 0.021 · 10−4 +5.4%

−6.6%

j.7∗ e+e−→ tt̄Z e+ e- > t t∼ z 4.642± 0.006 · 10−3 +0.0%
−0.0% 4.949± 0.014 · 10−3 +0.6%

−0.5%

j.8∗ e+e−→ tt̄Zj e+ e- > t t∼ z j 6.059± 0.006 · 10−4 +9.3%
−7.8% 6.940± 0.028 · 10−4 +2.0%

−2.6%

j.9∗ e+e−→ tt̄Zjj e+ e- > t t∼ z j j 6.351± 0.028 · 10−5 +19.4%
−15.0% 8.439± 0.051 · 10−5 +5.8%

−6.8%

j.10∗ e+e−→ tt̄W±jj e+ e- > t t∼ wpm j j 2.400± 0.004 · 10−7 +19.3%
−14.9%

3.723± 0.012 · 10−7 +9.6%
−9.1%

j.11∗ e+e−→ tt̄HZ e+ e- > t t∼ h z 3.600± 0.006 · 10−5 +0.0%
−0.0%

3.579± 0.013 · 10−5 +0.1%
−0.0%

j.12∗ e+e−→ tt̄γZ e+ e- > t t∼ a z 2.212± 0.003 · 10−4 +0.0%
−0.0% 2.364± 0.006 · 10−4 +0.6%

−0.5%

j.13∗ e+e−→ tt̄γH e+ e- > t t∼ a h 9.756± 0.016 · 10−5 +0.0%
−0.0% 9.423± 0.032 · 10−5 +0.3%

−0.4%

j.14∗ e+e−→ tt̄γγ e+ e- > t t∼ a a 3.650± 0.008 · 10−4 +0.0%
−0.0% 3.833± 0.013 · 10−4 +0.4%

−0.4%

j.15∗ e+e−→ tt̄ZZ e+ e- > t t∼ z z 3.788± 0.004 · 10−5 +0.0%
−0.0% 4.007± 0.013 · 10−5 +0.5%

−0.5%

j.16∗ e+e−→ tt̄HH e+ e- > t t∼ h h 1.358± 0.001 · 10−5 +0.0%
−0.0% 1.206± 0.003 · 10−5 +0.9%

−1.1%

j.17∗ e+e−→ tt̄W+W− e+ e- > t t∼ w+ w- 1.372± 0.003 · 10−4 +0.0%
−0.0% 1.540± 0.006 · 10−4 +1.0%

−0.9%

Table 11: Sample of LO and NLO rates for the production of top quarks in association with bosons, possibly within cuts and in

association with jets, at a 1-TeV e+e− collider, and the fractional scale uncertainties. Cross sections are calculated in the five-flavour

scheme; see table 1 for the meaning of wpm. Results at NLO accuracy for tt̄H production can be found in ref. [342]. All of the other

processes are computed here for the first time at the NLO.
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NNLO matching

• Fully inclusive NNLO, one extra jet NLO	



• So far, limited to Drell-Yan & Higgs production (DY/H)	



✤ MiNLO-NNLOPS	
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MiNLO-NNLOPS
• Modified DY/H+jet POWHEG with NNLL Sudakov factor	



• Reweighted to NNLO	



!

• Z pT, rapidity	



!

!

!

• W d0,1 (kt alg.)
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efficiency.
We observe a very good agreement between the two approaches for R = 0.4 and 0.5,

whereas for R = 1 differences are more marked. Few comments are in order here: first,
the pattern shown in the plots is consistent with what was already observed in the Higgs
case (fig. 7 of ref. [31]), namely differences up to few percents, and good band overlap, for
smaller values of R, and larger differences for R = 1. For very large values of R, the leading-
jet momentum will balance against the transverse momentum of the vector boson. Given
what we observed for pT,Z, it is therefore no surprise that, when R = 1, we have O(3� 5)%

differences with respect to the resummed result for values of pT,veto ⇠ 25� 30 GeV, as used
currently by ATLAS and CMS in Higgs production.

4 Comparison to data

In this section we compare our predictions with a number of available data from ATLAS,
both for Z and for W production.

4.1 Z production

We show here a comparison to a number of measurements performed by ATLAS at 7
TeV [46–48]. ATLAS applied the following cuts: they consider the leptonic decay of the
Z boson to electrons or muons and require an electron (muon) and a positron (anti-muon)
with pT > 20 GeV and rapidity |y| < 2.4. The invariant mass of the di-lepton pair should
lie in the window 66 GeV < mll < 116 GeV.

We begin by showing in Fig. 9 a comparison of NNLOPS results (with two versions of
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Figure 9. Comparison of NNLOPS prediction obtained with Pythia8 (left) and Pythia6 (right) to
data (black) from ref. [46] for the Z boson rapidity distribution at 7 TeV LHC.

Pythia) to data from ref. [46] for the Z boson rapidity distribution. As expected, our result
displays a quite narrow uncertainty band, due to having included NNLO corrections. Since
this is a fully inclusive observable, the absolute value of the cross-section and the size of
uncertainty band will be driven by the NNLO reweighting: hence, Pythia6 and Pythia8

– 17 –

results are almost indistinguishable, as expected. We also observe that we agree with data
within the errors for central rapidities. At high rapidity, however, there seems to be a
tension between data and our results. This discrepancy between data and pure NNLO
was already observed in the original ATLAS paper, although the NNLO results shown in
ref. [46] have a slightly larger uncertainty band since they also contain PDF uncertainties.
We note that, at the moment, the dominant error is coming from data. We therefore expect
the agreement to improve, as more data become available, although systematic errors are
non-negligible [46].

In Fig. 10 we now show the same comparison for the Z boson transverse momentum

Figure 10. Comparison to data from ref. [47] for the Z boson transverse distribution at 7 TeV LHC.
Normalised data compared to NNLOPS showered with Pythia8 (left plot, red) and Pythia6 (right
plot, blue). Uncertainty bands for the theoretical predictions are obtained by first normalising all
scale choices, as described in Sec. 3.1 and then taking the associated envelope of these normalised
distributions.
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Figure 11. As in previous figure, but with more luminosity, thinner binnings, and up to larger
values of pT,Z. Data are now from taken from ref. [49].
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Figure 15. Comparison to 7 TeV LHC data from ref. [52] for the W boson kT splitting scale
p
d1

as defined in eq. (4.1) using Pythia8 (left) and Pythia6 (right).

Figure 16. Comparison to 7 TeV LHC data from ref. [52] for the W boson ratio of the kT splitting
scales

p
d0 and

p
d1 using Pythia8 (left) and Pythia6 (right).

in predicting d1 and d0 should be partially compensated when plotting d1/d0. It is therefore
no surprise that the agreement with data is better than in Figs. 14 and 15.

4.3 W and Z polarization

Recently both ATLAS [53] and CMS [54] have published results on the polarization of the
W boson at 7 TeV confirming the Standard Model prediction, that W bosons are mostly
left-handed in pp collisions at large transverse momenta [55]. Knowledge about the W

boson polarization is important, as it provides a discriminant in searches for new physics.
We first very briefly review how to measure the polarization in terms of angular coeffi-

cients but refer the reader to the literature for a complete description of the topic [55–62].
Here we will follow the derivation of [55]. We then continue to compare ATLAS data [53]

– 22 –

where

diB = p2T,i ,

dij = min(p2T,i, p
2
T,j)

(�Rij)
2

R2
, (4.2)

are the usual distances used in the kT-algorithm. Among other reasons, these observables
are interesting because they can be used as a probe of the details of matching and merg-
ing schemes. Due to the underlying Zj-MiNLO simulation, our NNLOPS prediction is NLO
accurate for large values of pT,j1

, and it is at least LL accurate in describing the 1 ! 0

jet transition, which is measured in the d0 distribution. The second jet spectrum and the
2 ! 1 jet transition (which is encapsulated in d1) are instead described at LO+LL, due to
the underlying POWHEG simulation. Since the definition of d1 contains d12, this observable is
a measure of the internal structure of the first jet, and not only of the second jet transverse
momentum.

In Figs. 14 and 15 we show our NNLOPS predictions against ATLAS data, using as
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Figure 14. Comparison of NNLOPS prediction (red) to 7 TeV LHC data (black) from ref. [52] for
the W boson kT splitting scale

p
d0 as defined in the text using Pythia8 (left) and Pythia6 (right).

jet radius R = 0.6. We find good agreement, especially when
p
di > 10 GeV. Below this

value, we are still compatible with the experimental uncertainty bands, although we are
systematically lower than data. Once more, one should consider that the region below
5 � 10 GeV will be affected also by non-perturbative effects. For large values of di we are
instead sensitive to the level of accuracy that we reach in describing hard emissions. In this
respect, it is no surprise that we have a better agreement with data than the POWHEG results
shown in ref. [52], where d1 is poorly described since the second emission is only described
in the shower approximation. NLO corrections to the W + 1 jet region are included in the
NNLOPS simulation, and are very likely the reason why we have a description of d0 that is
better than what was observed in ref. [52].

Finally in Fig. 16 we show the distribution for the ratio d1/d0, for events with
p
d0 >

20 GeV. Due to the ratio nature of this quantity, a simultaneous over- or underestimation

– 21 –

Karlberg, Re, Zanderighi, 1407.2940

(scale but no PDF          
uncertainty)
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UN2LOPS

• Phase space slicing at qT ~ 1 GeV (DY/H)	



• qT subtraction: NNLO in zero bin	



• extra jet at NLO
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4

The generating functional of the MC@NLO is

F̃1(t, O) = ⇧̃1(tc, t1)O(�1) +

Z

tc

d�̂1
S1(�1, �̂1)

B1(�1)
⇧̃1(t̂, t1)F2(t̂, O) , (14)

with the no-branching probability given by parton-shower unitarity:

⇧̃1(t, t
0,�

n

) = exp

(
�
Z

t

0

t

d�̂1
S1(�1, �̂1)

B1(�1)

)
. (15)

Note that we choose q
T,cut  1 GeV, which is below the cuto↵ of the initial-state parton shower.

Equation (12) produces the correct dependence on the observable O at next-to-leading QCD for q
T

> q
T,cut. It can

thus be used to complement the exclusive NNLO calculation in the zero-q
T

bin. However, the two calculations cannot
be naively added as in Eq. (8), since this would spoil the O(↵2

s

) accuracy of the full result. This problem was also
addressed by NLO merging methods [7–10], and by the MINLO scale setting procedure [28]. The O(↵

s

) contribution to
the fixed-order expansion of the parton shower must first be subtracted, which can be achieved e�ciently by omitting
the first emission in a truncated shower [8], or by explicit subtraction [7, 9]. Correspondingly, any O(↵

s

) contribution
must be subtracted from the corrective weight, Eq. (9). The full formula describing our combination method can be
written as

hOi(UN2LOPS) =

Z
d�0

¯̄B
qT,cut

0 (�0)O(�0)

+

Z

qT,cut

d�1

h
1�⇧0(t1, µ

2
Q

)
⇣
w1(�1) + w

(1)
1 (�1) +⇧(1)

0 (t1, µ
2
Q

)
⌘i

B1(�1)O(�0)

+

Z

qT,cut

d�1 ⇧0(t1, µ
2
Q

)
⇣
w1(�1) + w

(1)
1 (�1) +⇧(1)

0 (t1, µ
2
Q

)
⌘
B1(�1) F̄1(t1, O)

+

Z

qT,cut

d�1

h
1�⇧0(t1, µ

2
Q

)
i
B̃R

1 (�1)O(�0) +

Z

qT,cut

d�1⇧0(t1, µ
2
Q

) B̃R
1 (�1) F̄1(t1, O)

+

Z

qT,cut

d�2

h
1�⇧0(t1, µ

2
Q

)
i
HR

1 (�2)O(�0) +

Z
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d�2 ⇧0(t1, µ
2
Q

)HR
1 (�2)F2(t2, O)

+

Z

qT,cut

d�2 HE
1 (�2)F2(t2, O)

(16)

We have defined B̃R = B̃� B and the regular and exceptional part of the hard remainder

HR
1 (�2) = H1(�2)⇥ (t1 � t2)⇥ (t2 � t

c

) , HE
1 (�2) = H1(�2)�HR

1 (�2) . (17)

The exceptional contributions HE
1 contain phase space regions for which no ordered parton shower history can be

identified, as well as two-parton states that do not allow an interpretation as having evolved from a zero- or one-parton
state via QCD-type parton splittings. Exceptional contributions do not undergo the truncated parton showering used
to produce ⇧0(t1, µ2

Q

), as they do not generate logarithmic corrections at parton shower accuracy. Ambiguities in the
matched result due to exceptional configurations will be important for matching at higher logarithmic accuracy, and
can be resolved as soon as the parton shower is amended with the necessary sub-leading logarithmic corrections and
electroweak splittings. This will allow to treat such states in the same manner as the regular configurations.
The subtraction terms for the no-branching probability of the parton shower, and for the weight w1, are given by

⇧(1)
0 (t, t0) =

Z
t

0

t
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◆#
.

(18)

They are generated by the Monte-Carlo procedure outlined below Eq. (9). Note that 1� ⇧0

�
w1 + w

(1)
1 + ⇧(1)

0

�
is of

order ↵2
s

. Therefore, it is easy to see that the method does not spoil the accuracy of the fixed-order calculation. To
investigate if the logarithmic accuracy of the parton shower resummation is maintained, we take the collinear limit,
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FIG. 2. Transverse momentum and rapidity spectrum of the electron. The gray solid (blue hatched) band shows scale
uncertainties obtained by varying µR/F (µQ) in the range mll/2  µ  2mll.
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FIG. 3. UN2LOPS prediction for the transverse momentum spectrum of the Drell-Yan lepton pair in comparison to ATLAS
data from [39] (left) and CMS data from [38] (right). The gray solid (blue hatched) band shows scale uncertainties obtained
by varying µR/F (µQ) in the range mll/2  µ  2mll.

V. OUTLOOK

We have presented a simple method for matching NNLO calculations in perturbative QCD to existing parton
showers, based on the UNLOPS technique. In contrast to the original implementation of UNLOPS, the event generation
algorithm does not lead to large cancellations, and convergence of the Monte Carlo integration is much improved.
Remaining uncertainties of the method are related to the treatment of finite remainders of the virtual corrections after
UV renormalization and IR subtraction, and to the treatment of exceptional configurations in the hard remainder of
double real corrections. Our method can be applied to arbitrary processes, and it can be systematically improved by
using parton showers with higher logarithmic accuracy, which is currently an area of active research. The combination

Höche, Li, Prestel, 1405.3607
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FIG. 2. Rapidity spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See Sec. IV for
details.
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FIG. 3. Transverse momentum spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See
Sec. IV for details.

In order to cross-check our implementation we first compare the total cross section to results obtained from
HNNLO [6, 7]. Table I shows that the predictions agree within the permille-level statistical uncertainty of the Monte-
Carlo integration. Additionally, we have checked that our results are identical when varying qT,cut between 0.1 GeV
and 1 GeV. The default value is qT,cut =1 GeV. Figure 1 shows a comparison of the Higgs rapidity and transverse
momentum spectrum between Sherpa and HNNLO. The excellent agreement over a wide range of phase space confirms
the correct implementation of the NNLO calculation in Sherpa.

Höche, Li, Prestel, 1407.3773
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Merging/matching to 
multiple fixed orders
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LO Multijet Merging

• Objective:  merge LO n-jet matrix elements 
with parton showers such that:	



✤ Multijet rates for jet resolution > Qcut are 
correct to LO (up to Nmax)	



✤ Shower generates jet structure below Qcut 

(and jets above Nmax)	



✤ Leading (and next) Qcut dependence cancels
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Merging at NLO (?)

• Separate samples by jet resolution, dcut	



• Make n-jet sample NLO for dn+1< dcut < dn	



• Avoid double counting	



• Reduce dcut dependence	



✤ MEPS@NLO:  Höche et al., 1207.5030	



✤ FxFx:  Frederix, Frixione, 1209.6215	



✤ Geneva:  Alioli et al., 1211.7049	



✤ UNLOPS:  Lönnblad, Prestel, 1211.7278, Plätzer, 1211.5467
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MEPS@NLO
• W+0,1,2 jets at NLO	



• W+3,4 jets at LO
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Figure 1: Cross section as a function of the inclusive jet multiplicity (left) and their ratios (right) in W+jets
events measured by ATLAS [50].

5 Conclusions

In this publication we have introduced a new method to consistently combine towers of matrix elements, at
next-to leading order, with increasing jet multiplicity into one inclusive sample. Our method respects, at
the same time, the fixed order accuracy of the matrix elements in their respective section of phase space
and the logarithmic accuracy of the parton shower. The analysis of scale dependencies allows for a solid
understanding of the corresponding theory uncertainties in the merged samples. Employing next-to leading
order matrix elements leads, of course, to a dramatic reduction of the dependence on the renormalisation
and factorisation scale and a much improved description of data. The same findings also apply to the case
of e�e+ annihilations into hadrons, cf. [40].

This allows, for the first time, to use Monte Carlo tools to generate inclusive multijet samples and analyse
their uncertainty due to the truncation of the perturbative series in the matrix elements in a systematic and
meaningful way.
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FxFx merging

•   and     event samples for each multiplicity (                         )
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see eq. (2.9)). While this condition is imposed at the matrix-element level, one should

keep in mind that the MC subtraction term, T0KMC, appears in eq. (2.27) in order to

prevent double counting at the NLO. Hence, consistency demands that its modification

due to the D-dependent prefactor be accompanied by a prescription for the shower scale

that limits emissions within the same hardness range. Given the NLO accuracy of the

MC subtraction terms, this can be conveniently done by means of the LH-interface [65]

parameter SCALUP, which will be chosen event-by-event in a random manner (so as to

avoid biases) according to the inverse of the function D (for example, with a sharp D

function and SCALUP having the meaning of relative pT , such a scale will be always set

equal to µQ). The modifications of the shower scale and of the MC subtraction term in

H events imply that the MC subtraction term must be modified in S events as well; this

is the reason for the factor D(d1(ΞH,0)) in eq. (2.26). As far as the 1-parton sample is

concerned (eqs. (2.28) and (2.29)), the factors 1−D limit from below what is essentially

the relative pT of the Born-level parton – in the case of a sharp D function, this is therefore

equivalent to imposing hard Born-level cuts. Thus, it should be intuitively clear, and could

be formally proven using again the techniques of appendix B of ref. [15], that the proper

1−D prefactor for the H-event MC subtraction term is that in eq. (2.29), and not that in

eq. (2.25).

2.2.2 The general case

What is done in sect. 2.2.1 is sufficient to sketch the procedure one has to follow in order

to convert the naive prescriptions of eqs. (2.13) and (2.14) into correct expressions for

MC@NLO short-distance cross sections. We obtain:

dσ̄S,0 = T0 + V0 − T0K+ T0KMCD(d1(ΞH,0)) , (2.30)

dσ̄H,0 =
[

T1 − T0KMC

]

D(d1(ΞH,0)) , (2.31)

dσ̄S,i =
[

Ti + Vi − TiK + TiKMCD(di+1(ΞH,i))
]

(2.32)

× (1−D(di(ΞS,i))) Θ (di−1(ΞS,i)− µ2) ,

dσ̄H,i =
[

Ti+1 (1−D(di(ΞH,i)))Θ (di−1(ΞH,i)− µ2) (2.33)

−TiKMC (1−D(di(ΞS,i)))Θ (di−1(ΞS,i)− µ2)
]

D(di+1(ΞH,i)) ,

dσ̄S,N =
[

TN + VN − TNK + TNKMC

]

(2.34)

× (1−D(dN (ΞS,N )))Θ (dN−1(ΞS,N )− µ2) ,

dσ̄H,N = TN+1 (1−D(dN (ΞH,N )))Θ (dN−1(ΞH,N)− µ2) (2.35)

− TNKMC (1−D(dN (ΞS,N )))Θ (dN−1(ΞS,N )− µ2) .

We stress that eqs. (2.30) and (2.31) are redundant, since they are just eqs. (2.32) and (2.33)

respectively, with i = 0; we report them explicitly only for the sake of clarity. Furthermore,

eqs. (2.34) and (2.35) are identical to eqs. (2.32) and (2.33) respectively, with i = N , except

for the fact that the hardness of the (N + 1)th parton is not bounded from above. This is

correct, since there is no higher multiplicity whose Born-level kinematics could compensate

for the lack of hard emissions in the N -parton sample.
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D(di) ⇡ ⇥(µ2 � di)

radiation w.r.t. a given (Born) kinematic configuration5. The (i + 1)th parton can be

arbitrarily soft or collinear to any other parton (which implies pBorn
T

≃ small), but also

hard and well separated (where pBorn
T

≃ large). All the other O(αb+i+1
S ) contributions to

the cross section have an (S + i)-body kinematics, identical to that of the Born; these are

the S-event configurations in MC@NLO.

After processing hard events with parton showers, one will obtain configurations quite

different from those of the S and H events; in particular, final-state multiplicities will have

greatly increased. However, these differences may be irrelevant to physics observables,

which may be almost identical, in shape and normalization, to those resulting from an

NLO parton-level computation6. For this not to be the case, two conditions must be

fulfilled. Firstly, the observable must be IR-sensitive (i.e., large logarithms can appear

in the coefficients of its perturbative expansion). Secondly, one must be in an IR phase-

space region, where partons are soft and/or collinear (which causes those logarithms to

grow large); this corresponds to having pBorn
T

≃ small. When this happens, the shape

of the observable is determined by the MC (large logarithms are resummed), while its

normalization is still dictated by the underlying NLO matrix elements (thanks to the

unitarity property of the shower). This implies, in particular, that the value of pBorn
T

of the

configuration emerging from the shower can be markedly different from that relevant to

the H event from where the shower started (which is trivially true for S events, since they

have pBorn
T

= 0). On average, one can say that in the IR regions S and H events provide

the normalization, while the kinematics is controlled by the MC.

Let us now consider the hard regions, where pBorn
T

≃ large. S events do not contribute

there, since in order to do so the shower would have to provide all the extra radiation

leading to pBorn
T

(which is still possible, but at the price of choosing unjustifiably large

shower scales). On the other hand, H events do contribute; more specifically, the values

of pBorn
T

before and after the shower do not differ significantly. Thus, on average, in

the hard regions H events provide one with both the normalization and the kinematic

configurations. Finally, it should be stressed that the characteristics of the S and H events

discussed here are quite directly related to the fact that MC@NLO is designed to perturb

in a minimal manner both the MC and the matrix-element results (in particular, there are

no contributions of relative O(α2
S
) which are not of MC origin).

The above observations underpin the proposal for the NLO-merging strategy that we

sketch here.

1. For any given Born multiplicity, except for the largest one considered, there must not

be contributions to the hard regions. This implies, in particular, that in such regions

real emissions must not occur, and the corresponding matrix elements must rather

be viewed as defining the Born process for the next (i.e., one unit larger) multiplicity.

2. Suitable choices of veto scales in showers must be made for consistency with item 1.

5Other variables can be devised so as to distinguish Born from real-emission configurations; they are all

equivalent for the sake of the present discussion.
6In some cases, hadronization effects can blur this picture, and is therefore convenient to consider them

switched off in MCs for the time being.
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FxFx Z results (1)
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FxFx Z results (2)
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FxFx W results (1)
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FxFx W results (2)
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FxFx W results (3)
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UNLOPS merging

• Merging scale 
dependence

68

Lönnblad, Prestel, 1211.7278
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Figure 9: Jet multiplicity in W-boson production, as measured by ATLAS [46]. The MC results
were obtained by merging up to two additional partons at LO, and zero and one additional par-
ton at NLO. MC results are shown for three different merging scales (top panels) and for three
different renormalisation/factorisation scales (bottom panels). Effects of multiple scatterings and
hadronisation are included. Left panels: Results of NL3. Right panels: Results of UNLOPS.

In figure 9, we show that the jet multiplicity is well under control in NLO merged

predictions. The left panel of Figure 8 shows that, as expected, it is not possible to

describe the number of zero-jet events with a W+jet NLO calculation. This is of course

exactly the strength of merged calculations: Observables with different jet multiplicities

can be described in a single inclusive sample.

The transverse momentum of the hardest jet in association with a W-boson is shown

in figure 10 and the right panel of Figure 8. It is clear that the NLO merged results do

not agree with data. We have chosen this particular observable because it our exhibits

the most unsatisfactory description of data that we have encountered while testing our

NLO merging methods. The reason for this disagreement is multifold. First, we have

already mentioned that correcting for inclusive NLO input produces harder p⊥1 tails. The
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Figure 10: Transverse momentum of the hardest jet in W-boson production, as measured by
ATLAS [46]. The MC results were obtained by merging up to two additional partons at LO, and
zero and one additional parton at NLO. MC results are shown for three different merging scales
(top panels) and for three different renormalisation/factorisation scales (bottom panels). Effects
of multiple scatterings and hadronisation are included. Left panels: Results of NL3. Right panels:
Results of UNLOPS.

two-jet sample will eventually dominate the tail. We have chosen to rescale the two-jet

contribution with a K-factor above unity. It could also be argued that the POWHEG-BOX

result in Figure 8 has slight tendency to overshoot. This might indicate that some part

of the “giant K-factor effect” due to enhancements of O
(
αs ln

p2
⊥1

M2
W

)
is developing in the

W+jet NLO calculation of p⊥1 because of soft/collinear W-bosons. The last two points

are correlated, since two-jet configurations have a major impact on the p⊥1-dependence of

the NLO result, and increasing the two-jet contribution can enhance the visibility of giant

K-factors.

The NL3 and UNLOPS descriptions of data exhibit high similarity. We have already

noted the semblance of both methods in section 4.1. This observation is specific to W-boson

production, and does not hold for other processes, as for instance illustrated in section 4.2.
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• Renorm’n/
factor’n scale 
dependence
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Conclusions
• Parton showers	



✤ Coherence effects visible	



✤ Spin and subleading colour effects small	



✤ Hadronization important, but little effort/progress	



• Matching at NLO	



✤ SM processes automated, BSM soon	



• Matching at NNLO	



✤ So far only DY & H, others much harder	



• Merging at NLO	



✤ Still in a state of flux; FxFx automated
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Thanks for listening!
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