Jet Substructure

Bryan Webber

Outline

- Jet algorithms
 - Definitions, features, hadronization & UE
- Jet substructure
 - Jet profiles, jet grooming
 - ATLAS diboson
 - Energy correlation functions
 - Quark-gluon jet discrimination
- Conclusions

Jet Algorithms

Jet observables should be:

- Computable from data in reasonable time
- Calculable in perturbative QCD
- Robust against non-perturbative effects
- Correctable for underlying event

Jet clustering algorithms

Compute list of {d_{ij},d_{iB}}

 $d_{ij} = \min\{p_{ti}^{2p}, p_{tj}^{2p}\} \frac{\Delta R_{ij}^2}{R^2}, \ d_{iB} = p_{ti}^{2p}, \ \Delta R_{ij}^2 \equiv (y_i - y_j)^2 + (\phi_i - \phi_j)^2$

- If d_{ij} is smallest, combine i & j
- If d_{iB} is smallest, i is a jet: remove it from list
- Repeat until list is empty
- p = +1: k_T algorithm (scale of running coupling)
- p = 0 : Cambridge/Aachen algorithm (angular ordering)
- p = -1: anti-k_T algorithm (cone jets, not QCD dynamics) [JADE algorithm: $d_{ij} \propto p_{ti}p_{tj}\Delta R_{ij}^2 \simeq m_{ij}^2$]

FastJet: Cacciari & Salam, Phys Lett B 641 (2006) 57

Jet hadronization

• Simple "tube" model describes many features

Bryan Webber, Jet Substructure

Jet hadronization

Dokshitzer, Leder, Moretti, BW, JHEP 08(1997)001

• Algorithm should classify tube as 2-jet

• $\langle y_{3-jet} \rangle$ smallest is best • JADE: $\langle y_{3-jet} \rangle \sim \lambda/Q$

- LUCLUS, k_T: $\langle y_{3-jet} \rangle \sim (\lambda \ln Q/Q)^2$ ()
- Cambridge/Aachen: $\langle y_{3-jet} \rangle \sim (\lambda \ln \ln Q/Q)^2$

• Anti-k_T:
$$\langle y_{3-jet} \rangle \sim (\lambda/Q)^2$$

Jet algorithms: hadronization

Anti-k_T is best for small hadronization effect

Jet

ent

Cacciari, Salam, Soyez, JHEP04(2006)063

Anti-k_T is best for controlled UE subtraction

Bryan Webber, Jet Substructure

Jet cross sections

- Compared with standalone event generators (no matching or merging)
- Little difference between
 C/A and anti-k_T jet
 distributions

Bryan Webber, Jet Substructure

Jet Substructure

Jet grooming

Butterworth, Davison, Rubin, Salam, arXiv:0802.2470 Dasgupta, Fregoso, Marzani, Salam, arXiv:1307.0007

- Aim is to "clean up" jets by reducing effects of soft QCD radiation, hadronization, underlying event, pileup, ...
 - Especially to find boosted heavy object decays (V, H, t, ...)
- E.g. (BDRS): sequentially de-cluster C/A jet, $J \rightarrow i + j$
 - throw away less massive* subjet if

 $y = \min\{p_{T_i}^2, p_{T_j}^2\} \Delta R_{ij}^2 / m_J^2 \simeq \min\{p_{T_i}, p_{T_j}\} / \max\{p_{T_i}, p_{T_j}\} < y_{\text{cut}}$

• Stop when $y > y_{cut}$

*Better (DFMS): throw away subjet with less $m_i^2 + p_{Ti}^2$

ATLAS Diboson

Each jet BDRS groomed with y_{cut}=0.04

- Resulting subjets reclustered (C/A) with R=0.3
- Keep 3 highest-p_T subjets of each jet $[V \rightarrow q\bar{q}(g)]$

Bryan Webber, Jet Substructure

Diboson selection

Bryan Webber, Jet Subs $0.22 = ATLAS \text{ Simulation} = bulk \ G_{RS} \rightarrow WW \ (m_{g} = 1.8 \text{ TeV}) = bulk \ G_{RS} \rightarrow ZZ \ (m_{g} = 1.8 \text{ TeV}) = bulk \ G_{R$

KIPMU-Durham-KIAS Workshop 2015

Diboson signal

Combined sample is not so impressive

Diboson candidate

• An event satisfying VV selection:

Bryan Webber, Jet Substructure

KIPMU-Durham-KIAS Workshop 2015

Diboson critique

Gonçalves, Krauss, Spannowsky, arXiv:1508.04162

- Critique of ATLAS analysis:
 - * R_{fat} =1.2 not appropriate for m_{VV} =2 TeV
 - $R_V \sim 2m_V/p_{TV} \sim 4m_V/m_{VV} \sim 0.2$
 - Data-driven b problematic:
 - PS MC validat
 - Suppose e.g. E

Background model

Effect of Background x (m_{jj}/TeV):

Bryan Webber, Jet Substructure

KIPMU-Durham-KIAS Workshop 2015

Effects of selection cuts

- Need to:
 - compare background model with all these data
 - understand effects of VV selection on q and g jets

Dijet background

At 2 TeV, ~1/3 gluon jets, ~2/3 quark jets

Energy Correlation Functions

Energy Correlation Functions

Larkoski, Salam, Thaler, arXiv: 1305.0007

$$e_{2}^{(\beta)} = \frac{1}{p_{TJ}^{2}} \sum_{1 \le i < j \le n_{J}} p_{Ti} p_{Tj} R_{ij}^{\beta} , \qquad R_{ij} = \sqrt{(\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2}}$$
$$e_{3}^{(\beta)} = \frac{1}{p_{TJ}^{3}} \sum_{1 \le i < j < k \le n_{J}} p_{Ti} p_{Tj} p_{Tk} R_{ij}^{\beta} R_{ik}^{\beta} R_{jk}^{\beta}$$

 $C_N(\beta) = e_{N+1}^{(\beta)} e_{N-1}^{(\beta)} / [e_N^{(\beta)}]^2$

- Small C_N favours N subjets:
 - C₁ for q/g discrimination (new physics S/B)
 - C₂ for vector or Higgs boson tagging
 - C₃ for top tagging

C₁ for q/g discrimination

- Leading-log (LL) $\epsilon_g = \epsilon_q^{9/4}$ independent of eta
- At NLL small β gives more q/g discrimination

C₂ for V or H tagging

$$C_2(\beta) = e_3^{(\beta)} / [e_2^{(\beta)}]^2$$

- No analytical results yet
- MC suggests optimal β
 depends on jet mass
 - * NB: $e_2^{(2)} \simeq m_J^2 / p_{TJ}^2$
- For H demand 2 b tags

Bryan Webber, Jet Substructure

KIPMU-Durham-KIAS Workshop 2015

1.0

28

1.0

D₂ for V or H tagging

Quark-Gluon Jet Discrimination

C₁ for q/g discrimination

- Leading-log (LL) $\epsilon_g = \epsilon_q^{9/4}$ independent of eta
- At NLL small β gives more q/g discrimination

Track Multiplicity

Y.Sakaki, priv.comm.

Compare Z+q, Z+g (R=0.4, min p_{Ttk}=IGeV)

$$P_{q/g}(n) = \left(\frac{k_{q/g} n}{\langle n \rangle_{q/g}}\right)^{k_{q/g}} \frac{\exp(-k_{q/g} n/\langle n \rangle_{q/g})}{n \Gamma(k_{q/g})},$$

$$\langle n \rangle_i = N_i \left(1 + d_i a + d_i' a^2\right) a^p \exp(c/a), \quad a = \sqrt{\alpha_s \left(p_T^2\right)/6\pi}$$

• Again Pythia discriminates more than Herwig

Associated Jets

Multivariate Analysis

- Boosted Decision Tree analysis
 - Method I: n_{trk}, C_I(β=0.2)
 - Method 2: n_{trk}, C₁(β=0.2), assoc
 - Method 3: n_{trk}, C₁(β=0.2), m_j/p_{Tj}
 - Method 4: n_{trk}, C₁(β=0.2), m_J/p_T assoc
- Again Herwig < Pythia</p>
 - Note change of scale!

Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, BW, arXiv:1501.04794

Subjets in jets

Gerwick, Gripaios, Schumann, BW, arXiv:1212.5235

Summing leading double logs:

Agrees quite well with quark jets from Sherpa MC

Subjets in jets

Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, BW, arXiv:1501.04794

- Subjets at k_t-resolution y_{cut} $y_{ik} = \min\{p_{ti}^2, p_{tk}^2\} \frac{\Delta R_{ik}^2}{R^2 p_i^2} > y_{cut}$
- Perturbatively calculable and less MC dependent than n_{trk} (for L=-ln(y_{cut})<6)
- L~6: min{pтi,pтk} ∆Rik~I0 GeV
- Not yet used for q/g tagging

Conclusions

- Need more analytical studies of jet grooming and tagging (signals and backgrounds)
 - Also comparisons with state-of-the-art MCs (matched & merged)
- ATLAS diboson: great interest for Run II
 - Need more background studies (see above)
- Quark-gluon discrimination: great interest for new physics searches
 - Hard work to get beyond factor of 2 or 3

Measuring Splitting Function

Larkoski, Marzani, Thaler, arXiv:1502.01719

Thaler, BOOST2015

 Decluster (C/A) jet until
$z_g = \frac{\min\{p_{Ti}, p_{Tj}\}}{p_{Ti} + p_{Tj}} > z_{\text{cut}} = 0.1$
then (LO)
$1 \mathrm{d}\sigma _ \overline{P}_j(z_g)$
$\overline{\sigma} \overline{\mathrm{d}z_g} - \overline{\int_{z_{\mathrm{cut}}}^{1/2} \overline{P}_j(z) \mathrm{d}z}$
where (indistinguishably
for j=q,g)
$\overline{P}_j(z) = P_j(z) + P_j(1-z)$