Searches for New Particles with the ATLAS Experiment

Event: 531676916 2015-08-22 04:20:10 CEST

Goodbye 8 TeV, Hello 13 TeV

Paul de Jong, Nikhef On behalf of the ATLAS Collaboration Kavli-IPMU-Durham-KIAS Workshop Tokyo

June 3, 2015: first stable beams at 13 TeV

First Stable Beams

proton-proton collisions at 13 TeV

Outline of the talk

ATLAS detector activities in long shutdown

Wrapping up 8 TeV physics analyses

LHC and ATLAS performance 2015

Early 13 TeV measurements

First 13 TeV searches

Outlook

2013-2015: Detector consolidations and repair

beam pipe, pixels, calorimeter, muon chambers new luminosity detector new minimum bias scintillators

ATLAS Run-2 Detector Status (from Apr. 2015)

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	99.0%
SCT Silicon Strips	6.3 M	98.9%
TRT Transition Radiation Tracker	350 k	97.3%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	4900	99.2%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	98.7%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	357 k	99.8%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	99.8%

95.0% in 2012

New inner layer of pixel detector: IBL

L1TOPO board

Trigger and Software

Reorganization of high-level-trigger New central trigger processor New topological level-1 trigger

Ready for 100 kHz level-1 accept 1 kHz event rate to disk

Software upgrades for analysis

and wrapping up on the 8 TeV results

> 80 papers on Run-1 data published in 2015 so far.

Legacy papers on Higgs boson properties, EW and QCD measurements Many results on top quark properties Summary papers on Run-1 supersymmetry searches Broad coverage of many new physics searches and much more...

Higgs results in the last 5 months

- ATLAS + CMS couplings combination
- BSM constraints from H couplings
- High mass $H \rightarrow WW, H \rightarrow ZZ$
- VBF H(\rightarrow invisible)
- LFV Η→μτ
- Decay rates and couplings
- Associated (W/Z)H, $H \rightarrow WW$
- ttH (multilepton final states)
- Higgs spin and parity
- mono-Higgs (H→γγ)
- differential cross section $H \rightarrow \gamma \gamma + H \rightarrow ZZ$
- Associated (W/Z)H, $H \rightarrow$ invisible
- ATLAS + CMS Higgs mass combination

Summary publications on Run-1 supersymmetry searches by ATLAS

Simplified model interpretations: factorize model in 1 or a few production/decay modes Vary all relevant parameters, optimize sensitivity for different kinematics Assumes decoupling of all other masses

Alternative: **scan phenomenological MSSM** (19 parameters) Generate 5x10⁸ model points, apply experimental constraints (e.g. dark matter) Simulate ATLAS response of 310000 model points, apply 22 ATLAS SUSY searches Mixes different production/decay modes

SUSY summary on electroweak gaugino production

Simplified models, assuming bino LSP, wino χ^{\pm} and χ^{0}_{2} with equal masses

Long-lived charginos

PRD 88, 112006; JHEP 01, 068; arXiv:1506.05332

14

Long-lived charginos

PRD 88, 112006; JHEP 01, 068; arXiv:1506.05332

Allowed gaugino mass spectrum and mixings strongly affected by external constraints, in particular relic density of dark matter

Simplified models used seem to capture this rather poorly

pMSSM: **B**-like LSP

19

pMSSM: **B**-like LSP

20

Diboson resonances

 $W'/G^* \rightarrow V V \rightarrow jjjj \quad (V = W,Z)$

high mass W'/G* : V boosted jets merged in "fat jets", which can be "boson-tagged"

Data

WZ Selection

2.5

arXiv:1506.00962

ATLAS

 $v_{s} = 8 \text{ TeV}$. 20.3 fb⁻¹

1.5

2

10⁴

10³

10²

10

1

 10^{-1}

3 2 0

_1 -2

Significance

Events / 100 GeV

New: combination with leptonic and lepton+jets channels

10⁻²

10⁻³

500

1000

1500

2000

Channel	Signal Region	W' mass range [TeV]	G^* mass range [TeV]
001 01	low-mass	0.2-1.9	-
eve e	high-mass	0.2 - 2.5	-
	low- resolved	0.3-0.9	0.2-0.9
$\ell\ell q ar q$	high- resolved	0.6 - 2.5	0.6-0.9
	merged	0.9 - 2.5	0.9 - 2.5
	low- resolved	0.3-0.8	0.2-0.7
$\ell u q ar q$	high- resolved	0.6 - 1.1	0.6-0.9
**	merged	0.8 - 2.5	0.8 - 2.5
	WZ selection	1.3-3.0	—
JJ	WW+ZZ selection	_	1.3-3.0

EGM W' excluded below 1.8 TeV (observed equals expected limit)

2 TeV local significance 3.4 \rightarrow 2.5 σ

ATLAS-CONF-2015-045

2500

m_{G*} [GeV]

ATLAS Exotics Searches* - 95% CL Exclusion Status: July 2015

Sta	atus: July 2015					$\int \mathcal{L} dt = 0$	4.7 - 20.3) fb ⁻¹	\sqrt{s} = 7, 8 TeV
	Model	<i>ℓ</i> , γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	- ¹] Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD BH high N_{trk} ADD BH high $\sum p_T$ ADD BH high multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow VY$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell v$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ 2UED / RPP	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2 \mu (SS) \\ \geq 1 e, \mu \\ - \\ 2 e, \mu \\ 2 \gamma \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 1 e, \mu \\ \geq 2 e, \mu (SS) \end{array}$	$ \geq 1j - 1j 2j - 2j 2j / 1 2j - 2j 2j 2j 2j 2j 2j 2j 2j$	Yes - - - - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mp 5.25 TeV Ms 4.7 TeV Mth 5.22 TeV Mth 5.82 TeV Mth 5.82 TeV Mth 5.82 TeV Mth 5.82 TeV Mth 5.8 TeV Mth 5.8 TeV Mth 5.8 TeV GKK mass 2.68 TeV GKK mass 2.66 TeV GKK mass 740 GeV W' mass 760 GeV GKK mass 2.2 TeV KK mass 960 GeV	$\begin{array}{l} n=2\\ n=3\ \text{HLZ}\\ n=6\\ n=6\\ n=6,\ M_D=3\ \text{TeV},\ \text{non-rot}\ \text{BH}\\ n=0,\ M_D=3\ \text{TeV},\ \text{non-rot}\ \text{BH}\\ n=0,\ \text{BH}=0.925\end{array}$	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.08988 1405.4123 1504.05511 1409.6190 1503.04677 1506.00285 1505.07018 1504.04605
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{EGM}\; W' \to WZ \to \ell\nu\; \ell'\ell' \\ \mathrm{EGM}\; W' \to WZ \to qq\ell\ell \\ \mathrm{EGM}\; W' \to WZ \to qqqq \\ \mathrm{HVT}\; W' \to WH \to \ell\nu bb \\ \mathrm{LRSM}\; W'_R \to t\bar{b} \\ \mathrm{LRSM}\; W'_R \to t\bar{b} \end{array}$	2 e, µ 2 τ 1 e, μ 3 e, μ 2 e, μ - 1 e, μ 1 e, μ 0 e, μ	- - 2 j / 1 J 2 J 2 b 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes Yes	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.59 TeV W' mass 1.31 15 TeV W' mass 1.32 TeV W' mass 1.92 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$g_V = 1$	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 1506.00962 1503.08089 1410.4103 1408.0886
Ū	Cl qqqq Cl qqℓℓ Cl uutt	 2 e,μ 2 e,μ (SS)	2 j _ ≥ 1 b, ≥ 1	_ j Yes	17.3 20.3 20.3	Λ 12.0 T Λ 4.3 TeV	$ \begin{array}{c c} \textbf{eV} & \eta_{LL} = -1 \\ \hline \textbf{21.6 TeV} & \eta_{LL} = -1 \\ C_{LL} = 1 \end{array} $	1504.00357 1407.2410 1504.04605
MQ	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ	≥1j 1 J, ≤1j	Yes Yes	20.3 20.3	M. 974 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$	1502.01518 1309.4017
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – j Yes	20.3 20.3 20.3	LQ mass 1.05 TeV LQ mass 1.0 TeV LQ mass 640 GeV	$\beta = 1$ $\beta = 1$ $\beta = 0$	Preliminary Preliminary Preliminary
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array} $	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ	$\geq 2 \text{ b}, \geq 3$ $\geq 1 \text{ b}, \geq 3$ $\geq 2 \text{ b}, \geq 3$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5$	j Yes j Yes j Yes j Yes	20.3 20.3 20.3 20.3 20.3	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV Ts/3 mass 840 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited quark $b^* \rightarrow \ell\gamma$ Excited lepton $t^* \rightarrow \ell\gamma$ Excited lepton $v^* \rightarrow \ell W, vZ$	$\frac{1 \gamma}{1 \text{ or } 2 e, \mu}$ $1 \text{ or } 2 e, \mu, 1 \gamma$ $3 e, \mu, \tau$	1 j 2 j 1 b, 2 j or 1 – –	- - j Yes - -	20.3 20.3 4.7 13.0 20.3	q* mass 3.5 TeV q* mass 4.09 TeV b* mass 870 GeV {* mass 2.2 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2$ TeV $\Lambda = 1.6$ TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e, \mu (SS)$ $3 e, \mu, \tau$ $1 e, \mu$	- 2 j - 1 b - -	Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	aT mass 960 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 551 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV	$\begin{split} m(W_R) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production, } \text{B}(H_L^{\pm i} \rightarrow \ell \ell) = 1 \\ \text{DY production, } \text{B}(H_L^{\pm i} \rightarrow \ell \tau) = 1 \\ a_{\text{non-res}} = 0.2 \\ \text{DY production, } q = 5e \\ \text{DY production, } g = 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 Preliminary
						IU * I 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary

The LHC in 2015

50 ns bunch spacing

25 ns bunch spacing

Mean Number of Interactions per Crossing 31

ATLAS pp run: June-August 2015

Inner Tracker			Calorir	neters	Muo	n Spec	trom	Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
98.5	99.7	100	99.1	100	100	99.3	100	100	100	99.6

Luminosity weighted relative detector uptime (in percent) and good quality data delivery during the stable beams in pp collisions at 13 TeV between June-August 2015, corresponding to 173 pb⁻¹ recorded luminosity.

Inner Detector

ATL-PHYS-PUB-2015-018

34

Electron reconstruction and identification

MV2c20 output

 ΣE_{T} (event) [GeV]

Measurement of the total inelastic cross section

Extrapolation to full cross section

Source	Value
This measurement	$73.1 \pm 0.9 \text{ (exp.)} \pm 6.6 \text{ (lum.)} \pm 3.8 \text{ (extr.) mb}$
Pythia8	78.4 mb
Kopeliovich et al. $[33]$	$79.8 \mathrm{\ mb}$
Menon et al. $[34]$	$81.4 \pm 2.0 \text{ mb}$
Khoze et al. $[35]$	81.6 mb
Gotsman [36]	81.0 mb
Fagundes [37]	77.2 mb

Charged particle multiplicity at 13 TeV

170 μb^{-1} of early low pile-up data, triggered by MBTS counters (ϵ >99%) >1 track with $p_T > 500$ MeV and $|\eta| < 2.5$, vertex > 2 tracks

40

Charged particle multiplicity distribution, and evolution with Vs

unfolding, corrections

Underlying event studies with tracks

Valuable input for further generator tuning

Measurement of non-prompt fraction of J/ψ (i.e. from b-decay)

6.4 pb⁻¹ of data Triggered by single $\mu p_T > 14$ GeV or di- $\mu p_T > 4$ GeV

ATLAS Preliminary

s = 13 TeV

pseudo

proper

lifetime

-2

ATLAS-CONF-2015-030

0

2

6.4 pb⁻¹

Candidates / 0.15 ps

 10^{3}

 10^{2}

10

10⁻¹

Opposite sign dimuons Pseudo proper lifetime $\tau = L_{xy} (m_{\mu\mu}/p_T)$

Top-quark pair production at 13 TeV $t\bar{t} \to W^+ b W^- \bar{b} \to e^+ \mu^- \nu \bar{\nu} b \bar{b}$

e and μ , $p_{\tau} > 25$ GeV, ≥ 1 b-tagged jet, 78 pb⁻¹

Events 400

350

300

ATLAS Preliminary

 $s = 13 \text{ TeV}, 78 \text{ pb}^{-1}$

• Data 2015

Wt

Z+jets

Diboson Mis-ID lepton

tt Powhea+PY

1 b-tagged jet: $N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$ 2 b-tagged jets: $N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{bkg}$

 $\epsilon_b = 0.527 \pm 0.026 \pm 0.006$ (in simulation: 0.543) $\sigma_{t\bar{t}} = 825 \pm 49$ (stat) ± 60 (syst) ± 83 (lumi) pb.

48

Run: 267638 Event: 193690558 2015-06-13 23:52:26 CEST

New particle searches at 13 TeV

13/8 TeV parton luminosity ratio determines sensitivity

13 TeV / 8 TeV inclusive pp cross-section ratio

New phenomena in dijet events at 13 TeV

Data-driven background estimation by fitting mass spectrum

Bump-hunter algorithm looks for devations, most significant one has p = 0.79

Limits are set on $\sigma x A x Br$ for various signal width hypotheses

Interpretation in a model of extra dimensions and Quantum Black Holes

Excludes M_{th} < 6.8 TeV (QBH generator) or 6.5 TeV (BlackMax generator)

Highest mass event in angular analysis: m_{ii} = 6.9 TeV

Run: 276731 Event: 876578955 2015-08-22 07:43:18 CEST

Search for strong gravity in multijet final states

High- p_T - High-jet multiplicity final states, selected with $H_T = \Sigma$ jet $p_T > 1$ TeV Individual jets: anti- k_t , R = 0.4, $p_T > 50$ GeV, $|\eta| < 2.8$

Control region: $1 < H_T < V TeV$ Validation region: $V < H_T < S TeV$ Signal region: $H_T > S TeV$

2-step procedure, 6 pb⁻¹, 74 pb⁻¹

Signal model: rotating black hole, n=6, $M_{th} > M_D$ Charybdis generator

Background estimated from data: fit in control region, extrapolated to VR and SR

$n_{\rm jet} \geq$	VR (obs)	VR (exp)	SR (obs)	SR (exp)
3	23	$27.1 \pm 3.7 (PE) \pm 9.6 (DD)$	1	$1.42 \pm 0.41 \text{ (PE)} \pm 4.3 \text{ (DD)}$
4	27	$25.4 \pm 3.2 \text{ (PE)} \pm 15.5 \text{ (DD)}$	0	$1.62 \pm 0.46 \text{ (PE)} \pm 9.2 \text{ (DD)}$
5	21	$18.8 \pm 2.9 (PE) \pm 9.9 (DD)$	0	$1.32 \pm 0.48 \text{ (PE)} \pm 5.0 \text{ (DD)}$
6	18	$20.7 \pm 3.3 (PE) \pm 10.4 (DD)$	0	$1.19 \pm 0.48 \text{ (PE)} \pm 13.3 \text{ (DD)}$
7	29	$22.2 \pm 3.7 (PE) \pm 7.0 (DD)$	0	$0.81 \pm 0.36 \text{ (PE)} \pm 0.60 \text{ (DD)}$

many bg functions evaluated

Further searches need more luminosity

0.2 fb⁻¹ is very exciting but not enough for most searches

use the data to check our understanding in control regions

Control regions for supersymmetry searches

2-6 jets + missing transverse momentum control region for top-pairs W+jets Z+jets

shown: effective mass distribution, 78 pb⁻¹

Outlook for the rest of 2015 and beyond

		Scrubbing for 25 ns operation												oda
	July		Aug					Sep						
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39	
Мо	29	6	13	20	27	3	10	17	¥ 24	31	7	14	21	
Tu						¥			ž		Ľ			
We	Leap second 1	Interrity		MD1						TS2				
Th		with 50	ns beam				Intensity with 25	ramp-up			Jeune G			
Fr									MD 2					
Sa					1									
Su														

	Oct						Nov Dec					End physics [06:00]		
Wk	40	41	42	Τ	43	44	45	46	47	48	49	50	51	52
Мо	28	5		12	19	26	2	9	16	23	30	7	¥ 14	21
Tu			ş						lons				_	
We			sic r					TS3	setup				top	
Th			hd								IONS		Tec	
Fr			ecial				MD 3							Xmas
Sa			ъ С											
Su														

	Ne	Beta	nnh	EmitM	Lumi	Days	Int lumi	Diloup		Peak lumi E34 cm ⁻² s ⁻¹	Days proton physics	Approx. int lumi [fb ⁻¹]
	NC	*	hhn	LIIIUN	[cm ⁻² s ⁻¹]	(approx)	int iunn	Flieup	2015	~0.5	65	3
50 ns	476	80	1.1e11	1.8	1.6e33	14	0.1 fb ⁻¹	27	2016	1.2	160	30
2015 1	1200	20	1 2011	25	3 6033	50	~2.2 fb-1	21	2017	1.5	160	36
2015.1	1200	80	1.2011	5.5	3.0833	30	2.5 10 -	21	2018	1.5	160	36
2015.2	1200	60	1.2e11	2.3	5.6e33	47	~3.4 fb ⁻¹	33				

Conclusions

The ATLAS detector is ready for Run 2

Pipelines of remaining Run 1 papers are draining (searches, Higgs)

The LHC @ 13 TeV Is still on a learning curve. 2015 will be a commissioning year for 25 ns operation. But no show-stoppers for 100 fb⁻¹ by end of 2018

ATLAS has made first measurements and searches at 13 TeV. For very optimistic scenarios, Run 1 limits have been extended. Further searches will need more luminosity.

