Kavli-IPMU-Durham-KIAS Workshop "New particle searches vs LHC Run 2"

Dark Sectors and Higgs Portals at Colliders: from 14 to 100 TeV

Valentin V. Khoze

IPPP Durham University

8 September 2015

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

A B F A B F 8 September 2015

- 3

Necessity of New Physics beyond the Standard Model

The LHC Higgs discovery was the crowning achievement of the SM. But at a more fundamental level it leaves some key questions unanswered:

- SM accommodates v = 246 GeV and $m_h \simeq 125 \text{ GeV}$ as input parameters, but does not explain their origin and why $\ll M_{\rm Pl}$
- ullet The SM Higgs potential is unstable (or meta-stable) at $\mu_{
 m RG}\gtrsim 10^{11}$ GeV
- Generation of the matter-anti-matter asymmetry of the Universe is impossible within the SM
- There is no Dark Matter in the SM
- Particle physics implementation of Cosmological Inflation?
- Strong CP? Neutrino masses?

- 31

2 / 37

イロト イポト イヨト イヨト

- Dark Sector should contain Dark Matter (which is cosmologically stable) plus possibly other dark particles.
- At colliders dark sector particles produced in collisions would manifest themselves as missing transverse momentum (aka MET).
- Use SM jets to recoil, consider jets + MET signatures.
- Being stable on collider scales is much less restrictive than the cosmological DM – i.e. can look for more than just DM in dark sectors.
- Dark Particles interact with the Standard Model by exchanging a mediator field X. Mediator particle is a key new physics d.o.f. at colliders.
- Four basic types of mediators: vectors, axial-vectors, scalars, pseudo-scalars (can be exchanged in *s* or *t*-channel). Concentrate below on the *s*-channel models (colourless mediators):

Representative Feynman diagrams

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

- At LHC energies mediators can be resolved and taken to be dynamical
- Four basic types of mediators to the dark sector associated with scalar *S*, pseudo-scalar *P*, vector *Z'* and axial-vector *Z''* fields with interactions,

$$\begin{split} \mathcal{L}_{\text{scalar}} \supset &-\frac{1}{2} m_{\text{MED}}^2 S^2 - g_{\text{DM}} S \, \bar{\chi} \chi - \sum_q g_{SM}^q S \, \bar{q} q - m_{\text{DM}} \bar{\chi} \chi \\ \mathcal{L}_{\text{pseudo-scalar}} \supset &-\frac{1}{2} m_{\text{MED}}^2 P^2 - i g_{\text{DM}} P \, \bar{\chi} \gamma^5 \chi - \sum_q i g_{SM}^q P \, \bar{q} \gamma^5 q - m_{\text{DM}} \bar{\chi} \chi \\ \mathcal{L}_{\text{vector}} \supset &\frac{1}{2} m_{\text{MED}}^2 Z_{\mu}' Z'^{\mu} - g_{\text{DM}} Z_{\mu}' \bar{\chi} \gamma^{\mu} \chi - \sum_q g_{SM}^q Z_{\mu}' \bar{q} \gamma^{\mu} q - m_{\text{DM}} \bar{\chi} \chi \\ \mathcal{L}_{\text{axial}} \supset &\frac{1}{2} m_{\text{MED}}^2 Z_{\mu}'' Z''^{\mu} - g_{\text{DM}} Z_{\mu}'' \bar{\chi} \gamma^{\mu} \gamma^5 \chi - \sum_q g_{SM}^q Z_{\mu}'' \bar{q} \gamma^{\mu} \gamma^5 q - m_{\text{DM}} \bar{\chi} \chi \end{split}$$

Two coupling types enter: $g_{\rm SM}$ and $g_{\rm DM}$.

 $g_{\rm SM}$: the couplings of Scalar and Pseudo-Scalar messengers to all six flavours of SM quarks are taken to be proportional to the corresponding SM Higgs Yukawa's y_q , in accordance with the 'Minimal Flavour Violation' set-up:

scalar & pseudo – scalar messengers : $g_{SM}^q \equiv g_q y_q = g_q \frac{m_q}{v}$

and we keep the scaling g_q flavour-universal for all quarks.

For axial and vector mediators $g_{\rm SM}$ is a gauge coupling in the dark sector which we also take to be flavour universal:

vector & axial – vector messengers : $g_{\rm SM}^q = g_{\rm SM}$

The coupling parameters which we vary are $g_{\rm DM}$ plus either g_q or $g_{\rm SM}$, depending on the messengers choice.

$\mathsf{Jets} + \mathsf{MET}$ topology of the final state

P. Harris, VVK, M. Spannowsky and C. Williams, to appear Sept. 2015 updating our earlier analysis in arXiv:1411.0535 to 14-100 TeV

Our Simplified Models for Dark Particles searches at colliders are characterised by the type of the mediator plus the following free parameters:

- 1 mediator mass $m_{\rm MED}$
- **2** mediator width Γ_{MED} [Can use $\Gamma_{\text{MED minimal}}$ computed in the simplified models \times {1, 2, 5, 10} and check $< m_{\text{MED}}/2$]
- 3 dark matter mass $m_{\rm DM}$
- mediator couplings g_{DM} and g_q for scalar and pseudo-scalars; or g_{DM} and g_{SM} for axial-vector and vector mediators.

Signal generated using MadGraph for Vector and Axial mediators and a combination of MCFM and VBFNLO for the production of Scalar and Pseudoscalar mediators in association with 1 and 2 jets. Backgrounds were generated at NLO for 0,1,2 jets merged using MadGraph-aMC@NLO.

Jets + MET topology

Collider cross section limits and projections at 14 and 100 TeV [Preliminary] μ is the ratio of the exclusion σ_{coll} to the predicted $\sigma(g_{DM} = 1, g_{SM} = 1)$

• Vector and Axial-vector mediators:

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Jets + MET topology

Collider cross section limits and projections at 14 and 100 TeV [Preliminary] μ is the ratio of the exclusion σ_{coll} to the predicted $\sigma(g_{DM} = 1, g_{SM} = 1)$

• Scalar and Pseudo-scalar mediators:

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Old (1411) mono-jet-based LHC limits on mediator vs DM mass at 8 & 14TeV:

P. Harris, VVK, M. Spannowsky and C. Williams, arXiv:1411.0535

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

< E > < E > 8 September 2015

3

[New] Exclusion limits on mediator mass vs DM mass at 14 TeV:

P. Harris, VVK, M. Spannowsky and C. Williams [to appear Sept. 2015]

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Exclusion limits on mediator mass vs DM mass at 100 TeV:

P. Harris, VVK, M. Spannowsky and C. Williams [to appear Sept. 2015]

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

э

3

Mass limits using single-jet and multi-jet analysis at 14 & 100TeV:

P. Harris, VVK, M. Spannowsky and C. Williams [to appear Sept. 2015]

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

(日) (周) (三) (三)

- 34

Collider exclusions interpreted in terms of the spin-dependent and spin-independent cross sections vs $m_{\rm DM}$ at 14 and 100 TeV:

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

5 13 / 37

SM Higgs h can mix with another scalar ϕ via Higgs portal interactions

$$\mathcal{L}_{\mathrm{int}}
i \ \lambda_{\mathrm{P}} |\mathcal{H}(x)|^2 \ \phi(x)^2 = 2\lambda_{\mathrm{P}} \ v \left\langle \phi \right\rangle h(x) \ \varphi(x) + \dots$$

leading to two scalar mass eigenstates h_1 and h_2 .

- a simple BSM framework and minimal in number of assumptions. Within the Higgs Portal framework we can:

- generate the Higgs VEV radiatively and explain the origin of the electroweak scale (CSI models)
- stabilise the SM Higgs potential (when the 2nd scalar is heavier than the SM Higgs and/or when more singlets added with not too small portal couplings)
- new scalars ϕ can serve as *mediators to Dark Sectors* when coupled to DM particles, e.g. $g_{DM} \bar{\chi} \phi \chi$, or they can themselves be Dark Matter.

Mixing with ϕ results in reduced Higgs couplings to SM vectors and fermions due to the Higgs mixing angle, $\cos \theta < 1$.

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

There is a rich spectrum of DM candidates possible in Higgs Portal models:

() The new scalar ϕ can act as a **mediator** to the Dark Sector when coupled to fermion (also scalar and/or vector) DM

$$h = h_1 \cos \theta + h_2 \sin \theta$$
, $\phi = -h_1 \sin \theta + h_2 \cos \theta$,

$$\mathcal{L}_{h_1,h_2} = \left(\frac{2M_W^2}{v} W_{\mu}^+ W^{-\mu} + \frac{M_Z^2}{v} Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} \bar{f} f\right) \left(h_1 \cos \theta + h_2 \sin \theta\right) \\ -g_{\chi} \bar{\chi} \chi \left(h_2 \cos \theta - h_1 \sin \theta\right) - \frac{1}{2} m_{h_1}^2 h_1^2 - \frac{1}{2} m_{h_2}^2 h_2^2 - m_{\chi} \bar{\chi} \chi$$

Valentin V. Khoze (IPPP)

8 September 2015

- 3

15 / 37

(日) (周) (三) (三)

Resulting in a scalar ϕ -mediator Simplified DM Model as in Part I,

$$\mathcal{L}_{\phi} = \sqrt{\kappa} \left(\frac{2M_W^2}{v} W_{\mu}^+ W^{-\mu} + \frac{M_Z^2}{v} Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} \bar{f} f \right) \phi$$
$$-g_{\chi} \bar{\chi} \chi \phi - \frac{1}{2} m_m^2 \phi^2 - m_{\chi} \bar{\chi} \chi$$

- Here $\kappa = \sin^2 \theta \lesssim 0.15$ corresponding to the singlet–Higgs mixing arising from the Higgs portal;
- Alternatively if the scalar mediator is not a singlet, e.g. a new Higgs doublet, then κ is not constrained and we can choose κ ~ 1.

Consider now 2 jets +MET topology

There are 4 key kinematic variables associated with 2 jets – more freedom to cut SM backgrounds; use the VBF cuts:

 $p_{T\,{
m miss}} > 100\,{
m Gev}\,, \quad M_{jj} > 1200\,{
m GeV}\,, \quad \Delta\phi_{jj} < 1\,, \quad \Delta\eta > 4.5\,, \quad p_{T,j} > 40\,{
m GeV}$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

2 jets +MET signature LHC 14

Kinematic distributions for different $M_{
m med}$ for the signal and the background

VVK, M. Spannowsky and G. Ro, arXiv:1505.03019

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

2 jets +MET signature: LHC 14 reach for $\kappa = 1$ and $\kappa = 0.15$ models

VVK, M. Spannowsky and G. Ro, arXiv:1505.03019

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

2 jets +MET signature: 100 TV reach for $\kappa = 1$ and $\kappa = 0.15$ models

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

Back to the UV models with Higgs portals

Generating the Electroweak sale:

There is just a single occurrence of a non-dynamical scale in the Standard Model – the negative-valued μ_{SM}^2 parameter in:

$$V^{
m SM}_{
m cl}({\it H})\,=\,\mu^2_{
m SM}\,{\it H}^{\dagger}{\it H}\,+\,rac{\lambda_{
m H}}{2}\,\left({\it H}^{\dagger}{\it H}
ight)^2$$

Remove $\mu_{\rm SM}^2$ by introducing a Higgs portal interaction with new ϕ :

$$V_{ ext{cl}}(H,\phi) = - \lambda_{ ext{P}}(H^{\dagger}H) ert \phi ert^2 + rac{\lambda_{ ext{H}}}{2} (H^{\dagger}H)^2 + rac{\lambda_{\phi}}{4!} ert \phi ert^4$$

 $V_{\rm cl}$ is now scale-invariant. If the right value for $\langle \phi \rangle \ll M_{UV}$ can be generated quantum mechanically, it will trigger the EWSB:

$$\mu^2_{
m SM} = - \,\lambda_{
m P} |\langle \phi
angle|^2 \quad = - \, rac{1}{2} \, m_h^2 = - \, rac{1}{2} \, \lambda_{
m H} \, v^2$$

Valentin V. Khoze (IPPP)

8 September 2015

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

Coleman-Weinberg mechanism more than 40 years ago: a massless scalar field ϕ , coupled to a gauge field, dynamically generates a non-trivial $\langle \phi \rangle$ via dimensional transmutation of the log-running couplings. Schematically:

$$\langle \phi
angle \ \sim \ M_{\scriptscriptstyle UV} imes \exp\left[- rac{{
m const}}{g_{\scriptscriptstyle CW}^2}
ight] \ll M_{\scriptscriptstyle UV}$$

 g_{CW} is the gauge coupling of ϕ .

SM×CW BSM theory

Classically scale-invariant with the Higgs portal $-\lambda_{\rm P}|H|^2|\phi|^2$

 $\langle \phi \rangle$ is non-vanishing, calculable in a weakly-coupled theory, and is naturally small (exp. suppressed) relative to the UV cut-off. Then:

EWSB:
$$v = \sqrt{\frac{2\lambda_{\rm P}}{\lambda_{\rm H}}} \langle \phi \rangle$$
, $m_h = \sqrt{2\lambda_{\rm P}} \langle \phi \rangle$

The SM taken in isolation as a QFT has no problems with the Higgs mass (ignore super-Planckian Landau poles). It does not address key sub-Planckian issues (DM, Matter-anti-Matter asymmetry ...) so extend it.

SM×CW BSM theory

Classically scale-invariant: No input mass terms are allowed

In the course of UV renormalisation, the subtraction scheme is chosen to set the *renormalised masses* at the origin of the field space to zero

$$m^2|_{\phi=0} := V''(\phi)\Big|_{\phi=0} = 0$$

In dimensional regularisation this masslessness eqn is automatic:

- No power-like dependences on the cutoff scale can appear;
- Since there are no explicit mass scales at the outset, no finite corrections to mass terms at the origin are genereated.

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Comments on classical scale-invariance:

- Classical scale invariance is not an exact symmetry. It is broken anomalously by logarithmically running couplings.
- This is precisely what generates the scale $\langle \phi \rangle \ll M_{UV}$ and feeds to EWSB and other features.
- The scale invariance is broken by the anomaly in a controlled way the order parameter is $\langle |\phi|^2 \rangle$.

Generic UV regularisation instead would introduce large effects $\sim \alpha M_{\scriptscriptstyle UV}^2$

$$\alpha M_{\rm UV}^2 \gg \langle |\phi|^2 \rangle$$

To maintain the anomalously broken scale invariance, one must choose a scale-invariance-preserving regularisation scheme – dimensional regularisation – Bardeen 1995.

• The role of gravity and M_{Pl} is not addressed in this approach.

Some references:

🔋 S. R. Coleman and E. J. Weinberg, Phys. Rev. D **7** (1973) 1888

 $SM \times U(1)_{CW}$ model first appears in:

R. Hempfling, Phys. Lett. B 379 (1996) 153

The special role of dimensional regularisation:

W. A. Bardeen, FERMILAB-CONF-95-391-T

Classical scale invariance introduced and then investigated in the B-L model in:

- K. A. Meissner and H. Nicolai, Phys. Lett. B 648 (2007) 312
- 📕 S. Iso, N. Okada and Y. Orikasa, Phys. Lett. B **676** (2009) 81

Our approach:

- 🔋 C. Englert, J. Jaeckel, VVK and M. Spannowsky, 1301.4224 Original
- 🔋 VVK, C. McCabe and G. Ro, arXiv:1403.4953 Higgs Stability & DM
- 🔋 VVK and G. Ro, 1307.3764 Matter-anti-Matter via Leptogenesis
- VVK 1308.6338 Inflation in the Higgs Portal

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Classically Scale Invariant Extended Standard Model

SM $\times G_{CW}$ with a hidden gauge sector G_{CW} and no mass scales. The theory is classically scale-invariant. Classical scalar potential:

$$V_{
m cl}(H,\Phi) = \lambda_{\phi}(\Phi\Phi^{\dagger})^2 + \lambda_{H}(HH^{\dagger})^2 - \lambda_{
m P}(\Phi\Phi^{\dagger})(HH^{\dagger})$$

The Higgs Portal interaction $-\lambda_{\rm P} \langle \Phi \Phi^{\dagger} \rangle (HH^{\dagger})$ generates the Higgs VEV v = 246 GeV and triggers EWSB in the SM.

Can consider Abelian and non-Abelian choices for G_{CW} :

- Standard Model × U(1)_{cw}
- Standard Model \times U(1)_{B-L} => SM quarks and leptons charged under U(1)_{B-L}
- Standard Model × SU(2)cw

Classically Scale Invariant Extended Standard Model

- Minimal CSI SM \times G_{CW} models have only two free parameters, the portal coupling, $\lambda_{\rm P}$ and the hidden gauge coupling g_{CW} . [Coupling to Dark Matter and/or mixing with additional singlets introduce new couplings.]
- H and Φ scalars mix, giving two higgs mass-eigenstates $m_{h_1} \simeq 125$ GeV and m_{h_2} (which can be > or $< m_{h_1}$).
- There is always Z' with $M_{Z'} \gg m_{h_2}$. Both, m_{h_2} and $M_{Z'}$ can be determined in terms of $\lambda_{\rm P}$ and g_{CW} .
- If $m_{h_1} > 2m_{h_2}$ the SM Higgs can decay into two hidden Higgses which constrains $\lambda_{\rm P} \lesssim 10^{-5}$.
- For $m_{h_2} > m_{h_1}/2$ the coupling $\lambda_{\rm P}$ is much less constrained.
- Collider production of Z' possible if SM guarks couple to the hidden G_{CW} - as in the $U(1)_{B-L}$ example - but not otherwise.

Light h_2 states are highly constrained by large invisible Higgs decays $\Gamma_{h_1 \rightarrow h_2 h_2}$. More interested in heavier h_2 .

C. Englert, J. Jaeckel, V. V. Khoze and M. Spannowsky, 1301.4224

Scatter plot in the $(\lambda_{\rm P}, m_{h_2})$ plane. Red region is excluded by current LHC measurements. The cyan region can be probed by HL LHC and orange region is a projection for a combination of a HL LHC with an LC. The allowed parameter points are depicted in green.

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

Stabilisation of the Higgs potential

The SM Higgs potential is unstable as the Higgs self-coupling λ_H turns < 0.

D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, 1307.3536

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

✓ □ → < ≡ → < ≡ →
 8 September 2015

Stabilisation of the Higgs potential

A minimal and robust way to repair the EW vacuum stability is provided by the Higgs portal extension of the SM - just what we have in our theory.

Two effects to stabilise the vacuum:

- When h₂ is heavier than the SM Higgs h₁, the microscopic theory coupling λ_H is larger than the effective SM coupling, λ_H > λ_{SM}. Can use this to prevent λ_H(μ) from going negative at large μ.
- ② The portal coupling gives a positive contribution to the beta function of the Higgs quartic coupling, Δβ_{λ_H} ~ +λ²_P.

Hence we also consider extending the model by adding a real singlet:

 $SM \times G_{CW} \oplus singlet s(x)$

The singlet gives the inflaton and the Dark Matter candidate plus helps with the Higgs vacuum stabilisation

VVK, C. McCabe and G. Ro, arXiv:1403.4953

SM × **SU(2)**_{*cw*}: The Higgs potential is stabilised inside the wedge-shaped region. Contours of the Higgs mixing angle $\sin^2 \theta = 0.05$, 0.1 and 0.2 are shown and the mass of the 2nd scalar h_2 is colour-coded.

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Stabilisation of the Higgs potential

$SM \times G_{CW} \oplus \text{singlet } s(x)$

Now consider adding a new singlet:

$$V_{
m cl}(H,\phi,s) = rac{\lambda_{Hs}}{2}|H|^2s^2 + rac{\lambda_{\phi s}}{2}|\Phi|^2s^2 + rac{\lambda_s}{4}s^4 + V_{
m cl}(H,\Phi)$$

Since all portal couplings give positive contributions to the beta function of the Higgs quartic coupling, $\Delta \beta_{\lambda_H} \sim + \lambda_{H_s}^2 =>$

• Values of $\lambda_{Hs} \gtrsim 0.35$ are sufficient to stabilise the Higgs by this effect on its own. Don't need to be inside the wedge region.

There is a rich spectrum of DM candidates in our CSI Higgs Portal models:

- The CW scalar can be a mediator to the Dark Sector coupled to fermion, scalar, vector DM as in Simplified DM Models considered in Part I.
- The SU(2)_{CW} gauge bosons automatically give vector DM. They are stable due to an SO(3) symmetry and there is no kinetic mixing

T. Hambye 2008, T. Hambye and A. Strumia arXiv:1306.2329

- 3 The singlet scalar s(x), if present, is stable due to a Z_2 symmetry which is automatic due to CSI and gauge invariance \implies scalar DM
- If scalars in the adjoint representation of SU(2)_{CW} are present, there can exist monopole DM studied in
 - S. Baek, P. Ko and W. I. Park arXiv:1311.1035 VVK and G. Ro arXiv:1406.2291

The origin of the dark matter scale is the same as the origin of the EW scale as $m_{DM} \sim \langle \Phi \rangle$. Relic abundance produced by standard freeze out mechanism.

VVK, C. McCabe and G. Ro, arXiv:1403.4953

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

32 / 37

ヘロト 不良 トイヨト イヨト

SU(2)_{CW} Vector Dark Matter annihilation and semi-annihilation:

Scalar Dark Matter annihilation diagrams include:

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Vector and Scalar Dark Matter

Left: SM \times SU(2)_{CW} CSI model – λ_P , g_{CW} plane. Right: With additional DM singlet s(x), don't need to be inside the wedge.

VVK, C. McCabe and G. Ro, arXiv:1403.4953

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

Two-Component DM: Vector and Scalar DM relic density combined

Valentin V. Khoze (IPPP)

Dark Sectors and Higgs Portals

8 September 2015

35 / 37

A (10) A (10)

Summary

Two parts:

- Constraining Dark Sectors at colliders in terms of Simplified Models with four basic types of mediators
- Using Higgs Portal interactions and classical scale invariance as the UV description of Dark Matter Sectors

Simplified models at the LHC 14 TeV and at 100TeV FCC:

- jets +MET complimentary coverage at colliders to DD and ID
- Search for mediators to dark sectors at colliders; can probe $m_{\rm MED}$ and $m_{\rm DM}$ well into the TeV regime at FCC

CSI model-building: no vastly different scales can co-exist in this framework:

- If present, large new mass scales would ultimately couple to the Higgs and destabilise it mass
- Common origin of DM and Electroweak scales

Summary

- CSI ESM examples:
 - Standard Model \times U(1)_{cw}
 - Standard Model \times U(1)_{B-L}
 - Standard Model \times SU(2)_{cw}
- Stabilisation of the Higgs potential
 - $\bullet~$ Standard Model $\times~G_{cw}$
 - $\bullet~$ Standard Model $\times~G_{cw}\oplus~singlet$
- Vector and Scalar Dark Matter
 - Other DM species (fermions) and more involved DM models
 - Can also have Monopole & Vector DM and Dark radiation

Progress has also been made in addressing

- Matter-anti-Matter asymmetry: Leptogenesis via sterile neutrino oscillations
- Cosmological Inflation
- Axions and axion-like particles

E Sac