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Intro: extended EW sector, required 
SM (+ νR): its neutrino Yukawa sector is very unnatural :(

LY � �Y ⌫
ijLLj⌫Rj H̃ + h.c.i

(Yukawa of ⌫)⇥ vp
2

(= 174GeV) = m⌫ (⇠ sub eV)

(At least)
as small as

10-12 ! unnatural!!

 Also, no dark matter (DM) candidate in the SM...

These issues imply that
the electroweak (EW) sector would be extended

with flavor symmetry/structure.

neutrino large mixing,
(also possibly) DM :) 

i,j (=1,2,3):
flavor/generation indices

a naive Q: how the smallness of ν masses is explained???
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 νs have large mixing angles.
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10-12 ! unnatural!!

 Also, no dark matter (DM) candidate in the SM...

neutrino large mixing,
(also possibly) DM :) 

i,j (=1,2,3):
flavor/generation indices

(An) A: Don’t worry! Flavor symmetry helps us also!
Kenji Nishiwaki (KIAS)

a naive Q: how the smallness of ν masses is explained???

These issues imply that
the electroweak (EW) sector would be extended

with flavor symmetry/structure.
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Figure 1: Diagram contributing to the neutrino Majorana mass at two loops.

Assuming no cancellations between the �’s or mass terms, neglecting �H and m02
H , and using

the perturbative limit for the rest of the couplings �i
<⇠ 4⇡ one finds a very conservative

bound on µ

µ <⇠
p
20⇡max(mk,mh) ⇠ 8max(mk,mh) (8)

Tighter limits can be obtained by looking at all directions in the potential and/or allowing

for cancellations.

Given that the neutrino masses depend linearly on the parameter µ, as we will see in

the next section, the ability of the model to accommodate all present data is quite sensitive

to the upper limit allowed for µ. Thus we choose to implement such limit in terms of a

parameter ,

µ < min(mh,mk) , (9)

and discuss our results for di↵erent values of  = 1, 5, 4⇡. Notice that we are using the

naturality upper bound (expressed in terms of min(mh,mk)), which in general is much more

restrictive than the upper bound obtained by requiring that the minimum of the potential

does not break charge conservation (expressed in terms of max(mh,mk)).

A. Neutrino masses.

The lowest order contribution to neutrino masses involving the four relevant couplings

appears at two loops [5, 6] and its Feynman diagram is depicted in fig. 1.

The calculation of this diagram gives the following mass matrix for the neutrinos (defined
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FIG. 1: Radiative generation of neutrino masses.

global minimum of the charge breaking minimum V(r 6= 0) > 0, the following condition

should be at least satisfied:

|µ
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p
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⇥
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X

i=all quartic couplings including �11

�i,

(II.15)

where r ⌘ |�| = |h+

1

| = |h+

2

| = |k++| = |⌃
0

|. If all these quartic couplings are of the order

as �i ⇡ O(1), the following condition can be given by

|µ
22

| . 4
⇥
m2

h1
+m2

h2
+m2

k +m2

⌃

⇤
1/2

, (II.16)

wherem2

�

and �
�

are neglected. Note that the vacuum stability conditions take the following

forms in the Zee-Babu model,

�
(1)

h1
! �

(1)

h = �8|µ|4F
0

(mh± ,mk±±), (II.17)

�
(1)

k = �4|µ|4F
0

(mh± ,mh±), (II.18)

where no �
(1)

h2
’s counterpart is there.

5

suitable assignment → (Majorana) ν masses become loop-induced
[Zee,NPB264-99(86); Babu,PLB203-132(88)] [KN,Okada,Orikasa,arXiv:1507.02412]

a 2-loop example (Zee-Babu model)

a 3-loop example

new
particles

new
couplings

1

(16⇡2
)

N
loops

⇥ (loop function)⇥ (new couplings)

radiative ν mass
DM included

alleviating
unnaturalness!
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mass scale
in the loop

like (TeV-scale) see-saw
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Intro: Flavor Symmetry → loop-induced ν mass

isolated

from leptons

(see also talks by
Seungwon & Yuta)
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1
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and �
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are neglected. Note that the vacuum stability conditions take the following

forms in the Zee-Babu model,
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(1)

h2
’s counterpart is there.
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a 3-loop example

new
particles

new
couplings

1

(16⇡2
)

N
loops

⇥ (loop function)⇥ (new couplings)

DM included
alleviating

unnaturalness!

higher loops, larger suppression

3-loop models can be more “natural” than 1- or 2-loop ones.
(Some new couplings can be close to unity.)

Kenji Nishiwaki (KIAS)

radiative ν mass

[Zee,NPB264-99(86); Babu,PLB203-132(88)] [KN,Okada,Orikasa,arXiv:1507.02412]
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Intro: Flavor Symmetry → loop-induced ν mass
suitable assignment → (Majorana) ν masses become loop-induced

a 2-loop example (Zee-Babu model)
isolated

from leptons



Intro: 3-loop model is predictive
On the other hand, sizable couplings would lead to

 enormous lepton flavor violation (LFV)

 rapid vacuum destabilization

 too-suppressed ν masses

couplings should be
small

couplings should be
largecomplimentary

This means: valid parameter region is restricted (predictive)!!

(Careful model building

is required.)
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ν
profile!

LHC
Higgs

search! DM!

Let me
explain.

3-loop model

1 2 3

[table of contents]

(picture from Web)



1: ν profile
mk±± (mh±

1

,mh±
2

) F

(⇣
2

)

1

F

(⇣
3

)

1

# of allowed points

(4.8TeV, 4.8TeV) �1.16818 �11.5428 2726

500 (4.0TeV, 4.0TeV) �2.14198 �20.0287 422

GeV (3.5TeV, 3.5TeV) �3.30195 �29.6525 89

(3.0TeV, 3.0TeV) �5.37518 �46.0932 16

(4.8TeV, 4.8TeV) �1.21466 �11.9695 1644

250 (4.0TeV, 4.0TeV) �2.24746 �20.9444 190

GeV (3.5TeV, 3.5TeV) �3.49141 �31.2321 31

(3.0TeV, 3.0TeV) �5.74153 �49.0141 2

TABLE V: The numbers of consistent points in the normal hierarchy obtained by parameter

scanning. F

(⇣
2

)

1

and F

(⇣
3

)

1

are the loop functions in ⇣

2

and ⇣

3

shown in Eq. (II.29), respectively.

Kindly refer to the main body of this subsection for details of this scanning.

where we simply change the parameters mh
1

, mh
2

, mk to their physical masses and

ignore the mass parameter m
⌃

. The value of the right-hand side would be near the

original one and it would be useful for roughly estimating this type of bounds. In the

following analysis, we adopt the initial conditions for the quartic couplings,

�
(0)

h
1

= �
(0)

h
2

= �
(0)

k = 4⇡, � = 4⇡. (III.6)

• ensuring perturbativity, all the couplings should be equal to or less than 4⇡.

Our result in the normal hierarchy is summarized in table V. In each of the eight com-

binations of the charged scalar masses, we randomly scan 105 points in the ten parameters,

where the range we consider is shown in Eq. (III.4). Apart from the previous work [1], the

result says that the mass of the doubly-charged scalar can be light around a few hundred

GeV, whereas the other two singly-charged ones should be heavy (at least) around a few

TeV. In this scenario, it is very hard to produce h±
1

and h±
2

in colliders. On the other hand,

detecting k±± could be a reasonable option for probing this model in present and future

collider experiments.

Next, we look into properties of the parameters in the allowed region. Here, we only

show the case of mk±± = 500GeV, mh±
1

= mh±
2

= 4.8TeV as an example, where we checked

other cases are not di↵erent so much. In Fig. 2, we display the distributions of �, �, (yL)23,

21

MN2 = 5TeV, MN3 = 10TeV
MX = MN1 ' mHiggs/2

[right ν profiles fixed]

loop functions
masses. Here, we select the four choices: mh±

1

= mh±
2

= 3TeV, 3.5TeV, 4TeV, 4.8TeV. For

brevity, we fix the three right-handed neutrinos as follows: MN
1

= mh/2, MN
2

= 5TeV and

MN
3

= 10TeV, where we mention that N
1

is a “Higgs-portal” dark matter candidate. The

mass is assumed to be around the 125GeV Higgs resonant region. Detailed discussion on

this topics is found in section V.

We mention that compliance with the relations in the case of the normal hierarchy in

Eq. (II.31) or the inverted hierarchy in Eq. (II.32) leads to the situation that only the

following parameters µ
11

, µ
22

, �, �, (yL)23 are free to be chosen (in addition to the masses

of particles which we fixed in the above paragraph). Note that the five matrix elements

of yR, namely (yR)11, (yR)12, (yR)13, (yR)21, (yR)31, are ine↵ective in the determination of

the active neutrino profiles, while their non-zeroness possibly modifies the strengths of the

lepton flavor violating processes significantly. Then, we consider nonzero values in the five

couplings for the sake of completeness. In each of scanning, we randomly select values of

the ten parameters within the corresponding ranges

µ
12

= µ
22

(⌘ µ) 2 [1 TeV, 20TeV], � 2 [0, 2⇡], � 2 [0, 2⇡], (yL)23 2 [�1, 1],

(yR)ij 2 [�0.01,�0.1] [ [0.01, 0.1]
⇣
for (i, j) = (1, 1), (1, 2), (1, 3), (2, 1), (3, 1)

⌘
. (III.4)

Our definition of an allowed point is a set of parameters where all the following require-

ments are satisfied:

• observed values in masses and mixings of the three active neutrinos are generated. As

we mentioned above, realization of this requirement is equal to the compliance with

the relations in Eq. (II.31) or (II.32).

• predictions for LFVs do not exceed the bounds shown in tables II (` ! `�), III (gauge

universalities), IV (` ! 3`). Concretely, evading bounds corresponds to meeting the

inequalities in Eqs. (II.34), (II.39) and (II.40), respectively.

• fulfilling the requirements on vacuum stability in Eqs. (II.10), (II.11), (II.12) and

(II.18). In the last condition, we adopt the following modified form with physical

masses,

|µ
22

| . 4
p
�
h
m2

h±
1

+m2

h±
2

+m2

k±±

i
1/2

, (III.5)

20

[scanned region]
(note: other couplings are

automatically fixed via neutrino profiles)

Kenji Nishiwaki (KIAS)

(out of 105 points, each)

considering requirements/constraints from
(1)  suitable neutrino mass/mixing realization (3-loop),
(2)  lepton flavor violations (li→ljγ, li→ljlkll; 1-loop),
(3)  gauge universalities (tree),
(4)  vacuum stability (tree + primary 1-loop),
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(II.18). In the last condition, we adopt the following modified form with physical

masses,

|µ
22

| . 4
p
�
h
m2

h±
1

+m2

h±
2

+m2

k±±

i
1/2

, (III.5)

20

[scanned region]
(note: other couplings are

automatically fixed via neutrino profiles)

sub-TeV k±±

is consistent
(isolation from

lepton → less LFV)

Also, (scalar trilinears)
~ 10TeV

VEV of new singlet
should be

around a few TeV

[current LHC bound]
~300GeV

(when 100% branching ratio
to e+e+, μ+μ+ or e+μ+)

Kenji Nishiwaki (KIAS)

considering requirements/constraints from
(1)  suitable neutrino mass/mixing realization (3-loop),
(2)  lepton flavor violations (li→ljγ, li→ljlkll; 1-loop),
(3)  gauge universalities (tree),
(4)  vacuum stability (tree + primary 1-loop),

[ATLAS, EPJC72(2012)2244]

quartic coupling �
11

�
⌃⇤

0

h�
1

h�
1

k++

�
, where the coe�cient is given as

µ
11

= �
11

h⌃⇤
0

i = �
11

v0p
2
, (II.3)

where we use the parameterization of h⌃
0

i declared in Eq. (II.5) in the next subsection. We

assume the following two things: (i) �
11

and µ
22

are positive real; (ii) yN is diagonal and

obeys the hierarchy (yN)11 < (yN)22 < (yN)33 among positive-real parameters, which means

that a generated Majorana mass matrix for NR is also diagonal one and the mass ordering

is MN
1

< MN
2

< MN
3

. The concrete forms of the masses are

MN
1

=
v0p
2
(yN)11, MN

2

=
v0p
2
(yN)22, MN

3

=
v0p
2
(yN)33. (II.4)

B. Mass eigenvalues and eigenstates of scalars

The neutral scalar fields are parameterized as

� =

2

4 w+

v+�+izp
2

3

5 , ⌃
0

=
v0 + �p

2
eiG/v0 . (II.5)

where v ' 246GeV is the VEV of the Higgs doublet field, and w± and z are (would-

be) NG bosons which are absorbed as the longitudinal components of the W and Z bosons,

respectively. Requiring the tadpole conditions, @V/@�|v = 0 and @V/@�|v0 = 0, the resultant

mass matrix squared of the CP even components (�, �) is given by

m2(�, �) =

2

4 2�
�

v2 �
�⌃

vv0

�
�⌃

vv0 2�
⌃

v02

3

5 =

2

4 cos↵ sin↵

� sin↵ cos↵

3

5

2

4 m2

h 0

0 m2

H

3

5

2

4 cos↵ � sin↵

sin↵ cos↵

3

5 , (II.6)

where h is the SM-like Higgs (mh = 125GeV) and H is an additional CP-even Higgs mass

eigenstate. The mixing angle ↵ is determined as

sin 2↵ =
2�

�⌃

vv0

m2

H �m2

h

. (II.7)

The neutral bosons � and � are rewritten in terms of the mass eigenstates h and H as

� = h cos↵ +H sin↵, � = �h sin↵ +H cos↵. (II.8)

An NG boson G emerges due to the spontaneous symmetry breaking of the global U(1)

symmetry. The mass eigenstates for the singly-charged bosons h±
1

, h±
2

and the doubly-

8
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around (or heavier than)
3TeV

1: ν profile
(out of 105 points, each)loop functions



2: LHC Higgs search
LHC Higgs signal strengths are deviated (from the SM) via

 mixing effect between SM Higgs (Φ) & scalar for global U(1) breaking (Σ)

 

primary!

NC (= 3), Qt (= 2/3), Qk (= 2), T (t)
3

(= 1/2), cW and sW are the QCD color factor for

quarks, the electric charges of the top quark and the doubly-charged scalar in unit of the

positron’s one, the weak isospin of the top quark, the cosine and the sine of the Weinberg

angle ✓W , respectively. The loop factors take the following forms,

A��
1

(x) = �x2

⇥
2x�2 + 3x�1 + 3(2x�1 � 1)f(x�1)

⇤
, (IV.11)

A��
1/2(x) = 2x2

⇥
x�1 + (x�1 � 1)f(x�1)

⇤
, (IV.12)

A��
0

(x) = �x2

⇥
x�1 � f(x�1)

⇤
, (IV.13)

AZ�
1

(x, y) = 4(3� tan2 ✓W )I
2

(x, y) +
⇥
(1 + 2x�1) tan2 ✓W � (5 + 2x�1)

⇤
I
1

(x, y), (IV.14)

AZ�
1/2(x, y) = I

1

(x, y)� I
2

(x, y), (IV.15)

AZ�
0

(x, y) = I
1

(x, y), (IV.16)

with the functions

I
1

(x, y) =
xy

2(x� y)
+

x2y2

2(x� y)2
⇥
f(x�1)� f(y�1)

⇤
+

x2y

(x� y)2
⇥
g(x�1)� g(y�1)

⇤
, (IV.17)

I
2

(x, y) = � xy

2(x� y)

⇥
f(x�1)� f(y�1)

⇤
. (IV.18)

In the above formulas, forms of the input variables to the loop factors ⌧i and �i are defined

as fractions by the Higgs boson mass (mh) or the Z boson mass (mZ)

⌧i =
4m2

i

m2

h

, �i =
4m2

i

m2

Z

(i = t,W, k). (IV.19)

The two ratios usually take values above one (mh  2mi, mZ  2mi). The two functions

f(z) and g(z) (z ⌘ x�1 or y�1) are formulated as

f(z) =

8
><

>:

arcsin2

p
z for z  1,

�1

4

h
log

⇣
1+

p
1�z�1

1�
p
1�z�1

⌘
� i⇡

i
2

for z > 1,
(IV.20)

g(z) =

8
><

>:

p
z�1 � 1 arcsin

p
z for z  1,

p
1�z�1

2

h
log

⇣
1+

p
1�z�1

1�
p
1�z�1

⌘
� i⇡

i
for z > 1,

(IV.21)

where the situation mh  2mi, mZ  2mi corresponds to z  1.

For estimating consistent parameter region with the latest results of the Higgs search at

LHC, we define the �2 valuable by use of the signal strength in Eq. (IV.1) as follows:

�2 =
X

f=��,ZZ⇤,WW⇤,
b¯b,⌧⌧̄ (ATLAS)

✓
µf � µ̂f

�̂f

◆
2

+
X

f=��,ZZ⇤,WW⇤,
b¯b,⌧⌧̄ (CMS)

✓
µf � µ̂f

�̂f

◆
2

. (IV.22)
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Process ATLAS CMS Reference

h ! �� 1.17+0.27
�0.27 1.12± 0.24 [107, 112]

h ! ZZ

⇤ ! 4` 1.44+0.40
�0.33 1.00± 0.29 [108, 112]

h ! WW

⇤ ! `⌫`⌫ 1.09+0.23
�0.21 0.83± 0.21 [109, 112]

h ! bb̄ 0.5+0.4
�0.4 0.84± 0.44 [110, 112]

h ! ⌧ ⌧̄ 1.4+0.4
�0.4 0.91± 0.28 [111, 112]

TABLE VI: Summary of the latest LHC Higgs search data as (combined) signal strengths in the

five Higgs decay patterns (h ! ��, h ! ZZ

⇤ ! 4`, h ! WW

⇤ ! `⌫`⌫, h ! bb̄, h ! ⌧ ⌧̄). The

analyses are based on the datasets accumulated in the LHC first run, whose details of the ATLAS

and the CMS are 4.5 – 4.7 fb�1 (7TeV) + 20.3 fb�1 (8TeV), 5.1 fb�1 (7TeV) + 19.7 fb�1 (8TeV),

respectively.

First, we describe the method we use for global analysis. Like in the papers [104–106], we

adopt the following form of signal strength of the single Higgs production channel with the

subsequent Higgs decay to the particles f ,

µf =
�
total

�SM

total

⇥ Brh!f

BrSMh!f

, (IV.1)

where �
total

(�SM

total

) represents the total production cross section of a Higgs boson in this

model (SM), respectively. The Higgs branching ratios to the particles f of the SM and this

model are discriminated by with or without the superscript “SM”.

Here, note that in our scenario, the observed Higgs boson is a mixture of the SU(2)L

doublet � and the singlet ⌃
0

as shown in Eq. (II.8) and no additional colored particle is

introduced, which means the absence of new contributions to the Higgs production via the

gluon fusion process. Since the SM gauge bosons and quarks do not couple to ⌃
0

, the ratio

of the total cross sections is easily calculated as

�
total

�SM

total

= cos2 ↵. (IV.2)

Whereas, evaluating the ratio of the branding ratios is rather complicated. First, we look

at the following decomposition,

Brh!f

BrSMh!f

=

✓
�h

�SM

h

◆�1

⇥ �h!f

�SM

h!f

, (IV.3)
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[used data]

Kenji Nishiwaki (KIAS)

[ATLAS: PRD90(2014)112015, PRD91(2015)012006, arXiv:1412.2641, JHEP1501(2015)069, ATLAS-CONF-2014-061]

[CMS: EPJC75(2015)212]

loop effect via k++ (in h → 2γ, h → γZ)
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secondary (mk++ ≥ 250GeV: via ν profile)
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FIG. 4: The 1� (blue) and 2� (red) allowed regions of the global analysis based on the LHC

data summarized in table VI. From left to right, we choose the parameters (�
�k,�⌃kv

0) =

(1.0, 5v), (1.0, 10v), respectively.

of the DM is around mh/2 where the Higgs invisible channel to a pair of the DMs is near the

threshold and negligible. Detailed discussions on the DM candidate is given in section V.

Now, apparently, we see the following five parameters, mk±± , �
�k, �⌃k, v0 and ↵ govern

the signal strengths of the Higgs boson. But in fact, as shown in Eq. (IV.9), �
⌃k and v0

contribute to the Higgs physics only as the combination of �
⌃kv

0. Thus, four independent

degrees of freedom are relevant in total.

We fix the two parameters �
�k and �

⌃kv
0 in each of the following global fits for simplicity.

Here, we consider the five possibilities, (�
�k,�⌃kv

0) = (1.0, v), (⇡, v), (0.1, v), (1.0, 5v) and

(1.0, 10v) and search for their global minima on the remaining two variables (mk±± , sin↵) at

first. The positions of each corresponding minimum are (mk±± , sin↵) = (74.7GeV,�0.0759),

(109GeV,�0.0774), (65.0GeV, 0.102), (80.3GeV,�0.0768) and (87.5GeV,�0.0804) with

�2

min

' 5.08 (commonly in all the cases), respectively. The 1� and 2� boundaries are defined

as the positions with �2 = �2

min

+ ��2

1�,2�, where the values of ��2

1�,2� are calculated by

the cumulative distribution function of the �2-distribution with two degrees of freedom as

��2

1� = 2.296, ��2

2� = 6.180. The results are shown in Figs. 3 and 4. When we consider

the doubly-charged scalars with mk±± = 500GeV, the range of ↵

| sin↵| . 0.3 (IV.23)
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LHC Higgs signal strengths are deviated (from the SM) via
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FIG. 3: The 1� (blue) and 2� (red) allowed regions of the global analysis based on the LHC

data summarized in table VI. From top left to bottom, we choose the parameters (�
�k,�⌃kv

0) =

(1.0, v), (⇡, v), (0.1, v), respectively.

Here, we take the results of the five Higgs decay channels reported by the ATLAS and the

CMS experiments into consideration, which are h ! ��, h ! ZZ⇤ ! 4`, h ! WW ⇤ !
`⌫`⌫, h ! bb̄, h ! ⌧ ⌧̄ summarized in table VI. The two hatted symbols µ̂f and �̂f repre-

sent the corresponding central value and error, respectively. We assumed that each of ten

experimental inputs follows the Gaussian distribution and there are no correlations among

them. Also, when an error is asymmetric, we adopt its simple average as an input value

of the corresponding �̂f for analysis. These simplifications are justified for our purpose of

roughly estimating survived regions of the parameter space of this model.

In the following analysis, for simplicity, we focus on a reasonable situation that the mass

27

NC (= 3), Qt (= 2/3), Qk (= 2), T (t)
3

(= 1/2), cW and sW are the QCD color factor for

quarks, the electric charges of the top quark and the doubly-charged scalar in unit of the

positron’s one, the weak isospin of the top quark, the cosine and the sine of the Weinberg

angle ✓W , respectively. The loop factors take the following forms,

A��
1

(x) = �x2

⇥
2x�2 + 3x�1 + 3(2x�1 � 1)f(x�1)

⇤
, (IV.11)

A��
1/2(x) = 2x2

⇥
x�1 + (x�1 � 1)f(x�1)

⇤
, (IV.12)

A��
0

(x) = �x2

⇥
x�1 � f(x�1)

⇤
, (IV.13)

AZ�
1

(x, y) = 4(3� tan2 ✓W )I
2

(x, y) +
⇥
(1 + 2x�1) tan2 ✓W � (5 + 2x�1)

⇤
I
1

(x, y), (IV.14)

AZ�
1/2(x, y) = I

1

(x, y)� I
2

(x, y), (IV.15)

AZ�
0

(x, y) = I
1

(x, y), (IV.16)

with the functions

I
1

(x, y) =
xy

2(x� y)
+

x2y2

2(x� y)2
⇥
f(x�1)� f(y�1)

⇤
+

x2y

(x� y)2
⇥
g(x�1)� g(y�1)

⇤
, (IV.17)

I
2

(x, y) = � xy

2(x� y)

⇥
f(x�1)� f(y�1)

⇤
. (IV.18)

In the above formulas, forms of the input variables to the loop factors ⌧i and �i are defined

as fractions by the Higgs boson mass (mh) or the Z boson mass (mZ)

⌧i =
4m2

i

m2

h

, �i =
4m2

i

m2

Z

(i = t,W, k). (IV.19)

The two ratios usually take values above one (mh  2mi, mZ  2mi). The two functions

f(z) and g(z) (z ⌘ x�1 or y�1) are formulated as

f(z) =

8
><

>:

arcsin2

p
z for z  1,

�1

4

h
log

⇣
1+

p
1�z�1

1�
p
1�z�1

⌘
� i⇡

i
2

for z > 1,
(IV.20)

g(z) =

8
><

>:

p
z�1 � 1 arcsin

p
z for z  1,

p
1�z�1

2

h
log

⇣
1+

p
1�z�1

1�
p
1�z�1

⌘
� i⇡

i
for z > 1,

(IV.21)

where the situation mh  2mi, mZ  2mi corresponds to z  1.

For estimating consistent parameter region with the latest results of the Higgs search at

LHC, we define the �2 valuable by use of the signal strength in Eq. (IV.1) as follows:

�2 =
X

f=��,ZZ⇤,WW⇤,
b¯b,⌧⌧̄ (ATLAS)

✓
µf � µ̂f

�̂f

◆
2

+
X

f=��,ZZ⇤,WW⇤,
b¯b,⌧⌧̄ (CMS)

✓
µf � µ̂f

�̂f

◆
2

. (IV.22)
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results of

global analysis

disfavored
by ν profiles

quartic coupling �
11

�
⌃⇤

0

h�
1

h�
1

k++

�
, where the coe�cient is given as

µ
11

= �
11

h⌃⇤
0

i = �
11

v0p
2
, (II.3)

where we use the parameterization of h⌃
0

i declared in Eq. (II.5) in the next subsection. We

assume the following two things: (i) �
11

and µ
22

are positive real; (ii) yN is diagonal and

obeys the hierarchy (yN)11 < (yN)22 < (yN)33 among positive-real parameters, which means

that a generated Majorana mass matrix for NR is also diagonal one and the mass ordering

is MN
1

< MN
2

< MN
3

. The concrete forms of the masses are

MN
1

=
v0p
2
(yN)11, MN

2

=
v0p
2
(yN)22, MN

3

=
v0p
2
(yN)33. (II.4)

B. Mass eigenvalues and eigenstates of scalars

The neutral scalar fields are parameterized as

� =

2

4 w+

v+�+izp
2

3

5 , ⌃
0

=
v0 + �p

2
eiG/v0 . (II.5)

where v ' 246GeV is the VEV of the Higgs doublet field, and w± and z are (would-

be) NG bosons which are absorbed as the longitudinal components of the W and Z bosons,

respectively. Requiring the tadpole conditions, @V/@�|v = 0 and @V/@�|v0 = 0, the resultant

mass matrix squared of the CP even components (�, �) is given by

m2(�, �) =

2

4 2�
�

v2 �
�⌃

vv0

�
�⌃

vv0 2�
⌃

v02

3

5 =

2

4 cos↵ sin↵

� sin↵ cos↵

3

5

2

4 m2

h 0

0 m2

H

3

5

2

4 cos↵ � sin↵

sin↵ cos↵

3

5 , (II.6)

where h is the SM-like Higgs (mh = 125GeV) and H is an additional CP-even Higgs mass

eigenstate. The mixing angle ↵ is determined as

sin 2↵ =
2�

�⌃

vv0

m2

H �m2

h

. (II.7)

The neutral bosons � and � are rewritten in terms of the mass eigenstates h and H as

� = h cos↵ +H sin↵, � = �h sin↵ +H cos↵. (II.8)

An NG boson G emerges due to the spontaneous symmetry breaking of the global U(1)

symmetry. The mass eigenstates for the singly-charged bosons h±
1

, h±
2

and the doubly-

8

CP-even
part of Φ

CP-even
part of Σ

125GeV
Higgs

heavier
Higgs the mixing

angle

|sin↵| . 0.3

mixing effect between SM Higgs (Φ) & scalar for global U(1) breaking (Σ) primary!

loop effect via k++ (in h → 2γ, h → γZ) secondary (mk++ ≥ 250GeV: via ν profile)
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3: DM valid region
 Majorana DM can communicate with SM particles through two CP-even scalars

Higgs-portal DM

 DM-DM-portal couplings are suppressed by the TeV VEV of Σ
only two resonant points (mχ ~ mh/2 or mH/2) 

are viable

symmetries are given by

�LY = (y`)ijL̄Li�eRj +
1

2
(yL)ijL̄

c
Li
LLjh

+

1

+ (yR)ijN̄Rie
c
Rj
h�
2

+
1

2
(yN)ij⌃0

N̄ c
Ri
NRj + h.c.

(II.1)

V = m2

�

|�|2 +m2

⌃

|⌃
0

|2 +m2

h
1

|h+

1

|2 +m2

h
2

|h+

2

|2 +m2

k|k++|2

+
h
�
11

⌃⇤
0

h�
1

h�
1

k++ + µ
22

h+

2

h+

2

k�� + h.c.
i
+ �

�

|�|4 + �
�⌃

|�|2|⌃
0

|2 + �
�h

1

|�|2|h+

1

|2

+ �
�h

2

|�|2|h+

2

|2 + �
�k|�|2|k++|2 + �

⌃

|⌃
0

|4 + �
⌃h

1

|⌃
0

|2|h+

1

|2 + �
⌃h

2

|⌃|2|h+

2

|2

+ �
⌃k|⌃0

|2|k++|2 + �h
1

|h+

1

|4+�h
1

h
2

|h+

1

|2|h+

2

|2 + �h
1

k|h+

1

|2|k++|2

+ �h
2

|h+

2

|4 + �h
2

k|h2

|2|k++|2 + �k|k++|4, (II.2)

where the indices i, j indicate matter generations, the superscript “c” means charge conju-

gation 2. yL, yR and yN are antisymmetric, general, symmetric matrices, respectively. The

first term of LY generates the SM charged-lepton masses, while Majorana mass terms are

derived from the fourth one after ⌃
0

obtains a VEV. We assume the following two things:

(i) �
11

and µ
22

are positive real; (ii) yN is diagonal, which means that a generated Majorana

mass matrix for NRi is (also) diagonal one.

B. Mass matrices of bosons

The scalar fields can be parameterized as

� =

2

4 w+

v+�+izp
2

3

5 , ⌃
0

=
v0 + �p

2
eiG/v0 . (II.3)

where v ' 246GeV is the VEV of the Higgs doublet field, and w± and z are respectively

(would-be) NGB which are absorbed as the longitudinal components of W and Z bosons.

Inserting the tadpole conditions, @V/@�|v = 0 and @V/@�|v0 = 0, the resultant mass matrix

of the CP even boson (�, �) is given by

m2(�, �) =

2

4 2�
�

v2 �
�⌃

vv0

�
�⌃

vv0 2�
⌃

v02

3

5 =

2

4 cos↵ sin↵

� sin↵ cos↵

3

5

2

4 m2

h 0

0 m2

H

3

5

2

4 cos↵ � sin↵

sin↵ cos↵

3

5 , (II.4)

2 For SU(2)L doublets, charge conjugation is defined with the SU(2)L rotation described by a Pauli matrix

as i�2.

3

too heavy (≥ a few TeV), ineffective

mix with the SM Higgs doublet

FIG. 5: Realized present-day relic densities of the dark matter candidate � are shown as functions of

m�. The other e↵ective parameters are fixed as sin↵ = 0.4, v0 = 800GeV, mH = 250GeV, mk±± =

500GeV (left panel) and sin↵ = 0.5, v0 = 5TeV, mH = 250GeV, mk±± = 500GeV (right panel),

respectively. The area inside the two horizontal dashed lines (where the splitting is almost invisible)

suggests the 2� consistent region with the Planck data (0.1196 ± 0.0031 (68%CL) [120]). In the

current setup, the relic density sharply drops around the two resonant regions around mh/2 '
62.5GeV and mH/2 ' 125GeV, where in the latter case, shown in the right panel, dropping is

not su�cient for obtaining a proper amount of dark matter even around mH/2 at present. We

neglect the three- and four-body final states via virtual W and Z boson decays, which gives sizable

modifications near the thresholds for producing gauge boson pairs [129, 130], since our interest is

only around mh/2 and mH/2 where this correction is expected to be insignificant.

In the following calculation, we treat the variables ↵, mH and v0 independently, which

determine the coe�cients �
�⌃

, �
�

and �
⌃

through the relations in Eqs. (II.6) and (II.7) as

�
�⌃

=
sin↵ cos↵ (m2

H �m2

h)

vv0
,

�
�

=
cos2 ↵m2

h + sin2 ↵m2

H

2v2
,

�
⌃

=
sin2 ↵m2

h + cos2 ↵m2

H

2v02
. (V.12)

In our scenario, v0 tends to be O(1) TeV leading to suppressing the thermally-averaged cross

section describing pair annihilation processes, see Appendix C for detail forms. It would

require a mechanism for enhancing the cross section. In this manuscript, hence, we focus on

the two resonant regions of m� around mh/2 or mH/2. Our requirement for the amount of

the relics is that it should be within the ±2� range of the latest value reported by the Planck

experiment (0.1196± 0.0031 (68%CL) [120]). In the following matrix plots, the values of v0

and sin↵ at the center of a square represent the inputs in the whole region shown by the

32

an example

DM

DM

SM, others
h, H

(resonance)
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 Majorana DM can communicate with SM particles through two CP-even scalars

 DM-DM-portal couplings are suppressed by the TeV VEV of Σ
only two resonant points (mχ ~ mh/2 or mH/2) 

are viable

FIG. 6: The matrix plots indicates suitable choices of the two parameters v

0 and sin↵ when

we consider the situation of mH = 250GeV, mk±± = 250GeV. We obtain the observed relic

density in the red (blue) region in the left (right) panel when m� is around mh/2 ' 62.5GeV

(mH/2 ' 125GeV), respectively. The green region is excluded via excess of the invisible decay

channel of the observed Higgs boson. No excluded region is found by the direct detection in the

shown parameter range.

FIG. 7: The matrix plots for showing the region where a proper amount of the relic density is

realized when mH = 250GeV, mk±± = 500GeV. Conventions are the same with ones in Fig. 6.

No excluded region is found by the direct detection in the shown parameter range.

square.

An important point is that all the e↵ective diagrams of this pair-annihilation of � are

33

(mχ ~ mh/2 = 62.5GeV) (mχ ~ mH/2 = 250GeV/2 =125GeV)

disfavored
by invisible Higgs decay

(no limit shown via direct detection)

[when mk++ = 500GeV, λΦk = 1, λΣk = 0.1] (note: when mH gets
heavier as ~ 500GeV,

propagator suppression 
→ mχ ~ mH/2 not valid)|sin↵| & 0.3

or
heavier Higgs resonance

(mH < ~ 500GeV)

Kenji Nishiwaki (KIAS)

[ATLAS-CONF-2015-004]

Higgs-portal DM
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square.

An important point is that all the e↵ective diagrams of this pair-annihilation of � are

33

(mχ ~ mh/2 = 62.5GeV)

[when mk++ = 500GeV, λΦk = 1, λΣk = 0.1] (note: when mH gets
heavier as ~ 500GeV,

propagator suppression 
→ mχ ~ mH/2 not valid)

|sin↵| . 0.3
[conclusion in LHC issue]|sin↵| & 0.3

or
heavier Higgs resonance

(mH < ~ 500GeV)

Tensioned!

Kenji Nishiwaki (KIAS)

[ATLAS-CONF-2015-004]

Higgs-portal DM
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3: DM valid region

(mχ ~ mH/2 = 250GeV/2 =125GeV)

disfavored
by invisible Higgs decay

(no limit shown via direct detection)



Summary

Kenji Nishiwaki (KIAS)

 In the three-loop neutrino model, ν profiles and DM are
described very well.

 Allowed mass ranges are limited (predictive):

 doubly-charged scalar (k++): (more than) 250GeV

 Majorana DM (χ): ~ mh/2 (=62.5GeV) or mH/2 (less than ~250GeV)

LHC bound approaching

tension with
LHC Higgs search

small mixing
with SM particles
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The LHC experiment
would test this direction!



Kenji Nishiwaki (KIAS)

 In the three-loop neutrino model, ν profiles and DM are
described very well.

 Allowed mass ranges are limited (predictive):

 doubly-charged scalar (k++): (more than) 250GeV

 

LHC bound approaching

tension with
LHC Higgs search

The LHC experiment
would test this direction! thank you:-)

small mixing
with SM particles

7/7

Summary

Majorana DM (χ): ~ mh/2 (=62.5GeV) or mH/2 (less than ~250GeV)
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Recent significant achievements in experiments:

confirmation of nonzero θ13

sin2 ✓13 = 0.0218+0.0010
�0.0010 (NH)

sin2 ✓13 = 0.0219+0.0011
�0.0010 (IH)

by global fit with data

up to 2014 summer

 discovery of SM-like Higgs boson

mH = 125.4GeV, µ�� = 1.17± 0.27 (ATLAS)

mH = 124.70GeV, µ�� = 1.14+0.26
�0.23 (CMS)

[CERN-PH-EP-2014-198,CMS-HIG-13-001]

based on

data at 7 & 8 TeV
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Figure 1. Global 3⌫ oscillation analysis. Each panel shows a two-dimensional projection of the
allowed six-dimensional region after minimization with respect to the undisplayed parameters. The
di↵erent contours correspond to 1�, 90%, 2�, 99% and 3� CL (2 dof). Full regions correspond to
the analysis with free normalization of reactor fluxes and data from short-baseline (less than 100
m) reactor experiments included. For void regions short-baseline reactor data are not included but
reactor fluxes as predicted in [45] are assumed. Note that as atmospheric mass-squared splitting
we use �m

2

31

for NO and �m

2

32

for IO. The regions in the lower 4 panels are based on a ��

2

minimized with respect to NO and IO.

– 4 –

SM-like!
mν is minuscule

but nonzero!

[Gonzalez-Garcia,Maltoni,Schwetz,JHEP1411-052(2014)]

 

What relationship?

“lightest” particles
with large mixing

an origin of massesKenji Nishiwaki (KIAS)

Status of Experiments
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where the indices i, j indicate matter generations, the superscript “c” means charge con-

jugation 2. yL, yR and yN are antisymmetric, general, symmetric three-by-three matrices,

respectively. The first term of LY generates the charged-lepton masses with following the

SM manner. Majorana mass terms are derived from the fourth one after ⌃
0

obtains a VEV.

Note that this VEV also generate an e↵ective trilinear coupling µ
11

�
h�
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from the

2 For SU(2)L doublets, charge conjugation is defined with the SU(2)L rotation described by a Pauli matrix

as i�2.

7

⌫L ⌫L`L `LeR eRNR NR

h

+
2 h

+
2

k

++h

+
1 h

+
1

h⌃0i

FIG. 1: Radiative generation of neutrino masses.

global minimum of the charge breaking minimum V(r 6= 0) > 0, the following condition

should be at least satisfied:
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negative parity
remains after U(1) breaking

(lightest one → DM)

origin of
breakdown of global U(1)

(including pseudo NG boson)

scalar
trilinear couplings

(coefficient: mass scales)

Kenji Nishiwaki (KIAS)

Details of our Neutrino Sector
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FIG. 1: Radiative generation of neutrino masses.
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 two singly-charged scalars are required (for 3-loop ν masses)
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FIG. 1: Radiative generation of neutrino masses.
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 two singly-charged scalars are required (for 3-loop ν masses)

 a doubly-charged scalar should be isolated from leptons (for less LFV)
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trilinear couplings
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FIG. 1: Radiative generation of neutrino masses.
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where no �
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5

SM leptons
SM

Higgs

[points]

 two singly-charged scalars are required (for 3-loop ν masses)

 a doubly-charged scalar should be isolated from leptons (for less LFV)

 right-handed neutrinos should be introduced (for Majorana ν mass & DM)

scalar
trilinear couplings

(coefficient: mass scales)

Kenji Nishiwaki (KIAS)

global U(1)
flavor sym.

origin of
breakdown of global U(1)

(including pseudo NG boson)

negative parity
remains after U(1) breaking

(lightest one → DM)

Details of our Neutrino Sector



Lepton Fields Scalar Fields

Characters LLi eRi NRi � ⌃
0

h

+

1

h

+

2

k

++

SU(3)C 1 1 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 1 1

U(1)Y �1/2 �1 0 1/2 0 1 1 2

U(1) 0 0 �x 0 2x 0 x 2x

TABLE I: Contents of lepton and scalar fields and their charge assignment under SU(3)C ⇥
SU(2)L ⇥ U(1)Y ⇥ U(1), where U(1) is an additional global symmetry and x 6= 0. The subscripts

found in the lepton fields i (= 1, 2, 3) indicate generations of the fields.

The relevant Lagrangian for Yukawa sector LY and scalar potential V allowed under the

global symmetry are given as

�LY = (y`)ijL̄Li�eRj +
1

2
(yL)ijL̄

c
Li
LLjh

+

1

+ (yR)ijN̄Rie
c
Rj
h�
2

+
1

2
(yN)ij⌃0

N̄ c
Ri
NRj + h.c.

(II.1)

V = m2

�

|�|2 +m2

⌃

|⌃
0

|2 +m2

h
1

|h+

1

|2 +m2

h
2

|h+

2

|2 +m2

k|k++|2

+
h
�
11

⌃⇤
0

h�
1

h�
1

k++ + µ
22

h+

2

h+

2

k�� + h.c.
i
+ �

�

|�|4 + �
�⌃

|�|2|⌃
0

|2 + �
�h

1

|�|2|h+

1

|2

+ �
�h

2

|�|2|h+

2

|2 + �
�k|�|2|k++|2 + �

⌃

|⌃
0

|4 + �
⌃h

1

|⌃
0

|2|h+

1

|2 + �
⌃h

2

|⌃
0

|2|h+

2

|2

+ �
⌃k|⌃0

|2|k++|2 + �h
1

|h+

1

|4+�h
1

h
2

|h+

1

|2|h+

2

|2 + �h
1

k|h+

1

|2|k++|2

+ �h
2

|h+

2

|4 + �h
2

k|h2

|2|k++|2 + �k|k++|4, (II.2)

where the indices i, j indicate matter generations, the superscript “c” means charge con-

jugation 2. yL, yR and yN are antisymmetric, general, symmetric three-by-three matrices,

respectively. The first term of LY generates the charged-lepton masses with following the

SM manner. Majorana mass terms are derived from the fourth one after ⌃
0

obtains a VEV.

Note that this VEV also generate an e↵ective trilinear coupling µ
11

�
h�
1

h�
1

k++

�
from the

2 For SU(2)L doublets, charge conjugation is defined with the SU(2)L rotation described by a Pauli matrix

as i�2.
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FIG. 1: Radiative generation of neutrino masses.

global minimum of the charge breaking minimum V(r 6= 0) > 0, the following condition

should be at least satisfied:

|µ
22

| <
p
⇤
⇥
m2

�

+m2

h1
+m2

h2
+m2

k +m2

⌃

⇤
1/2

, ⇤ ⌘
X

i=all quartic couplings including �11

�i,

(II.15)

where r ⌘ |�| = |h+

1

| = |h+

2

| = |k++| = |⌃
0

|. If all these quartic couplings are of the order

as �i ⇡ O(1), the following condition can be given by

|µ
22

| . 4
⇥
m2

h1
+m2

h2
+m2

k +m2

⌃

⇤
1/2

, (II.16)

wherem2

�

and �
�

are neglected. Note that the vacuum stability conditions take the following

forms in the Zee-Babu model,

�
(1)

h1
! �

(1)

h = �8|µ|4F
0

(mh± ,mk±±), (II.17)

�
(1)

k = �4|µ|4F
0

(mh± ,mh±), (II.18)

where no �
(1)

h2
’s counterpart is there.

5

SM leptons
SM

Higgs

[points]

 two singly-charged scalars are required (for 3-loop ν masses)

 a doubly-charged scalar should be isolated from leptons (for less LFV)

 right-handed neutrinos should be introduced (for Majorana ν mass & DM)

 pseudo NG boson does not couple to charged leptons (no limit via NG → 2γ)

scalar
trilinear couplings

(coefficient: mass scales)

Kenji Nishiwaki (KIAS)

global U(1)
flavor sym.

origin of
breakdown of global U(1)

(including pseudo NG boson)

negative parity
remains after U(1) breaking

(lightest one → DM)

Details of our Neutrino Sector
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given by

|µ
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+ µ
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⇡
⇥
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where m2

�

and �
�

are neglected. Note that the vacuum stability conditions
take the following forms in the Zee-Babu model,
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h = �8|µ|4F
0
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�
(1)

k = �4|µ|4F
0

(mh± ,mh±), (2.16)

where no �
(1)

h1
’s counterpart is there.

2.4. Neutrino mass matrix

The Majorana neutrino mass matrix m⌫ is derived at the three-loop level
from the diagrams depicted in Fig. 1, which is described by an e↵ective
operator, �1

2

(⌫La)c(m⌫)ab⌫Lb
. The concrete form of (m⌫)ab is given by

(m⌫)ab =
4µ2
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µ
22

(4⇡)6M4
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LFV,  Vacuum Stability  v.s.  k±± Decoupling



|yR12y
⇤
R11

| < 2.3⇥ 10�5
⇣mk±±

TeV

⌘2

e.g., μ- → e-e+e- via k-- exchange (@ tree level) μ-

k--

e-

e-

e+

direct couplings
to leptons

In case of non-isolated k++,

should be small

[⌫ mass] = (scalar trilinear couplings)⇥ (LFV couplings)⇥ (loop function)

(should be) smallTeV TeV inside[case (i)]

too small ν masses ☓

Kenji Nishiwaki (KIAS)

e.g.,[Herrero-Garcia,Nebot,Ruis,Santamaria,NPB885-542(2014)]

[Hatanaka,KN,Okada,Orikasa,NPB894-268(2015)]

LFV,  Vacuum Stability  v.s.  k±± Decoupling



|yR12y
⇤
R11

| < 2.3⇥ 10�5
⇣mk±±

TeV

⌘2

e.g., μ- → e-e+e- via k-- exchange (@ tree level) μ-

k--

e-

e-

e+

direct couplings
to leptons

In case of non-isolated k++,

should be small

[⌫ mass] = (scalar trilinear couplings)⇥ (LFV couplings)⇥ (loop function)

(should be) smallTeV TeV inside[case (i)]

too small ν masses ☓
[case (ii)] multi TeV (should be) small TeV inside

vacuum destabilized ☓

�(1)
h1

= �1

2
|µ12|4

X

i=R,I

F0(mh±
2
,m�0(i)),

�(1)
h2

= �8|µ22|4F0(mh±
2
,mk±±)� 1

2
|µ12|4

X

i=R,I

F0(mh±
1
,m�0(i)),

�(1)
k = �4|µ22|4F0(mh±

2
,mh±

2
), ✓

F0(m1,m2) =
1

(4⇡)2

Z 1

0
dxdy�(x+ y � 1)

xy

(xm2
1 + ym

2
2)

2

◆

negative contrib.

via scalar trili
enars

Kenji Nishiwaki (KIAS)

e.g.,[Herrero-Garcia,Nebot,Ruis,Santamaria,NPB885-542(2014)]

[Hatanaka,KN,Okada,Orikasa,NPB894-268(2015)]

LFV,  Vacuum Stability  v.s.  k±± Decoupling



|yR12y
⇤
R11

| < 2.3⇥ 10�5
⇣mk±±

TeV

⌘2

e.g., μ- → e-e+e- via k-- exchange (@ tree level) μ-

k--

e-

e-

e+

direct couplings
to leptons

In case of non-isolated k++,

should be small

[⌫ mass] = (scalar trilinear couplings)⇥ (LFV couplings)⇥ (loop function)

(should be) smallTeV TeV inside[case (i)]

too small ν masses ☓
[case (ii)] multi TeV (should be) small TeV inside

vacuum destabilized ☓

[case (iii)] multi TeV (should be) small multi TeV inside

consistent ν profiles, but...

10TeV . (allowed masses) . 100TeV

too heavy to be tested @ colliders...

Kenji Nishiwaki (KIAS)

e.g.,[Herrero-Garcia,Nebot,Ruis,Santamaria,NPB885-542(2014)]

[Hatanaka,KN,Okada,Orikasa,NPB894-268(2015)]

LFV,  Vacuum Stability  v.s.  k±± Decoupling



|yR12y
⇤
R11

| < 2.3⇥ 10�5
⇣mk±±

TeV

⌘2

e.g., μ- → e-e+e- via k-- exchange (@ tree level) μ-

k--

e-

e-

e+

direct couplings
to leptons

In case of non-isolated k++,

should be small

[⌫ mass] = (scalar trilinear couplings)⇥ (LFV couplings)⇥ (loop function)

(should be) smallTeV TeV inside[case (i)]

too small ν masses ☓
[case (ii)] multi TeV (should be) small TeV inside

vacuum destabilized ☓

[case (iii)] multi TeV (should be) small multi TeV inside

consistent ν profiles, but...

[present case] around TeV moderate TeV or less inside

can be tested @ colliders

Kenji Nishiwaki (KIAS)

e.g.,[Herrero-Garcia,Nebot,Ruis,Santamaria,NPB885-542(2014)]

[Hatanaka,KN,Okada,Orikasa,NPB894-268(2015)]

LFV,  Vacuum Stability  v.s.  k±± Decoupling



Lepton Fields Scalar Fields

Characters LLi eRi NRi � ⌃
0

h

+

1

h

+

2

k

++

SU(3)C 1 1 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 1 1

U(1)Y �1/2 �1 0 1/2 0 1 1 2

U(1) 0 0 �x 0 2x 0 x 2x

TABLE I: Contents of lepton and scalar fields and their charge assignment under SU(3)C ⇥
SU(2)L ⇥ U(1)Y ⇥ U(1), where U(1) is an additional global symmetry and x 6= 0. The subscripts

found in the lepton fields i (= 1, 2, 3) indicate generations of the fields.

The relevant Lagrangian for Yukawa sector LY and scalar potential V allowed under the

global symmetry are given as

�LY = (y`)ijL̄Li�eRj +
1

2
(yL)ijL̄

c
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LLjh

+

1

+ (yR)ijN̄Rie
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+
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2
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NRj + h.c.

(II.1)
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|2|k++|2 + �k|k++|4, (II.2)

where the indices i, j indicate matter generations, the superscript “c” means charge con-

jugation 2. yL, yR and yN are antisymmetric, general, symmetric three-by-three matrices,

respectively. The first term of LY generates the charged-lepton masses with following the

SM manner. Majorana mass terms are derived from the fourth one after ⌃
0

obtains a VEV.

Note that this VEV also generate an e↵ective trilinear coupling µ
11

�
h�
1

h�
1

k++

�
from the

2 For SU(2)L doublets, charge conjugation is defined with the SU(2)L rotation described by a Pauli matrix

as i�2.
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where the indices i, j indicate matter generations, the superscript “c” means charge con-

jugation 2. yL, yR and yN are antisymmetric, general, symmetric three-by-three matrices,

respectively. The first term of LY generates the charged-lepton masses with following the

SM manner. Majorana mass terms are derived from the fourth one after ⌃
0

obtains a VEV.

Note that this VEV also generate an e↵ective trilinear coupling µ
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k++
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from the

2 For SU(2)L doublets, charge conjugation is defined with the SU(2)L rotation described by a Pauli matrix

as i�2.
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Lepton Flavor Violation processes
Process (i, f) Experimental bounds (90% CL) Cif

µ

� ! e

�
� (2, 1) Br(µ ! e�) < 5.7⇥ 10�13 1.6⇥ 10�6

⌧

� ! e

�
� (3, 1) Br(⌧ ! e�) < 3.3⇥ 10�8 0.52

⌧

� ! µ

�
� (3, 2) Br(⌧ ! µ�) < 4.4⇥ 10�8 0.7

TABLE II: Summary of the coe�cient Cif in ` ! `� processes and experimental data used in the

analysis in [88].

Type of universality Experimental bounds (90% CL)

lepton/hadron universality
P

q=d,s,b |V exp

uq | = 0.9999± 0.0006

µ/e universality G

exp

µ /G

exp

e = 1.0010± 0.0009

⌧/µ universality G

exp

⌧ /G

exp

µ = 0.9998± 0.0013

⌧/e universality G

exp

⌧ /G

exp

e = 1.0034± 0.0015

TABLE III: Summary of the experimental data on universality of charged currents used in the

analysis in [88].

• `�i ! `�f � processes: in this case, the result of recasting is
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with the loop functions
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Z
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Na

, (II.38)

where we use m⌫a ' 0. Here, we treat the final-state lepton `�f as a massless particle.

Concrete forms of the integrals are summarized in Appendix A. The dimensionless co-

e�cient Cif represents the digits in [88] (before recasting) are summarized in table II.
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where we use m⌫a ' 0. Here, we treat the final-state lepton `�f as a massless particle.

Concrete forms of the integrals are summarized in Appendix A. The dimensionless co-

e�cient Cif represents the digits in [88] (before recasting) are summarized in table II.
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Process (i, j, k, l) Experimental bounds (90% CL) Aijkl

µ

� ! e

+

e

�
e

� (2, 1, 1, 1) Br < 1.0⇥ 10�12 2.3⇥ 10�5

⌧

� ! e

+

e

�
e

� (3, 1, 1, 1) Br < 2.7⇥ 10�8 0.009

⌧

� ! e

+

e

�
µ

� (3, 1, 1, 2) Br < 1.8⇥ 10�8 0.005

⌧

� ! e

+

µ

�
µ

� (3, 1, 2, 2) Br < 1.7⇥ 10�8 0.007

⌧

� ! µ

+

e

�
e

� (3, 2, 1, 1) Br < 1.5⇥ 10�8 0.007

⌧

� ! µ

+

e

�
µ

� (3, 2, 1, 2) Br < 2.7⇥ 10�8 0.007

⌧

� ! µ

+

µ

�
µ

� (3, 2, 2, 2) Br < 2.1⇥ 10�8 0.008

TABLE IV: Summary of the coe�cient Aijkl in ` ! 3` processes and experimental data used in

the analysis in [88].

The factor 16 comes from the di↵erence in the coupling convention of the interaction

L̄c
Li
LLjh

+

1

(L̄c
Li
LLjh

+ in the Zee-Babu model). These decay processes are 1-loop in-

duced ones in both of the models, and thus the loop factor 1/(4⇡)2 in the integrals are

cancelled out in the final form in Eq. (II.34).

• Gauge coupling universalities: in this category, recasting is just straightforward by the

replacement h± ! h±
1

,

����
(yL)12

2

����
2

< 0.007

✓
mh±

1

TeV

◆
2

(lepton/hadron universality),
�����

����
(yL)23

2

����
2

�
����
(yL)13

2

����
2

����� < 0.024

✓
mh±

1

TeV

◆
2

(µ/e universality),

�����

����
(yL)13

2

����
2

�
����
(yL)12

2

����
2

����� < 0.035

✓
mh±

1

TeV

◆
2

(⌧/µ universality),

�����

����
(yL)23

2

����
2

�
����
(yL)12

2

����
2

����� < 0.04

✓
mh±

1

TeV

◆
2

(⌧/e universality). (II.39)

• ` ! 3` processes: all of the cases are summarized symbolically as

1

4

��� |A⌫ + B⌫ |2 + |AN + BN |2 � 2Re [ANC
⇤
N ]� 2Re [BNC

⇤
N ] +

1

2
|CN |2

���
1/2

<
Aijkl

TeV2

,

(II.40)
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with

F
0

(ma,mb) =
1

(4⇡)2

Z
1

0

dxdy�(x+ y � 1)
xy

(xm2

a + ym2

b)
2

=

8
>>><

>>>:

1

(4⇡)2

m2

a

⇣
log
⇣

m2

a

m2

b

⌘
� 2
⌘
+m2

b

⇣
log
⇣

m2

a

m2

b

⌘
+ 2
⌘

(m2

a �m2

b)
3

(for ma 6= mb),

1

(4⇡)2
1

6m4

a

(for ma = mb),

(II.16)

where the form of µ
11

is shown in Eq. (II.3) and each of m
1

and m
2

in F
0

represents a mass

of propagating fields in the loops. We will include these constraints in the numerical analysis

later. To avoid the global minimum accompanying charge breaking, the following condition

should at least be satisfied:

|µ
22

| <
p
⇤
⇥
m2

�

+m2

h
1

+m2

h
2

+m2

k +m2

⌃

⇤
1/2

, ⇤ ⌘
X

i=all quartic couplings including �
11

�i,

(II.17)

where we assume the simplified configuration, r ⌘ |�| = |h+

1

| = |h+

2

| = |k++| = |⌃
0

| and the

above inequality comes from the requirement that r does not have a finite nonzero value.

The summation is taken over the coe�cients of the 17 quartic terms in Eq. (II.2) including

⌃⇤
0

h�
1

h�
1

k++ and its hermitian conjugate. When all of these quartic couplings are assumed

to take the same value �, the above condition is rewritten as

|µ
22

| . 4
p
�
⇥
m2

h
1

+m2

h
2

+m2

k +m2

⌃

⇤
1/2

, (II.18)

where the contributions via m2

�

and �
�

are insignificant and thus neglected.

E. Neutrino mass matrix

A Majorana neutrino mass matrix m⌫ is generated at the three-loop level via the diagram

shown in Fig. 1, which corresponds to the coe�cients of the e↵ective operators, �1

2

(m⌫)ab⇥
(⌫La)c⌫Lb

. The form of (m⌫)ab is evaluated by a straightforward calculation as

(m⌫)ab =
µ
11

µ
22

(4⇡)6

3X

i,j,k=1

1

M4

k

⇥
(yL)aim`i(y

T
R)ik(MNk

)(yR)kjm`j(y
T
L)jb

⇤

⇥ F
1

 
m2

h+

1

M2

k

,
m2

h+

2

M2

k

,
m2

`i

M2

k

,
m2

`j

M2

k

,
MNk

2

M2

k

,
m2

k±±

M2

k

!
, (II.19)
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FIG. 1: Radiative generation of neutrino masses.

global minimum of the charge breaking minimum V(r 6= 0) > 0, the following condition

should be at least satisfied:

|µ
22

| <
p
⇤
⇥
m2

�

+m2

h1
+m2

h2
+m2

k +m2

⌃

⇤
1/2

, ⇤ ⌘
X

i=all quartic couplings including �11

�i,

(II.15)

where r ⌘ |�| = |h+

1

| = |h+

2

| = |k++| = |⌃
0

|. If all these quartic couplings are of the order

as �i ⇡ O(1), the following condition can be given by

|µ
22

| . 4
⇥
m2

h1
+m2

h2
+m2

k +m2

⌃

⇤
1/2

, (II.16)

wherem2

�

and �
�

are neglected. Note that the vacuum stability conditions take the following

forms in the Zee-Babu model,

�
(1)

h1
! �

(1)

h = �8|µ|4F
0

(mh± ,mk±±), (II.17)

�
(1)

k = �4|µ|4F
0

(mh± ,mh±), (II.18)

where no �
(1)

h2
’s counterpart is there.
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FIG. 1: A schematic description for the radiative generation of neutrino masses.

where the mass scale M2

k = max[mh±
1

,mh±
2

,m`i ,m`j ,MNk
,mk±± ] is used for factorizing the

loop function F
1

as a dimensionless variable. Here, we take the relationship in masses in

our setup, m`i ,m`j < MNk
, into consideration and then Mk has only the index k. F

1

is

symbolically calculated as follows:

F
1

(X
1

, X
2

, X
3

, X
4

, X
5

, X
6

) =

Z
dX

1

�
1

1

(�
2

)2
⇢

(�
3

)2
, (II.20)

Z
dX =

Z
1

0

dxdydz �(x+ y + z � 1)

Z
1

0

d↵d�d�d� �(↵ + � + � + � � 1)

Z
1

0

d⇢d�d! �(⇢+ � + ! � 1),

(II.21)

with

�
1

= y(y � 1) + z(z � 1) + 2yz, (II.22)

�
2

= (↵Y + �)2 � � � ↵Y 2 � ↵X, (II.23)

�
3

= ⇢A (X
1

, X
2

, X
3

, X
5

, X
6

)� �X
4

� !X
1

, (II.24)

A (X
1

, X
2

, X
3

, X
5

, X
6

) = � ↵((x+ y)X
2

+ zX
5

)

((↵Y + �)2 � � � ↵Y 2 � ↵X)(y(y � 1) + z(z � 1) + 2yz)

+
�X

1

+ �X
3

+ �X
6

((↵Y + �)2 � � � ↵Y 2 � ↵X)
, (II.25)

X = �
✓

y

y + z

◆
2

+
y(y � 1)

y(y � 1) + z(z � 1) + 2yz
, Y =

y

y + z
. (II.26)

Here, note that the shape of F
1

is completely the same with that in Ref. [1] except for the

content of X
5

in Eq. (II.19).
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yR Structure
Babu model with modifications. Here, we adopt the following forms in yR (and in yN as

shown in Eq. (II.4)) for simplicity,

yR =

2

6664

⇤ ⇤ ⇤
⇤ a b

⇤ b c

3

7775
, MN = diag (MN

1

,MN
2

,MN
3

), (III.1)

where a, b, c are arbitrary complex numbers. The correspondence to the factors !ij in

Eq. (II.28) is as follows:

!ij = m`i(YR)ijm`j . (III.2)

Here, because of the mass hierarchy of the charged leptons m`
1

⌧ m`
2

< m`
3

, the terms

in !ij including m`
1

are negligible. Combining this issue with the hierarchy assumed in the

right-handed neutrinos MN
1

< MN
2

< MN
3

, we conclude that the elements of yR expressed

by ⇤ in Eq. (III.1) do not a↵ect the values of !ij significantly. Therefore in the following

analysis, we only consider the couplings a, b, c of yR in fitting the neutrino profiles.

Now, we rewrite the relations in Eq. (III.2) as follows:

!
22

m2

`
2

= (YR)22 '
⇥
a2(⇣

2

MN
2

) + b2(⇣
3

MN
3

)
⇤
,

!
23

m`
2

m`
3

= (YR)23 ' [ab (⇣
2

MN
2

) + bc (⇣
3

MN
3

)] ,

!
33

m2

`
3

= (YR)33 '
⇥
b2(⇣

2

MN
2

) + c2(⇣
3

MN
3

)
⇤
. (III.3)

As shown in Eqs. (II.31) and (II.32), when we fix the values of (yL)23, � and �, the values of

!
22

, !
23

, !
33

(and also (yL)12, (yL)13) are automatically determined through the relations.

In each scanning in the following section, we pick up a solution on a, b, c of the above

simultaneous equations.

B. Parameter scanning

Adopting the structure of yR in the previous subsection, we execute parameter scans

to search for consistent regions in the parameter space. In this model, k±± does not

contribute to the processes with LFV. Thus, we consider the two possibilities mk±± =

250GeV, 500GeV, while the other two singly-charged scalars h
1

± , h
2

± have a few TeV
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33

(and also (yL)12, (yL)13) are automatically determined through the relations.

In each scanning in the following section, we pick up a solution on a, b, c of the above

simultaneous equations.

B. Parameter scanning

Adopting the structure of yR in the previous subsection, we execute parameter scans

to search for consistent regions in the parameter space. In this model, k±± does not

contribute to the processes with LFV. Thus, we consider the two possibilities mk±± =

250GeV, 500GeV, while the other two singly-charged scalars h
1

± , h
2

± have a few TeV
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• We can see that this model could give some preference to � around ⇡. On the other

hand, � not around ⇡ is also realized. Few trend is seen in the distribution of �.

• A typical digit of the absolute value of (yL)23 is in 0.5 ⇠ 1, which would be greater

compared with other radiative neutrino models in one- or two-loop level. Since |!
22

| '
|!

23

| ' |!
33

|, the other two nonzero components of yL, (yL)12 and (yL)13, have almost

the same order of magnitude.

• Like the Zee-Babu model, via the relation |!
22

| ' |!
23

| ' |!
33

|, the three components

of the e↵ective symmetric Yukawa couplings YR meet the definite hierarchy,

|(YR)33| : |(YR)23| : |(YR)22| ⇠
m2

µ

m2

⌧

:
mµ

m⌧

: 1, (III.7)

which means that the original |(yR)22| tends to hold a significantly large value. The

peak of the distribution is around 9, which is still rather small compared with the

perturbative upper bound 4⇡. Because of this characteristic, the masses of the singly-

charged scalars mh±
1

and mh±
2

should be greater than around 3TeV to circumvent the

bounds.

• The common coe�cients of the trilinear terms µ should be large as around 14 ⇠ 15TeV

to compensate the suppression factor in the neutrino masses. From the perturbativity

in the couplings �
11

in the form of the trilinear coupling µ
11

in Eq. (II.3) and yN found

in the masses of the right-handed neutrinos in Eq. (II.4), v0 cannot be so small. A

reasonable value of v0 is O(1) TeV.

Finally, we briefly comment on the possibility with the inverted mass hierarchy. In our

model, like the Zee-Babu model, the components of the active neutrino mass matrix (m⌫)ab

contains the charged lepton masses, and also the Majorana masses with the assumed mass

hierarchy MN
1

< MN
2

< MN
3

. Then, the normal hierarchy would be preferable. Within

our search among 105 points in the inverted case, even in the choice of (mk±± ,mh±
1

,mh±
2

) =

(500GeV, 4.8TeV, 4.8TeV), no solution is found.

IV. CONSTRAINT FROM LHC HIGGS SEARCH

In this part, we evaluate constraints on the parameter space of scalars in this model by

use of the latest results of LHC Higgs searches by the ATLAS and CMS experiment groups.
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FIG. 2: Histograms showing distributions of �, �, (yL)23, |(yR)22| and µ of the result of a scanning

with the charged scalar masses mk±± = 500GeV, mh±
1

= mh±
2

= 4.8TeV. The total number of the

consistent data points is 2, 726.

|(yR)22| and µ based on 2, 726 data points of the allowed region as histograms 6. In the

present three-loop scenario, the loop factor (4⇡)�6 in the neutrino masses tends to suppress

the realized masses so much. Thus, at least a part of the parameters related with the masses

would be su�ciently large. In the following part, we investigate details.

6 The value of (yR)22 is complex in general obtained as a part of a solution of the simultaneous equations

in Eq. (III.3).

22

(2,726 points; mk = 500GeV, mh1 = mh2 = 4.8TeV)Kenji Nishiwaki (KIAS)


