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Direct Detection:
Standard Approach



Model WIMP-nuclear interactions as WIMP-quark/gluon interactions

χ χ χ χ

q q
qq

Typical momentum exchanged is
q̄q q̄γ5q q̄γµq q̄γµγ5q (45)

(46)

〈ER〉 =
1

2
Mχ〈v〉2 O(few × 10keV) (47)

3

With an average recoil energy of
for comparable target and dark matter masses, while more generally this is 
multiplied by an additional factor
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Fig. 2. Upper limits on the spin-dependent WIMP-neutron coupling σSDn (left) and
the spin-dependent WIMP-proton coupling σSDp (right) under the standard assump-
tions about the Galactic halo described in the text. The most sensitive limits on σSDn

are from the same experiments shown in Fig. 1 (with the same linetypes): XENON1052

(black dashes), ZEPLIN-III53 (medium gray dashes), and CDMS44 (black solid). Note
ZEPLIN-III limits were calculated with a scaling factor 2× smaller than that used for
XENON10. Due to the low intrinsic sensitivity of leading (Xe and Ge) experiments
to spin-dependent interactions on protons, the most sensitive limits on σSDp are from
experiments with only modest sensitivity to spin-independent interactions: PICASSO54

(6-sided stars), COUPP55 (5-pointed stars), KIMS56 (circles), and NAIAD57 (×). Limits
from indirect search experiments SuperKamiokande58 (points) and IceCube31 (dotted)
make additional assumptions about branching fractions to neutrinos. Current exper-
iments do not exclude any part of the parameter space of the same MSSM models
(shaded)50 shown in Fig. 1, despite the fact that the predicted spin-dependent cross sec-
tions are ∼ 3000× larger than the spin-independent ones. Figure made using the Dark
Matter Limit Plotter.51

(in the lab frame), where

r ≡ 4µ2
A

MχMA
=

4MχMA

(Mχ +MA)
2 (7)

is a dimensionless parameter related to the reduced mass µA. Note that
r ≤ 1, with r = 1 only if Mχ = MA. For this isotropic scattering, the
recoil energy is therefore uniformly distributed between 0–Eir. As shown in
Fig. 3, the differential contribution to the differential rate for a given initial
WIMP energy

d

(
dR

dER
(ER)

)
=

dR(Ei)

Eir
, (8)

1

cτ
i cτ ′

j (1)
(2)

O1/O3 (3)
(4)

O4/O5 (5)
(6)

O4/O6 (7)
(8)

O8/O9 (9)
(10)

O11/O12 (11)
(12)

O11/O15 (13)
(14)

O(! 100MeV ) (15)



As is familiar, there are myriad interaction types 

Hadronic matrix elements encode nucleon interactions
〈No| mq q̄q |Ni〉 −→ fN

T qN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ N N
q N̄γµN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γµγ5N

〈No| q̄σµνq |Ni〉 −→ δN
q N̄σµνN

while for the heavy quarks

〈N | mq q̄q |N〉 = 2
27mNF N

T G = 2
27mN



1 −
∑

q=u,d,s

fN
T q



 . (C2)

Summing over all the quarks one finds

hN
1 =

∑

q=u,d,s

hq
1
mN

mq
fN

T q + 2
27fN

T G

∑

q=c,b,t

hq
1
mN

mq
(C3)

The psuedo-scalar bilinear was recently revisited in [54]:

hN
2 =

∑

q=u,d,s

hq
2∆q̃N − ∆G̃N

∑

q=c,b,t

hq
2

mq
(C4)

The vector bilinear essentially gives the number operator:

hN
3 =






2hu
3 + hd

3 N = p

hu
3 + 2hd

3 N = u
(C5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that
sometimes this coupling has a GF factored out to make it dimensionless)

hN
4 =

∑

q=u,d,s

hq
4∆N

q (C6)

Throughout this paper the following values are used (it should be noted that there are

30

χ χ χ χ

q q
qq

Interaction types include coupling to nuclear charge 
(spin-independent) or spin (spin-dependent), which 
give rise to two nuclear response types

A. Crivellin, M. Hoferichter, and M. Procura, PRD 89 (2014), arXiv:1312.4951
M. Hoferichter, P. Klos, and A. Schwenk, Phys.Lett. B746 (2015) 410-416, arXiv:1503.04811

P. Agrawal, Z. Chacko, C. Kilic, and R.K. Mishra, arXiv:1003.1912 



Target specific nuclear physics is also taken into account
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Fig. 6. Assumed density of scattering centers for spin-independent interactions, as pro-
posed by Helm.71 Density is constant within the nuclear radius rn then decreases to
zero over a skin thickness s (the related 10%–90% thickness t is shown in this diagram).
The Fourier transform of this distribution yields the Woods-Saxon form factor used for
spin-independent scattering.

2.3. Nuclear Form Factors

Under the approximation of plane-wave (Born) scattering,

M(!q) = fnA

∫
d3xρ(!x)ei!q·!x. (26)

We may identify the momentum-dependent part of this interaction, the
form factor

F (!q) =

∫
d3xρ(!x)ei!q·!x, (27)

as the Fourier transform of the scattering site positions. For spin-
independent interactions, a good approximation41 is the Woods-Saxon form
factor

F (q) =
3 [sin(qrn)− qrn cos(qrn)]

(qrn)
3 e−(qs)2/2, (28)

which is the Fourier transform of a solid sphere of radius rn with a skin
thickness s, as shown in Figure 6. In practice, Lewin and Smith41 recom-
mend values of s = 0.9 fm and

r2n =
(
1.23A1/3 − 0.60 fm

)2
+

7

3
(0.52π fm)2 − 5s2. (29)
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Fig. 8. Spin-independent interaction rates (per detector exposure) as a function of
recoil energy for a WIMP on targets of 6 atomic masses A. From top to bottom on each
plot, materials are W (A = 183), Xe (dashed, A = 131, I is similar), Ge (A = 73),
Ar (A = 40), Si (A = 28), and Ne (A = 20, F or Na are similar). Left: Differential
rate for a 60–GeV/c2 WIMP. High-A materials have a higher rate at low energies, since
the rate ∝ µ2

AA2, but loss of coherence greatly decreases the rate in these materials
at high energies. As A increases towards Mχ, the mean energy and cutoff energy both
increase due to kinematics, while loss of coherence offsets the increase in the mean
energy. As A increases past Mχ, the energy spectrum becomes softer and the cutoff
energy decreases. Right: Integral rate above the energy threshold indicated for a 100–
GeV/c2 WIMP. Although energy thresholds vary from experiment to experiment, typical
energy thresholds for each material are indicated by + signs on each curve. With these
thresholds, the 100-GeV/c2 WIMP would produce the highest signal rate in Xe, with
rates in W and Ge about 40% lower. I follows about the same curve as Xe, typically with
a 3× higher threshold and half the rate. Rates in Si are ∼ 9× lower than in Xe, rates in
Ar are ∼ 14× lower, and rates in Ne (or Na or F with this threshold) are ∼ 100× lower.

loss of coherence. Since the loss of coherence makes these high-A targets
intrinsically insensitive to high-energy depositions, it is particularly criti-
cal that experiments with high-A materials achieve low energy thresholds.
Figure 8 shows the relative rates for the same WIMP in several different
targets.

2.4. Implications of a detection

Because the spin-independent, proton-spin-dependent, and neutron-spin-
dependent form factors are different for a given target, it is possible in
principle to distinguish the type of interaction by the energy spectrum on a
single target isotope. Differences are insignificant for low-mass WIMPs since

R. Schnee, arXiv:1101.5205
G.B. Gelmini, arXiv:1502.01320

Coherent scattering occurs for 

(although not exactly, because of the small ellipticity of Earth’s orbit).
We expect the actual halo to deviate from this simplistic model. The

local density and velocity distribution could actually be very different if
Earth is within a DM clump, which is unlikely [80], or a stream, or if there
is a “Dark Disk [39, 38] (see section 2) in our galaxy. The DM of the Sagit-
tarius Stream, tidally stripped from the Sagittarius Dwarf Galaxy, could be
passing through the Solar system, perpendicularly to the galactic disk [82].
A large amount of DM clumps are expected to remain within the dark halo
of our galaxy [80, 81], because haloes grow hierarchically, incorporating
lumps and tidal streams from earlier phases of structure formation. How-
ever, clumps are more effectively destroyed by tidal effects near the center
of the galaxy, thus most of them are far from the Sun. The chance that
a random point close to the Sun is lying within a clump is smaller than
10−4 [80]. “Debris flows”, which are spatially homogeneous structures in
velocity, are expected from this complicated merger history, and they would
also modify the velocity distribution, mostly the high velocity tail [83].

5.1.2. Recoil energies and rates

The maximum recoil energy of a target of mass MT in an elastic collision
with a WIMP of mass m is

Emax = 2µ2
T v

2/MT = q2max/2MT , (18)

where µT = mMT /(m+MT ) is the reduced mass. For light WIMPs with
m ! MT , µT " m, typically Emax " 2keV (m/GeV)2 (10 GeV/MT ), since
v " 10−3c. The threshold recoil energy in most detectors at present is
O(keV), thus detectable WIMPs must have m ! GeV. For heavy WIMPs
with m # MT , µ = MT , the energy is large enough, Emax = 2AT keV
(we used MT " AT GeV if the nuclear mass number is AT ) but the limits
die-out because the WIMP flux decreases as 1/m.

Sub-GeV mass “Light DM” (LDM) with m " MeV to GeV, could de-
posits enough energy interacting with electrons, 1 to 10 eV, to be detected
via electron ionization or excitation, or molecular dissociation [84, 85].

The typical momentum transfer in an elastic collision is q " µT v "
O(MeV) (q " MeV(m/GeV) for m ! MT , and q " ATMeV for m # MT ),

q < 1/RNucleus " MeV
(
160/A1/3

T

)
, (19)

thus WIMPs interact coherently with nuclei. RNucleus = 1.25 fm A1/3
T is the

radius of a target nucleus (fm=10−15meters=(197 MeV)−1) and A1/3
T is a

21

The non-zero nuclear size and momentum dependence is encoded in form factors, 
which can account for the loss of coherence at higher momentum transfers



The differential recoil rate is the primary quantity of interest

particle inputastrophysics input

with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with
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The minimum velocity which can contribute to a recoil isq̄q q̄γ5q q̄γµq q̄γµγ5q (45)

(46)

〈ER〉 =
1

2
Mχ〈v〉2 O(few × 10keV) (47)

3

inelastic
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energy 〈ER〉 = E0 only if the WIMP mass is equal to the mass of the target
nucleus; 〈ER〉 < E0 both for smaller and for larger WIMP masses. As an
example, since v0 ≈ 220 km/s ≈ (0.75 × 10−3)c, Mχ = MA = 50GeV/c2

would result in

〈ER〉 = E0r =
1

2
Mχv

2
0 ≈ 15 keV. (17)

A different target mass would result in even lower 〈ER〉. This low energy
sets the first challenge for direct detection experiments – they must have
low energy thresholds, much lower than past solar neutrino experiments for
example.

From the exponential form of the approximate energy spectrum, we see
that R0 is the total WIMP rate. If we plug known numerical values into
equation 13, we find

R0 ≈ 500

Mχ (GeV/c2)

σ0WN

1 pb

ρχ

0.4GeV/cm3 events kg
−1day−1. (18)

A 50GeV/c2 WIMP with a WIMP-nucleus cross section σ0WN = 1pb (so
that the spin-independent WIMP-nucleon cross section σSI ∼ 10−6 pb, or
the spin-dependent WIMP-nucleon cross section σSDp,n ∼ 10−3 pb) results
in about 10 events/(kg day). Since the energy spectrum is a falling expo-
nential, a low energy threshold is critical to detect most of these events; the
fraction of events above an energy threshold Eth is e−Eth/E0r.

The dependence of the energy spectrum on the WIMP mass may be
seen easily from equation 16. The mean recoil energy

〈ER〉 = rE0 ∝ v20
(1 +MA/Mχ)

2 ∝
{

M2
χ if Mχ ' MA

constant if Mχ ( MA
. (19)

Heavy WIMPs all yield about the same energy spectrum. This result holds
for calculations made including the Earth velocity, Galaxy escape velocity,
and nuclear form factor, as shown in Fig. 4.

WIMPs with velocities above the Galaxy’s escape velocity are likely to
have already escaped. The finite escape velocity (∼ 540 km/s ≈ 2 × 10−3c
according to the RAVE survey66) alters the recoil spectrum slightly and
produces a cut-off at

Emax =
1

2
rMχv

2
esc ≈ 100 keV. (20)

The cutoff energy has the same dependence on the WIMP mass as the mean
recoil energy (see equation 19) since

Emax =
v2esc
v20

〈ER〉 ≈ 6〈ER〉. (21)There is also a cut-off energy



The differential recoil rate is the primary quantity of interest

particle inputastrophysics input

with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters
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We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
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fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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For actual detectors one must also account for the detector’s efficiency and 
energy resolution.
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2. WIMP-nucleus elastic scattering: from model to signal

Understanding experiments designed for direct detection of dark matter
begins with the observables of potential signals. In this section we consider
the observables of any model that predicts standard WIMP-nucleus elastic
scattering (see Neil Weiner’s contribution to these proceedings8 for discus-
sion of more speculative models with non-standard scattering). Following
the reviews by Lewin and Smith,41 and Jungman, Kamionkowski and Gri-
est,5 this section derives how the observed WIMP interaction rate depends
on energy, target, time, and direction.

2.1. Spin-independent and spin-dependent cross sections

Using Fermi’s Golden Rule, we can divide the energy dependence of the dif-
ferential WIMP-nucleon cross section into a term σ0WN that is independent
of the momentum transfer and a term F 2(q) (known as the form factor)
containing the entire dependence on the momentum transfer q:

dσWN(q)

dq2
=

1

πv2
|M|2 =

σ0WNF 2(q)

4µ2
Av

2
. (1)

Here, v is the velocity of the WIMP in the lab frame, and the WIMP-
nucleus reduced mass µA ≡ MχMA/(Mχ + MA) in terms of the WIMP
mass Mχ and the mass MA of a target nucleus of atomic mass A. Since the
WIMPs are nonrelativistic, the zero-momentum cross section for a WIMP
of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross section
may be written in terms of a spin-independent (mostly scalar) and a spin-
dependent (mostly axial vector) term:

σ0WN =
4µ2

A

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2
A

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 .

(2)
The proof of this claim makes a good exercise for the reader; solution may be
found in Ref. 42. Here fp and fn (ap and an) are effective spin-independent
(spin-dependent) couplings of the WIMP to the proton and neutron, respec-
tively. Together with the WIMP mass,Mχ, these parameters contain all the
particle physics information of the model under consideration. The other
parameters describe the target material: its atomic number Z, total nuclear
spin J , and the expectation values of the proton and neutron spins within
the nucleus 〈Sp,n〉 = 〈N |Sp,n|N〉. For free nucleons, 〈Sp〉 = 〈Sn〉= 0.5. Ta-
ble 1 from Ref. 43 lists values of 〈Sp〉 and 〈Sn〉 for materials commonly
used for dark matter searches, although some are subject to significant
nuclear-physics uncertainties.
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Table 1. Values of the atomic number Z, the total nuclear spin J , and the expec-
tation values of the proton and neutron spins within the nucleus 〈Sp,n〉 for various
nuclei with odd numbers of protons or neutrons, leading to the relative sensitivities
to spin-dependent interactions shown, from Refs. 5,43 and the references contained
therein.

Odd 4〈Sp〉2(J + 1) 4〈Sn〉2(J + 1)

Nucleus Z Nuc. J 〈Sp〉 〈Sn〉 3J 3J

19F 9 p 1/2 0.477 -0.004 9.1×10−1 6.4×10−5

23Na 11 p 3/2 0.248 0.020 1.3×10−1 8.9×10−4

27Al 13 p 5/2 -0.343 0.030 2.2×10−1 1.7×10−3

29Si 14 n 1/2 -0.002 0.130 1.6×10−5 6.8×10−2

35Cl 17 p 3/2 -0.083 0.004 1.5×10−2 3.6×10−5

39K 19 p 3/2 -0.180 0.050 7.2×10−2 5.6×10−3

73Ge 32 n 9/2 0.030 0.378 1.5×10−3 2.3×10−1

93Nb 41 p 9/2 0.460 0.080 3.4×10−1 1.0×10−2

125Te 52 n 1/2 0.001 0.287 4.0×10−6 3.3×10−1

127I 53 p 5/2 0.309 0.075 1.8×10−1 1.0×10−2

129Xe 54 n 1/2 0.028 0.359 3.1×10−3 5.2×10−1

131Xe 54 n 3/2 -0.009 -0.227 1.8×10−4 1.2×10−1

For many models, fp ≈ fn, so the spin-independent WIMP-nucleus cross
section

σ0WN,SI ≈
4µ2

A

π
f2
nA

2. (3)

The dependence of this cross section on the target material may be factored
out by rewriting this result as

σ0WN,SI = σSI
µ2
A

µ2
n

A2, (4)

where µn is the reduced mass of the WIMP-nucleon system, and the (target-
independent) spin-independent cross section of a WIMP on a single nucleon

σSI ≡
4µ2

nf
2
n

π
. (5)

This WIMP-nucleon cross section σSI may be used to compare experimen-
tal results to theory and to each other. A given model predicts particular
combinations of σSI and Mχ; different experiments produce limits on σSI as
functions of Mχ by translating limits on the WIMP-nucleus cross-section
to limits on σSI using equation 4. The dependence on µ2

AA
2 in eqn. 4 indi-

cates the advantage of experiments using relatively heavy target materials
(but see the effects of the form factor in Sec. 2.3). For a 50GeV/c2 WIMP
incident on a target with A = 50, µ2

A/µ
2
n = 625, so the spin-independent
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of form factors is practically negligible over
the recoil energy range relevant for direct detect-
ion. That said, 73Ge has a huge total angular
momentum (J ¼ 9=2) and a huge contribution
from orbital angular momentum, meaning that
even the abundance-weighted orbital-angular-
momentum response of germanium can be substan-
tial and—if a germanium-based experiment were to
probe an order 100þ keV energy range—could be
important.

The outline of this paper is as follows. In Sec. II we
analytically map our UV-complete benchmark models onto
the nuclear response functions. In Sec. III, we then examine
the impacts on rates for each of our models, comparing the
results with the new form factors to the results one would
obtain using the standard form factors. We begin in Sec. III
Awith a discussion of the overall normalization of nuclear
response functions in the context of light DM; we draw
constraints from experiments such as LUX, XENON100,
PICASSO, and CDMS as well as a few light DM regions of
interest, utilizing the new and old responses. We move on to
discussing the momentum dependence of novel form
factors in Sec. III B. To further illustrate the effects of

the nuclear responses, in Sec. III C we simulate the effects
of the novel nuclear responses on a purported signal and
also draw constraints for our benchmark models over a
1 TeV DM mass range. We conclude in Sec. IV.

II. MAPPING MODELS OF
MOMENTUM-DEPENDENT DARK

MATTER TO NUCLEAR RESPONSES

Direct detection bounds have been analyzed for many of
these models previously, as in [21–30]. Here we provide a
systematic, updated analysis, including a proper treatment
of nuclear responses.
To incorporate the novel nuclear responses and to adopt

the more “model-independent” language of operator analy-
ses, we use the nuclear response functions and conventions
of [34]. The scattering rate given an interaction written in
terms of the nonrelativistic operators in Table II can be
deduced from Eqs. (38)–(40) of [34]. Specifically, for
scattering off of a target, T,4

TABLE III. Spin and angular momentum matrix elements and magnetic moments for isotopes with nonzero spin, as deduced from the
nuclear response functions of [34,35] at y ¼ 0 (“th” for “theory”) or as given by the most sophisticated calculation in the literature
(“lit”). Natural abundance (NA) and total angular momentum (J) are also included. Ref. [39] does not report the orbital angular
momentum matrix element (though it does provide the magnetic moment). However, Ref. [40] provides hLNi for xenon isotopes as well
as iodine, for two different models [so-called “Bonn A” (BA) and “Nijmegen II” (NII)]. We have reported hLNi from [40] for the model
that is closest to the spin matrix values of [39] (BA for 131Xe and NII for 129Xe). For iodine, we report the BA model values, because
BA comes closest to the experimental value of the magnetic moment. See also [41] for recent nuclear structure calculations relevant for
spin-dependent WIMP scattering.

NA(%) J jhSpithj
jhSnithj

hSpilit
hSnilit

jhLpithj
jhLnithj

hLpilit
hLnilit

j ~μthj ~μlit ~μexp Lit Ref.

19F 100 1/2 0.475
0.009

0.4751
−0.0087

0.224
0.19

0.4751
−0.0087 2.911 2.91 2.6289 [42]

23Na 100 3/2 0.248
0.02

0.2477
0.0199

0.912
0.321

0.2477
0.0199 2.219 2.22 2.2175 [42]

73Ge 7.7 9/2 0.008
0.475

0.03
0.378

0.184
3.832

0.361
3.732 1.591 −0.92 −0.8795 [43]

127I 100 5/2 0.264
0.066

0.309
0.075

1.515
0.655

1.338
0.779 2.74 2.775 2.8133 [40]

129Xe 26.4 1/2 0.007
0.248

0.01
0.329

0.274
0.03

0.372
−0.185 0.636 −0.72 −0.778 [39], [40]

131Xe 21.2 3/2 0.005
0.199

−0.009
−0.272

0.284
1.419

0.165
1.572 1.016 0.86 0.6919 [39], [40]

TABLE IV. Natural-abundance-weighted nuclear response functions at y ¼ 0 for various target nuclei. Nuclear response functions
were evaluated using the code described in [34]. The target with the largest effective response for neutrons (italics) or protons (bold) is
highlighted in each row.

Fluorine Sodium Germanium Iodine Xenon

A ¼ 19 23 70,72,73,74,76 127 128–132,134,136
ðN;N0Þ ¼ ðp; pÞ ðn; nÞ ðp; pÞ ðn; nÞ ðp; pÞ ðn; nÞ ðp; pÞ ðn; nÞ ðp; pÞ ðn; nÞ
~WðN;N0Þ
M ð0Þ 81 100 121 144 1024 1658 2809 5476 2911 5984

~WðN;N0Þ
Σ0 ð0Þ 1.81 <10−3 0.273 0.002 <10−3 0.057 0.26 0.016 <10−3 0.168

~WðN;N0Þ
Σ″ ð0Þ 0.903 <10−3 0.136 <10−3 <10−3 0.029 0.13 0.008 <10−3 0.084

~WðN;N0Þ
Δ ð0Þ 0.025 0.018 0.231 0.029 <10−3 0.231 0.536 0.100 0.015 0.119

~WðN;N0Þ
Φ″ ð0Þ 0.039 0.255 1.48 2.43 45.3 15.4 201 44.4 117 202

4Throughout this paper we use T to denote target and N;N0 for
nucleon (N ¼ p or n).
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A More General Framework



It has been shown that the standard approach neglects a large set of possible non-relativistic operators 
beyond the SI/SD ones

There also exist four more nuclear responses that arise in the most general nucleus-WIMP elastic 
scattering

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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Spin-independent Spin-dependent

where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.
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3.3 The spin-independent/spin-dependent nuclear form: Allowed limit

The spin-independent/spin-dependent result most often seen in the literature properly accounts for the
momentum transfer in the scattering, but simplifies the WIMP-nucleon operator by assuming it is formed
from a linear combination of O1 and O4, despite any evidence to support such an assumption.

The WIMP-nucleus interaction is written as the sum over WIMP interactions with the bound nucleons,
deriving fromO1 andO2 the WIMP interactions with the respective extended nuclear charge and spin-current
densities

1χρN ("x) = 1χ

A
∑

i=1

(c01 + c11τ3(i))e
−i"q·"xi → cp1 1χ

A
∑

i=1

1 + τ3(i)

2
e−i"q·"xi

"Sχ ·"jN ("x) = "Sχ ·
A
∑

i=1

(c04 + c14τ3(i))
"σ(i)

2
e−i"q·"xi → cp4 "Sχ ·

A
∑

i=1

1 + τ3(i)

2

"σ(i)

2
e−i"q·"xi (27)

where on the right we have again simplified the result by restricting the couplings to protons, to allow
comparisons with Eqs. (23) and (26).

The spin averaged/summed transition probability can be easily evaluated by the spherical harmonic
methods outlined in the Appendix, yielding

1

2jχ + 1

1

2jN + 1

∑

spins

|M|2 = cp 2
1





4π

2jN + 1

∞
∑

J=0,2,...

|〈jN ||
A
∑

i=1

MJ(qxi)
1 + τ3(i)

2
||jN 〉|2





+ cp 2
4

jχ(jχ + 1)

12





4π

2jN + 1

∞
∑

J=1,3,...

(

|〈jN ||
A
∑

i=1

Σ′′
J(qxi)

1 + τ3(i)

2
||jN 〉|2

+ |〈jN ||
A
∑

i=1

Σ′
J(qxi)

1 + τ3(i)

2
||jN 〉|2

)]

≡ cp 2
1 |MN

F ;p(0)|2F
p 2
F (q2) + cp 2

4

jχ(jχ + 1)

12
|MN

GT ;p(0)|2F
p 2
GT (q

2) (28)

Here MJ(qxi) is the charge multipole operator and Σ′′
J(qxi) and Σ′

J (qxi) are the longitudinal and transverse
spin multipole operators of rank J , which are standard in treatments of electroweak nuclear interactions,
and will be defined below. The assumption of nuclear wave functions of good parity and CP restricts the
sums to even and odd J , respectively.

The form factors F p
F (q

2) and F p
GT (q

2) are defined so that F p
F (0) = F p

GT (0) = 1, and can be computed
from a nuclear model

F p 2
F (q2) =

∞
∑

J=0,2,...
|〈jN ||

A
∑

i=1
MJ(qxi)

1+τ3(i)
2 ||jN 〉|2

1
4π |〈jN ||

A
∑

i=1

1+τ3(i)
2 ||jN 〉|2

F p 2
GT (q

2) =

∞
∑

J=1,3,...

(

|〈jN ||
A
∑

i=1
Σ′′

J (qxi)
1+τ3(i)

2 ||jN 〉|2 + |〈jN ||
A
∑

i=1
Σ′

J(qxi)
1+τ3(i)

2 ||jN 〉|2
)

1
4π |〈jN ||

A
∑

i=1

1+τ3(i)
2 σ(i)||jN 〉|2

.

(29)

The spin form factor has the above form because of the identity

"Sχ · "SN ≡ ("Sχ · q̂)("SN · q̂) + ("Sχ × q̂) · ("SN × q̂) (30)

where q̂ is the unit vector along the momentum transfer to the nucleus. Thus the use of O4 implies equal
couplings to the longitudinal and transverse spin operatorsΣ′′

J andΣ′
J , which cannot interfere if one sums over
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The basis for our formulation is the description of the WIMP-nucleon interaction in [1] which, building on
the work of [7], used non-relativistic EFT to find the most general low-energy form of that interaction. The
explicit Galilean invariance of the WIMP-nucleon EFT simplifies the embedding of the resulting effective
interaction in the nucleus. This produces a compact and rather elegant form for the WIMP-nucleus elastic
cross section as a product of WIMP and nuclear responses. The particle physics is isolated in the former.

In [1] the cross section was presented in a largely numerical form, in principal easy to use but in practice
requiring users to hand-copy lengthy form-factor polynomials. In contrast, our goals in this paper are to: 1)
present the fully general WIMP-nucleus cross section in its most elegant form, to clarify the physics that can
be learned from elastic scattering experiments; 2) provide a Mathematica code to evaluate the expressions,
removing the need for either extensive hand copying or a detailed understanding of operator and matrix
element conventions employed in our expressions; and 3) structure that code to allow easy incorporation of
future improved nuclear physics calculations, so that it will remain useful as the field develops. We believe
the script could serve the community as a flexible and very adaptable tool for comparing experimental
sensitivities and for understanding the relative significance of experimental limits.

This paper is organized as follows. We begin in Sec. 2 with a brief overview of the EFT construction of
the general WIMP-nucleon Galilean-invariant interaction. In Sec. 3 we describe the use of this interaction
in nuclei. The EFT scattering probability is shown to consist of six nuclear response functions, once the
constraints of the nearly exact parity and CP of the nuclear ground state are imposed. We point out the
differences between our results and spin-independent/spin-dependent formulations, in order to explicitly
demonstrate what physics is lost by assuming a point-nucleus limit. In Sec. 4 we present differential and
total cross sections and rates, discuss integration over the galactic WIMP velocity profile, and describe cross
section scaling properties. Sec. 5 we describe the factorization of the operator physics from the nuclear
structure that is possible through the density matrix. (This will make it possible for nuclear structure
theorists to port new structure calculations into our Mathematica code, without needing to repeat all of
the operator calculations.) In Sec. 6 we construct a similar interface for particle theorists: we describe
the mapping of a very general set of covariant interactions into EFT coefficients, so that the consequences
of a given ultraviolet theory for WIMP elastic scattering can be easily explored. In Sec. 7 we provide a
tutorial on the code, to help users – experimentalists interested in analysis, structure theorists interested
in quantifying nuclear uncertainties, or particle theorists interested in constraining a candidate ultraviolet
theory – quickly obtain what they need from the Mathematica script. Finally in the Appendix, we described
some of the algebraic details one encounters in deriving our master formula for the WIMP-nucleus cross
section. As the body of the paper presents basic results and describes their physical implications, the
Appendix is intended for those who may be interested in details of the calculations, or possible extensions
of our work. The Appendix includes comments on steps in our treatment that are model dependent or
that involve approximations. We discuss the use of the code for WIMPs with nonstandard properties, e.g.,
WIMP-nucleon interactions mediated by light exchanges.

2 Effective Field Theory Construction of the Interaction

The idea behind EFT in dark matter scattering is to follow the usual EFT “recipe”, but in a non-relativistic
context, by writing down the relevant operators that obey all of the non-relativistic symmetries. In the case
of elastic scattering of a heavy WIMP off a nucleon, the Lagrangian density will have the contact form

Lint(!x) = c Ψ∗
χ(!x)OχΨχ(!x) Ψ

∗
N(!x)ONΨN(!x), (1)

where the Ψ(!x) are nonrelativistic fields and where the WIMP and nucleon operators Oχ and ON may
have vector indices. The properties of Oχ and ON are then constrained by imposing relevant symmetries.
We envision the case where there are a number of candidate interactions Oi formed from the Oχ and ON .
Working to second order in the momenta, one can construct the relevant operators appropriate for use with
Pauli spinors, when constructing the Galilean-invariant amplitude

N
∑

i=1

(

c(n)i O(n)
i + c(p)i O(p)

i

)

, (2)

3

From the general interaction 

The scattering probability can be written as a factorized product of particle and nuclear physics responses

where the coupling coefficients ci may be different for proton and neutrons. The numberN of such operators
depends on the generality of the particle physics description. We find that 10 operators arise if we limit
our consideration to exchanges involving up to spin-1 exchanges and to operators that are the leading-order
nonrelativistic analogs of relativistic operators. Four additional operators arise if more general mediators
are allowed.

This interaction can then be embedded in the nucleus. The procedure we follow here – though we discuss
generalizations in the Appendix – assumes that the nuclear interaction is the sum of the WIMP interactions
with the individual nucleons in the nucleus. The nuclear operators then involve a convolution of the Oi,
whose momenta must now be treated as local operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular and radial operator that can be decomposed with
standard spherical harmonic methods. Because momentum transfers are typically comparable to the inverse
nuclear size, it is crucial to carry through such a multipole decomposition in order to identify the nuclear
responses associated with the various cis. The scattering probability is given by the square of the (Galilean)
invariant amplitude M, a product of WIMP and nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed over final magnetic quantum numbers. The
result can be organized in a way that factorizes the particle and nuclear physics

1

2jχ + 1

1

2jN + 1

∑

spins

|M|2 ≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(

!v⊥2
T ,

!q 2

m2
N

,
{

cτi c
τ ′

j

}

)

W ττ ′

k (!q 2b2) (3)

where the sum extends over products of WIMP response functions Rk and nuclear response functions Wk.
The Rk isolate the particle physics: they depend on specific combinations of bilinears in the low-energy
constants of the EFT – the 2N coefficients of Eq. (2) – here labeled by isospin τ (isoscalar, isovector) rather
than the n, p of Eq. (2) (see below). The WIMP response functions also depend on the relative WIMP-
target velocity !v⊥T , defined below for the nucleon (and in Sec. 3.4 for a nucleus), and three-momentum

transfer !q = !p ′ − !p = !k − !k′, where !p (!p ′) is the incoming (outgoing) WIMP three-momentum and !k (!k′)
the incoming (outgoing) nucleon three-momentum. The nuclear response functions Wk can be varied by
experimentalists, if they explore a variety of nuclear targets. The Wk are functions of y ≡ (qb/2)2, where b
is the nuclear size (explicitly the harmonic oscillator parameter if the nuclear wave functions are expanded
in that single-particle basis).

EFT provides an attractive framework for analyzing and comparing direct detection experiments. It
simplifies the analysis of WIMP-matter interactions by exploiting an important small parameter: typical
velocities of the particles comprising the dark matter halo are v/c ∼ 10−3, and thus non-relativistic. Con-
sequently, while there may be a semi-infinite number of candidate ultraviolet theories of WIMP-matter
interactions, many of these theories are operationally indistinguishable at low energies. By organizing the
effective field theory in terms of non-relativistic interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [1, 7], while not sacrificing generality. In constructing the
needed set of independent operators, the equations of motion are employed to remove redundant operators.
The operators themselves are expressed in terms of quantities that are more directly related to scattering
observables at the relevant energy scale, which makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to write operators for arbitrary dark matter spin,
a task that can be rather involved in the relativistic case.

EFT also prevents oversimplification: because it produces a complete set of effective interactions at low
energy, one is guaranteed that the description is general. Provided this interaction is then embedded in
the nucleus faithfully, it will then produce the most general nuclear response consistent with the assumed
symmetries. Consequently some very basic questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on dark matter particle interactions can be obtained
from elastic scattering? Conversely, what redundancies exist among the EFT’s low-energy constants that
cannot be resolved, regardless of the number of elastic-scattering experiments that are done?

2.1 Constructing the Nonrelativistic Operators

Because dark matter-ordinary matter interactions are more commonly described in relativistic notation, we
will begin by considering the nonrelativistic reduction of two familiar relativistic interactions. We consider

4

particle nuclear
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functional for these correlation functions. In particular, we focus on the generator
! of one-particle-irreducible (1PI) correlation functions. Although this quantity is
often termed the effective action, particularly in older references, we reserve this
name for another quantity of more direct interest, which we discuss below.

2.1. The One-Particle-Irreducible and
One-Light-Particle-Irreducible Actions
We start by reviewing the standard definition for the generating functional. Consider
a theory whose fields are denoted generically by φ. Our interest in this theory is in the
correlation functions of these fields, as other physical quantities can be generically
constructed from these. These correlations may be obtained by studying the response
of the theory to the application of an external field, J(x), which couples to φ(x).

For instance, a path-integral definition of the correlation function would be

〈φ(x1) · · ·φ(xk)〉J ≡ e−iW [J]
∫

Dφ[φ(x1) · · ·φ(xk)] exp
{

i
∫

d 4x[L + Jφ]
}

, 7.

where L denotes the Lagrangian density that describes the system’s dynamics, and
the quantity W [J] is defined by

exp{iW [J]} =
∫

Dφ exp
{

i
∫

d 4x[L[φ] + Jφ]
}

. 8.

W [J] generates the connected correlations of the operator φ, in the sense that

〈φ(x1) · · ·φ(xk)〉c ,J = (−i )k−l δkW
δJ(x1) · · · δJ(xk)

. 9.

This can be taken to define the connected part, but it also agrees with the usual
graphical sense of connectedness. When this average is evaluated at J = 0, it coincides
with the covariant time-ordered—more properly, T ∗-ordered—vacuum expectation
value of φ.

2.1.1. The one-particle-irreducible generator. One-particle-reducible graphs are
defined as those connected graphs that can be broken into two disconnected parts by
simply cutting a single internal line. 1PI graphs are those connected graphs that are
not one-particle reducible.

A nongraphical formulation of one-particle reducibility of this sort can be had by
performing a Legendre transformation on the functional W [J] (5). With this choice,
if the mean field ϕ is defined by

ϕ(J) ≡ δW
δJ

= 〈φ(x)〉J, 10.

then the Legendre transform of W [J] is defined to be the functional ![ϕ], where

![ϕ] ≡ W [J(ϕ)] −
∫

d 4x ϕ J. 11.

Here we imagine J(ϕ) to be the external current required to obtain the expectation
value 〈φ〉J = ϕ, and that may be found, in principle, by inverting Equation 10. For
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the quantity W [J] is defined by
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W [J] generates the connected correlations of the operator φ, in the sense that
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δJ(x1) · · · δJ(xk)
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This can be taken to define the connected part, but it also agrees with the usual
graphical sense of connectedness. When this average is evaluated at J = 0, it coincides
with the covariant time-ordered—more properly, T ∗-ordered—vacuum expectation
value of φ.

2.1.1. The one-particle-irreducible generator. One-particle-reducible graphs are
defined as those connected graphs that can be broken into two disconnected parts by
simply cutting a single internal line. 1PI graphs are those connected graphs that are
not one-particle reducible.

A nongraphical formulation of one-particle reducibility of this sort can be had by
performing a Legendre transformation on the functional W [J] (5). With this choice,
if the mean field ϕ is defined by

ϕ(J) ≡ δW
δJ

= 〈φ(x)〉J, 10.

then the Legendre transform of W [J] is defined to be the functional ![ϕ], where

![ϕ] ≡ W [J(ϕ)] −
∫

d 4x ϕ J. 11.

Here we imagine J(ϕ) to be the external current required to obtain the expectation
value 〈φ〉J = ϕ, and that may be found, in principle, by inverting Equation 10. For
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functional for these correlation functions. In particular, we focus on the generator
! of one-particle-irreducible (1PI) correlation functions. Although this quantity is
often termed the effective action, particularly in older references, we reserve this
name for another quantity of more direct interest, which we discuss below.

2.1. The One-Particle-Irreducible and
One-Light-Particle-Irreducible Actions
We start by reviewing the standard definition for the generating functional. Consider
a theory whose fields are denoted generically by φ. Our interest in this theory is in the
correlation functions of these fields, as other physical quantities can be generically
constructed from these. These correlations may be obtained by studying the response
of the theory to the application of an external field, J(x), which couples to φ(x).

For instance, a path-integral definition of the correlation function would be

〈φ(x1) · · ·φ(xk)〉J ≡ e−iW [J]
∫

Dφ[φ(x1) · · ·φ(xk)] exp
{
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}

, 7.

where L denotes the Lagrangian density that describes the system’s dynamics, and
the quantity W [J] is defined by

exp{iW [J]} =
∫

Dφ exp
{
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∫

d 4x[L[φ] + Jφ]
}

. 8.

W [J] generates the connected correlations of the operator φ, in the sense that

〈φ(x1) · · ·φ(xk)〉c ,J = (−i )k−l δkW
δJ(x1) · · · δJ(xk)

. 9.

This can be taken to define the connected part, but it also agrees with the usual
graphical sense of connectedness. When this average is evaluated at J = 0, it coincides
with the covariant time-ordered—more properly, T ∗-ordered—vacuum expectation
value of φ.

2.1.1. The one-particle-irreducible generator. One-particle-reducible graphs are
defined as those connected graphs that can be broken into two disconnected parts by
simply cutting a single internal line. 1PI graphs are those connected graphs that are
not one-particle reducible.

A nongraphical formulation of one-particle reducibility of this sort can be had by
performing a Legendre transformation on the functional W [J] (5). With this choice,
if the mean field ϕ is defined by

ϕ(J) ≡ δW
δJ

= 〈φ(x)〉J, 10.

then the Legendre transform of W [J] is defined to be the functional ![ϕ], where

![ϕ] ≡ W [J(ϕ)] −
∫

d 4x ϕ J. 11.

Here we imagine J(ϕ) to be the external current required to obtain the expectation
value 〈φ〉J = ϕ, and that may be found, in principle, by inverting Equation 10. For
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Incorporating Galilean invariance, energy conservation, and Hermiticity, all non-
relativistic operators will be built out of four quantities
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(two incoming and two outgoing), only two combinations are
physically relevant owing to inertial frame-independence and
momentum conservation. It is convenient to work with the
frame-invariant quantities, the momentum transfer !q and the
WIMP-nucleon relative velocity,

!v ≡ !vχ ,in − !vN,in. (9)

It is also useful to construct the related quantity

!v⊥ = !v + !q
2µN

= 1
2

(!vχ ,in + !vχ ,out − !vN,in − !vN,out)

= 1
2

(
!p

mχ

+ !p ′

mχ

−
!k

mN

−
!k ′

mN

)

, (10)

which satisfies !v⊥ · !q = 0 as a consequence of energy conser-
vation. Here µN is the WIMP-nucleon reduced mass. It was
shown in Ref. [8] that operators are guaranteed to be Hermitian
if they are built out of the following four three-vectors:

i
!q

mN

, !v⊥, !Sχ , !SN. (11)

Here (in another departure from Ref. [8]) we have introduced
mN as a convenient scale to render !q/mN and the constructed
Oi dimensionless: The choice of this scale is not arbitrary, as
it leads to an EFT power counting in nuclei that is particularly
simple, as we discuss in Secs. II B and IV B. The relevant
interactions that we can construct from these three-vectors
and that can be associated with interactions involving only
spin-0 or spin-1 mediators are

O1 = 1χ1N,

O2 = (v⊥)2,

O3 = i !SN ·
( !q

mN

× !v⊥
)

,

O4 = !Sχ · !SN,

O5 = i !Sχ ·
( !q

mN

× !v⊥
)

,

O6 =
(

!Sχ · !q
mN

)(
!SN · !q

mN

)
, (12)

O7 = !SN · !v⊥,

O8 = !Sχ · !v⊥,

O9 = i !Sχ ·
(

!SN × !q
mN

)
,

O10 = i !SN · !q
mN

,

O11 = i !Sχ · !q
mN

.

These 11 operators were discussed in Ref. [8]. We retain 10 of
these here, discarding O2, as this operator cannot be obtained
from the leading-order nonrelativistic reduction of a manifestly
relativistic operator (see, e.g., Table I of Sec. II C).

We classify these operators as leading order (LO), next-
to-leading order (NLO), and next-to-next-to-leading order
(N2LO), depending on the total number of momenta and
velocities they contain. We see in Sec. IV B that these
designations correspond to total cross sections that scale as
v0

T , v2
T , or v4

T , where vT is the WIMP velocity in the laboratory
frame.

In addition, one can construct the following operators that
do not arise for traditional spin-0 or spin-1 mediators

O12 = !Sχ · (!SN × !v⊥),

O13 = i(!Sχ · !v⊥)
(

!SN · !q
mN

)
,

O14 = i

(
!Sχ · !q

mN

)
(!SN · !v⊥), (13)

O15 = −
(

!Sχ · !q
mN

)[
(!SN × !v⊥) · !q

mN

]
,

O16 = −
[

(!Sχ × !v⊥) · !q
mN

](
!SN · !q

mN

)
.

It is easy to see that O16 is linearly dependent on O12 and O15,

O16 = O15 + !q 2

m2
N

O12, (14)

and so should be eliminated. OperatorO15 is cubic in velocities
and momenta, generating a total cross section of order v6

(N3LO). It is retained because it arises as the leading-order
nonrelativistic limit of certain covariant interactions (see
Sec. II C).

Each operator can have distinct couplings to protons and
neutrons. Thus, the EFT interaction we employ in this paper
takes the form

∑

α=n,p

15∑

i=1

cα
i Oα

i , cα
2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron compo-
nents of Eq. (15) by introducing isospin, which is also useful
as an approximate symmetry of the nuclear wave functions.
Thus, an equivalent form for our interaction is

15∑

i=1

(
c0
i 1 + c1

i τ3
)
Oi =

∑

τ=0,1

15∑

i=1

cτ
i Oi t

τ , cτ
2 ≡ 0, (16)

where c0
i = 1

2 (cp
i + cn

i ) and c1
i = 1

2 (cp
i − cn

i ). The isospin
states are

|p〉 =
(

1
0

)
|n〉 =

(
0
1

)
, (17)

while the isospin operators are

t0 ≡ 1 =
(

1 0
0 1

)
t1 ≡ τ3 =

(
1 0
0 −1

)
. (18)

The EFT has a total of 28 parameters, associated with 14
space-spin operators each of which can have distinct couplings
to protons and neutrons. If we exclude operators that are
not associated with spin-0 or spin-1 mediators, 10 space-spin
operators and 20 couplings remain.
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(two incoming and two outgoing), only two combinations are
physically relevant owing to inertial frame-independence and
momentum conservation. It is convenient to work with the
frame-invariant quantities, the momentum transfer !q and the
WIMP-nucleon relative velocity,

!v ≡ !vχ ,in − !vN,in. (9)

It is also useful to construct the related quantity

!v⊥ = !v + !q
2µN

= 1
2

(!vχ ,in + !vχ ,out − !vN,in − !vN,out)

= 1
2

(
!p

mχ

+ !p ′

mχ

−
!k

mN

−
!k ′

mN

)

, (10)

which satisfies !v⊥ · !q = 0 as a consequence of energy conser-
vation. Here µN is the WIMP-nucleon reduced mass. It was
shown in Ref. [8] that operators are guaranteed to be Hermitian
if they are built out of the following four three-vectors:

i
!q

mN

, !v⊥, !Sχ , !SN. (11)

Here (in another departure from Ref. [8]) we have introduced
mN as a convenient scale to render !q/mN and the constructed
Oi dimensionless: The choice of this scale is not arbitrary, as
it leads to an EFT power counting in nuclei that is particularly
simple, as we discuss in Secs. II B and IV B. The relevant
interactions that we can construct from these three-vectors
and that can be associated with interactions involving only
spin-0 or spin-1 mediators are

O1 = 1χ1N,

O2 = (v⊥)2,

O3 = i !SN ·
( !q

mN

× !v⊥
)

,

O4 = !Sχ · !SN,

O5 = i !Sχ ·
( !q

mN

× !v⊥
)

,

O6 =
(

!Sχ · !q
mN

)(
!SN · !q

mN

)
, (12)

O7 = !SN · !v⊥,

O8 = !Sχ · !v⊥,

O9 = i !Sχ ·
(

!SN × !q
mN

)
,

O10 = i !SN · !q
mN

,

O11 = i !Sχ · !q
mN

.

These 11 operators were discussed in Ref. [8]. We retain 10 of
these here, discarding O2, as this operator cannot be obtained
from the leading-order nonrelativistic reduction of a manifestly
relativistic operator (see, e.g., Table I of Sec. II C).

We classify these operators as leading order (LO), next-
to-leading order (NLO), and next-to-next-to-leading order
(N2LO), depending on the total number of momenta and
velocities they contain. We see in Sec. IV B that these
designations correspond to total cross sections that scale as
v0

T , v2
T , or v4

T , where vT is the WIMP velocity in the laboratory
frame.

In addition, one can construct the following operators that
do not arise for traditional spin-0 or spin-1 mediators

O12 = !Sχ · (!SN × !v⊥),

O13 = i(!Sχ · !v⊥)
(

!SN · !q
mN

)
,

O14 = i

(
!Sχ · !q

mN

)
(!SN · !v⊥), (13)

O15 = −
(

!Sχ · !q
mN

)[
(!SN × !v⊥) · !q

mN

]
,

O16 = −
[

(!Sχ × !v⊥) · !q
mN

](
!SN · !q

mN

)
.

It is easy to see that O16 is linearly dependent on O12 and O15,

O16 = O15 + !q 2

m2
N

O12, (14)

and so should be eliminated. OperatorO15 is cubic in velocities
and momenta, generating a total cross section of order v6

(N3LO). It is retained because it arises as the leading-order
nonrelativistic limit of certain covariant interactions (see
Sec. II C).

Each operator can have distinct couplings to protons and
neutrons. Thus, the EFT interaction we employ in this paper
takes the form

∑

α=n,p

15∑

i=1

cα
i Oα

i , cα
2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron compo-
nents of Eq. (15) by introducing isospin, which is also useful
as an approximate symmetry of the nuclear wave functions.
Thus, an equivalent form for our interaction is

15∑

i=1

(
c0
i 1 + c1

i τ3
)
Oi =

∑

τ=0,1

15∑

i=1

cτ
i Oi t

τ , cτ
2 ≡ 0, (16)

where c0
i = 1

2 (cp
i + cn

i ) and c1
i = 1

2 (cp
i − cn

i ). The isospin
states are

|p〉 =
(

1
0

)
|n〉 =

(
0
1

)
, (17)

while the isospin operators are

t0 ≡ 1 =
(

1 0
0 1

)
t1 ≡ τ3 =

(
1 0
0 −1

)
. (18)

The EFT has a total of 28 parameters, associated with 14
space-spin operators each of which can have distinct couplings
to protons and neutrons. If we exclude operators that are
not associated with spin-0 or spin-1 mediators, 10 space-spin
operators and 20 couplings remain.
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Exchanged momentum

will take the standard effective four-particle interaction form, reminiscent of Fermi’s original
model of weak interactions. The non-relativistic interactions can be shown to be functions of
only four parameters including the nucleon spin SN , the dark matter spin Sχ, the momentum
transfer, !q, and a kinematic variable !v⊥ which is a function of the relative incoming (!vχ,in −

!vN,in) and outgoing velocities !vχ,out − !vN,out

!v⊥ = 1
2 (!vχ,in − !vN,in + !vχ,out − !vN,out) = !vχ,in − !vN,in + !q

2µN
(1)

which obeys !v⊥ · !q = 0. It was demonstrated in [53] that there exist fifteen such non-
relativistic interactions which arise from twenty possible bi-linear combinations of dark
matter and nucleons.

The formalism developed in [53] is unique in being the only analysis to comprehensively
develop the nuclear physics of direct detection experiments. From this general framework it
is now apparent that there are interactions beyond the standard spin independent/dependent
type. The origins of these ‘new’ interactions are not necessarily exotic and it has been shown,
in the context of relativistic EFT, how many of them can be generated [56].

What has been lacking to date however, is a completely general and comprehensive treat-
ment that connects high energy microphysics with low-energy effective nuclear matrix ele-
ments in a model independent way. It is possible, for example, that the various interactions
listed in [53] can give rise to degeneracies where different fundamental dark matter La-
grangians, describing dark matter and interaction mediators of various spins, can produce
the same interaction types. This will obviously pose problems for attempts to discern the
properties of dark matter when interpreting the results of experimental data. Furthermore,
dark matter may not be spin-1

2 , which creates a need for extending the parametric frame-
work from the four descriptors listed above. In particular, as we shall show, this allows the
existence of new non-relativistic operators to appear in the low energy effective theory.

Motivated by the above we present here a general analysis covering a broad spectrum
of particle and interaction types, starting from the microphysics, which will enable one to
link experiment with fundamental theory while incorporating the new nuclear responses
described in [53].

In this work we build upon the NR-EFT description by examining simplified models which
incorporate the most general renormalizable Lagrangians for scalar, spinor, and vector dark
matter interacting with nucleons via scalar, spinor, and vector mediators, consistent with

4

Relative velocities

DM spin

Nucleon spin

A.L. Fitzpatrick, W.C. Haxton, E. Katz, N. Lubbers, and Y. Xu,  JCAP 1302 (2013) 004, arXiv:1203.3542



incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [46]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)

6
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Standard practice has been to start with effective interaction terms, and then 
reduce in the non-relativistic limit
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2

≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(
#v⊥2
T ,

#q 2

m2
N

,
{
cτ
i c

τ ′

j

})
W ττ ′

k (#q 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering

065501-3

WEAKLY INTERACTING MASSIVE PARTICLE-NUCLEUS . . . PHYSICAL REVIEW C 89, 065501 (2014)

in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
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∑
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∑
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∑
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m2
N

,
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cτ
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τ ′

j

})
W ττ ′

k (#q 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2

≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(
#v⊥2
T ,

#q 2

m2
N

,
{
cτ
i c

τ ′

j

})
W ττ ′

k (#q 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1
2jχ + 1

1
2jN + 1

∑

spins

|M|2

≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(
#v⊥2
T ,

#q 2

m2
N

,
{
cτ
i c

τ ′

j

})
W ττ ′

k (#q 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity #v⊥

T and three-momentum transfer #q = #p ′ −
#p = #k − #k′, where #p ( #p ′) is the incoming (outgoing) WIMP
three-momentum and #k (#k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(#x) = c1#̄χ (#x)#χ (#x)#̄N (#x)#N (#x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

#σ · #p
E+mχ

ξ

)

∼
(

ξ
#σ · #p
2m

ξ

)

, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ µγ 5χN̄γµγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 #Sχ · #SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors #Sχ and #SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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From the relativistic EFT there are 20 combinations of fermionic bilinears 

From two scalar

and four vector terms

After performing a non-relativistic reduction, these 20 operators can be written in terms of the 15 Oi

2×2

4 × 4

20

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

P µχ̄χ (56)

(57)

P µχ̄γ5χ (58)

(59)

(60)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

P µχ̄χ (56)

(57)

P µχ̄γ5χ (58)

(59)

(60)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4

χ̄χ (50)

(51)

χ̄γ5χ (52)

(53)

χ̄γµχ (54)

(55)

χ̄γµγ5χ (56)

(57)

P µχ̄χ (58)

(59)

P µχ̄γ5χ (60)

(61)

(62)

4
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TABLE I. Relativistic amplitudes, their nonrelativistic analogs appropriate for evaluation between Paul spinors, the corresponding results
as linear combinations of the Oi , and the transformation properties of the interactions [even (E) or odd (O)] under parity and time reversal.
Bjorken and Drell spinor and γ matrix conventions are used. The scale mM, which appears as an arbitrary normalization below to ensure that
kinematic factors are dimensionless, would usually be known from the context of the theory.

j Lj
int Nonrelativistic reduction

∑
i ciOi P/T

1 χ̄χN̄N 1χ 1N O1 E/E

2 iχ̄χN̄γ 5N i !q
mN

· !SN O10 O/O

3 iχ̄γ 5χN̄N −i !q
mχ

· !Sχ −mN

mχ
O11 O/O

4 χ̄γ 5χN̄γ 5N − !q
mχ

· !Sχ
!q

mN
· !SN −mN

mχ
O6 E/E

5 χ̄γ µχN̄γµN 1χ 1N O1 E/E

6 χ̄γ µχN̄iσµα
qα

mM
N !q 2

2mN mM
1χ 1N + 2

( !q
mχ

× !Sχ + i!v⊥)
·
( !q

mM
× !SN

) !q 2
2mN mM

O1−2 mN
mM

O3

+2
m2

N
mMmχ

(
q2

m2
N

O4−O6

) E/E

7 χ̄γ µχN̄γµγ 5N −2!SN · !v⊥ + 2
mχ

i !Sχ · (!SN × !q) −2O7 + 2 mN

mχ
O9 O/E

8 iχ̄γ µχN̄iσµα
qα

mM
γ 5N 2i !q

mM
· !SN 2 mN

mM
O10 O/O

9 χ̄ iσµν qν

mM
χN̄γµN − !q 2

2mχ mM
1χ 1N − 2

( !q
mN

× !SN + i!v⊥)
·
( !q

mM
× !Sχ

) − !q 2
2mχ mM

O1+ 2mN
mM

O5

−2 mN
mM

(
!q 2

m2
N

O4−O6

) E/E

10 χ̄ iσµν qν

mM
χN̄iσµα

qα

mM
N 4

( !q
mM

× !Sχ

)
·
( !q

mM
× !SN

)
4
( !q 2

m2
M
O4 − m2

N

m2
M
O6

)
E/E

11 χ̄ iσµν qν

mM
χN̄γ µγ 5N 4i

( !q
mM

× !Sχ

)
· !SN 4 mN

mM
O9 O/E

12 iχ̄ iσµν qν

mM
χN̄iσµα

qα

mM
γ 5N −

[
i !q 2

mχ mM
− 4!v⊥ ·

( !q
mM

× !Sχ

)] !q
mM

· !SN −mN

mχ

!q 2

m2
M
O10 − 4 !q 2

m2
M
O12 − 4 m2

N

m2
M
O15 O/O

13 χ̄γ µγ 5χN̄γµN 2!v⊥ · !Sχ + 2i !Sχ ·
(!SN × !q

mN

)
2O8 + 2O9 O/E

14 χ̄γ µγ 5χN̄iσµα
qα

mM
N 4i !Sχ ·

( !q
mM

× !SN

)
−4 mN

mM
O9 O/E

15 χ̄γ µγ 5χN̄γ µγ 5N −4!Sχ · !SN −4O4 E/E

16 iχ̄γ µγ 5χN̄iσµα
qα

mM
γ 5N 4i!v⊥ · !Sχ

!q
mM

· !SN 4 mN

mM
O13 E/O

17 iχ̄ iσµν qν

mM
γ 5χN̄γµN 2i !q

mM
· !Sχ 2 mN

mM
O11 O/O

18 iχ̄ iσµν qν

mM
γ 5χN̄iσµα

qα

mM
N !q

mM
· !Sχ

[
i !q 2

mN mM
− 4!v⊥ ·

( !q
mM

× !SN

)] !q 2

m2
M
O11 + 4 m2

N

m2
M
O15 O/O

19 iχ̄ iσµν qν

mM
γ 5χN̄γµγ 5N −4i !q

mM
· !Sχ !v⊥ · !SN −4 mN

mM
O14 E/O

20 iχ̄ iσµν qν

mM
γ 5χN̄iσµα

qα

mM
γ 5N 4 !q

mM
· !Sχ

!q
mM

· !SN 4 m2
N

m2
M
O6 E/E

As WIMP searches are motivated in part by the “WIMP
miracle”—WIMPs will naturally freeze-out in the early uni-
verse, when their annihilation rate falls behind the expansion
rate, to produce a relic density today consistent with the dark-
matter density—it is convenient to express the coefficients ci

in weak-scale units. O4 is related by an isospin rotation to the
charge-changing weak axial or Gamow-Teller operator of the
standard model,

c4O4t
1 ≡ c4O4τ3 → GF√

2
O4τ±, (19)

where GF ∼ 1.166 × 10−5 GeV−2 is the Fermi constant and
τ± is the isospin raising or lowering operator. GF defines a
standard-model weak interaction mass scale,

mv ≡ 〈v〉 = (2GF )−1/2 = 246.2 GeV, (20)

where 〈v〉 is the Higgs vacuum expectation value. Conse-
quently, it is natural to characterize experimental constraints
on a given ci in terms of this normalization, that is, in terms
of the dimensionless quantity c̃i , where ci = c̃i/m2

v . This

normalization is employed in the Mathematica script discussed
in Appendix B.

B. EFT power counting and !q/mN : Parametric enhancement

The EFT formulation leads to an attractive power counting
that is helpful in understanding the dependence of laboratory
total cross sections on the physically relevant parameters: the
WIMP velocity !v⊥

T , the ratio of the WIMP-nuclear target
reduced mass µT to mN , and the ratio of µT to the inverse
nuclear size. The scaling behavior we discuss in Sec. IV B takes
on a simple form if mN is used to construct the dimensionless
quantity !q/mN , a parameter related to the relative velocities
of nucleons bound in the nucleus, as explained below. The fact
that internucleon velocities are much greater than the WIMP
velocity leads to a parametric enhancement of the certain
“composite operator” contributions to cross sections.

The introduction of the scale mN would be arbitrary if we
limit ourselves to WIMP-nucleon scattering. Any other choice
would simply lead to the same scaling of the total cross section
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [51] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [51]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)

where t0 and t1 are the identity matrix and the Pauli matrix σ3 respectively. The nucleus is
composed of nucleons, and these can individually interact with the WIMP. This is incorpo-
rated by considering the operator O(j) as an interaction between a single nucleon, j, and
the WIMP, and then summing over the nucleons.

∑

τ=0,1

15∑

i=1
cτ

i Oit
τ →

∑

τ=0,1

15∑

i=1
cτ

i

A∑

j=1
Oi(j)tτ (j) (6)

where A is the atomic mass number given by the total number of neutrons and protons.
One can do the same reduction with "v⊥,

"v⊥ → {"vχ − "vN(i), i = 1, ..., A}

≡ "v⊥
T − {"̇vN(i), i = 1, ..., A − 1} (7)

where "vχ and "vN(i) are the symmetrized combination of incoming and outgoing velocities
for the WIMP and nucleons respectively. "v⊥

T (here T stands for target, i.e., the nuclear
center-of-mass) is defined as

"v⊥
T = "vχ − 1

2A

A∑

i=1
["vN,in(i) + "vN,out(i)] (8)

This allows for a decomposition of the nucleon velocities into internal velocities "̇vN(i) that
act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve as a WIMP
scatters off the detector. As an example, the dot product between "v⊥

N and "SN can be
rewritten as
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The second term in the curly brackets is internal to the nucleus and acts as an operator on
the ‘in’ and ‘out’ nucleon states. "vN,in can be replaced by "pN,in/M acting on the incoming
state, which can in turn be replaced by i

←−∇/M , and similarly "pN,out/M by −i
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In general one can write down the non-relativistic Lagrangian

General isospin (isoscalar/isovector) couplings to protons and neutrons is incorporated

The total interaction can be considered as a sum over single nucleon interactions

The DM-nucleon interactions can then be written 

outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons
locally interact with the WIMP, nuclear operators built from Oi are accompanied by an addi-
tional spatial operator e−i!q·!x(i) where x(i) is the location of the ith nucleon inside the nucleus.

Starting from Eqn. 6 and using the substitution rules for !v⊥ and including a factor of
e−i!q·!xi , the interaction Lagrangian can be written as a sum of five distinct terms (nuclear
electroweak operators) that only act on internal nucleon states. Their coefficients, on the
other hand, act on WIMP ‘in’ and ‘out’ states. The WIMP-nucleus interaction can then be
written as

∑

τ=0,1

{
lτ
0S + lAτ
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(
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T )
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N
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Each operator can have distinct couplings to protons and neutrons. Thus the EFT interaction we employ
in this paper takes the form

∑

α=n,p

15
∑

i=1

cαi Oα
i , cα2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron components of Eq. (15) by introducing isospin, which
is also useful as an approximate symmetry of the nuclear wave functions. Thus an equivalent form for our
interaction is

15
∑

i=1

(c0i 1 + c1i τ3)Oi =
∑

τ=0,1

15
∑

i=1

cτi Oit
τ , c02 = c12 ≡ 0, (16)

where the isospin state vectors, operators, and couplings are

|p〉 =
(

1
0

)

|n〉 =
(

0
1

)

1 ≡
(

1 0
0 1

)

τ3 ≡
(

1 0
0 −1

)

c0i =
1

2
(cpi + cni ) c1i =

1

2
(cpi − cni ) (17)

and where the isospin operators are defined by

t0 ≡ 1 t1 ≡ τ3. (18)

The EFT has a total of 28 parameters, associated with 14 space/spin operators each of which can have
distinct couplings to protons and neutrons. If we exclude operators that are not associated with spin-0 or
spin-1 mediators, 10 space/spin operators and 20 couplings remain.

2.2 Units: Inputing the cis into the Mathematica Script

The interactions of Eqs. (4) and (7) are very similar to familiar vector-vector and axial vector-axial vector
interactions of the standard model. For example, the replacement

c4O4t
1 ≡ c4O4τ3 → GF√

2
O4τ± (19)

where GF ∼ 1.166× 10−5 GeV−2 is the Fermi constant and τ± is the isospin raising or lowering operator,
yields the Gamow-Teller interaction familiar in low-energy charged-current neutrino scattering off nuclei.
GF defines a standard-model weak interaction mass scale

mv ≡ 〈v〉 = (2GF )
−1/2 = 246.2 GeV (20)

where 〈v〉 is the Higgs vacuum expectation value.
Much of the theoretical motivation for WIMP searches is connected with the “WIMP miracle,” that

weakly interacting massive particles will naturally freeze out in the early universe, when their annihilation
rate falls behind the expansion rate, to produce a relic density today consistent with the dark matter density.
The experimental program is focused on probing at and beyond the weak scale for dark matter interactions. It
is a natural scale, then, for characterizing the strengths of interactions now being constrained by experiments.
Consequently, in our Mathematica script all of the cis are input in weak-interaction units, defined as

input ci = 1 ⇒ ci = 1/m2
v (21)

Thus an input of ci = 10, 1, and 0.1 converts to ci = 10/m2
v, 1/m2

v, and 0.1/m2
v, producing interactions of

strength 10, 1, and 1/10th of weak, and cross sections 100, 1, and 1/100th of weak, respectively.
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outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons
locally interact with the WIMP, nuclear operators built from Oi are accompanied by an addi-
tional spatial operator e−i!q·!x(i) where x(i) is the location of the ith nucleon inside the nucleus.

Starting from Eqn. 6 and using the substitution rules for !v⊥ and including a factor of
e−i!q·!xi , the interaction Lagrangian can be written as a sum of five distinct terms (nuclear
electroweak operators) that only act on internal nucleon states. Their coefficients, on the
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Given a non-relativistic reduction, one can identify the dark matter operator coefficients
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These coefficients apply to the dark matter in and out states

outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons
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The dark matter-nucleus amplitude can be written asThe WIMP-nucleus amplitude, M, can then be succinctly written as

M =
∑

τ=0,1
〈jχ, Mχ; jN , MN |

{
lτ
0S + lAτ

0 T +!lτ
5 · !P +!lτ

M · Q +!lτ
E · !R

}
tτ (i)|jχ, Mχ; jN , MN〉.

(14)

By using spherical decomposition, the internal nuclear operators S, T, P, Q and R can be
further rewritten in terms of standard nuclear electroweak responses as follows:

M =
∑

τ=0,1
〈jχ, Mχf ; jN , MNf |

(
∑

J=0

√
4π(2J + 1)(−i)J

[
lτ
0MJ0;τ − ilAτ

0
q

mN
Ω̃J0;τ (q)

]
(15)

+
∑

J=1

√
2π(2J + 1)(−i)J

∑

λ±1
(−1)λ

{
lτ
5λ[λΣJ−λ;τ (q) + iΣ′

J−λ;τ (q)]

−i
q

mN
lτ
Mλ[λ∆J−λ;τ (q)] − i

q

mN
lτ
Eλ[λΦ̃J−λ;τ (q) + iΦ̃′

J−λ;τ (q)]
}

+
∞∑

J=0

√
4π(2J + 1)(−i)J

[
ilτ

50Σ
′′

J0;τ (q) + q

mN
lτ
M0∆̃

′′

J0;τ (q) + q

mN
lτ
E0Φ̃

′′

J0;τ (q)
])

|jχ, Mχi; jN , MNi〉

Where there is an implicit sum over the nucleons,

OJM ;τ (q) ≡
A∑

i=1
OJM(q!xi)tτ (i), (16)

and the various electroweak responses are defined as

MJM(q!x) ≡ jJ(qx)YJM(Ωx)
!MM

JL ≡ jJ(qx)!YJLM(Ωx)

∆JM ≡ !MM
JJ(qxi) · 1

q
!∇i

Σ′

JM ≡ −i

{
1
q

!∇i × !MM
JJ(q!xi)

}

· !σ(i)

Σ′′

JM ≡
{

1
q

!∇iMJM(q!xi)
}

· !σ(i)

Φ̃′

JM ≡
[

1
q

!∇i × !MM
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∑
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By using spherical decomposition, the internal nuclear operators S, T, P, Q and R can be
further rewritten in terms of standard nuclear electroweak responses as follows:
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∑
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∑
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J−λ;τ (q)]

−i
q

mN
lτ
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Where there is an implicit sum over the nucleons,
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which can further be reduced to the standard nuclear electroweak responses



Assuming P and CP are good symmetries of the nuclear ground state leaves one with 6 responses
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where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.

10

Spin-independent



In the long wavelength limit these correspond to various physical interpretations

The WIMP-nucleus amplitude, M, can then be succinctly written as

M =
∑

τ=0,1
〈jχ, Mχ; jN , MN |

{
lτ
0S + lAτ

0 T +!lτ
5 · !P +!lτ

M · Q +!lτ
E · !R

}
tτ (i)|jχ, Mχ; jN , MN〉.

(14)

By using spherical decomposition, the internal nuclear operators S, T, P, Q and R can be
further rewritten in terms of standard nuclear electroweak responses as follows:

M =
∑

τ=0,1
〈jχ, Mχf ; jN , MNf |

(
∑

J=0

√
4π(2J + 1)(−i)J

[
lτ
0MJ0;τ − ilAτ

0
q

mN
Ω̃J0;τ (q)

]
(15)

+
∑

J=1

√
2π(2J + 1)(−i)J

∑

λ±1
(−1)λ

{
lτ
5λ[λΣJ−λ;τ (q) + iΣ′

J−λ;τ (q)]

−i
q

mN
lτ
Mλ[λ∆J−λ;τ (q)] − i

q

mN
lτ
Eλ[λΦ̃J−λ;τ (q) + iΦ̃′

J−λ;τ (q)]
}

+
∞∑

J=0

√
4π(2J + 1)(−i)J

[
ilτ

50Σ
′′

J0;τ (q) + q

mN
lτ
M0∆̃

′′

J0;τ (q) + q

mN
lτ
E0Φ̃

′′

J0;τ (q)
])

|jχ, Mχi; jN , MNi〉

Where there is an implicit sum over the nucleons,

OJM ;τ (q) ≡
A∑

i=1
OJM(q!xi)tτ (i), (16)

and the various electroweak responses are defined as

MJM(q!x) ≡ jJ(qx)YJM(Ωx)
!MM

JL ≡ jJ(qx)!YJLM(Ωx)

∆JM ≡ !MM
JJ(qxi) · 1

q
!∇i

Σ′

JM ≡ −i

{
1
q

!∇i × !MM
JJ(q!xi)

}

· !σ(i)

Σ′′

JM ≡
{

1
q

!∇iMJM(q!xi)
}

· !σ(i)

Φ̃′

JM ≡
[

1
q

!∇i × !MM
JJ(q!xi)

]

·
[

!σ(i) × 1
q

!∇i

]

+ 1
2

!MM
JJ(q!xi) · !σ(i)

Φ′′

JM ≡ i

[
1
q

!∇iMJM(q!xi)
]

·
[

!σ(i) × 1
q

!∇i

]

ΣJM ≡ !MM
JJ(q!xi) · !σ(i)

Ω̃JM ≡ ΩJM(q!xi) + 1
2Σ′′

JM(q!xi)

Φ̃JM ≡ ΦJM(qxi) − 1
2Σ′

JM(qxi)

∆̃′′

JM ≡ ∆′′

JM(qxi) − 1
2MJM(qxi) (17)

9

Projection Charge/current Operator Even J Odd J
Charge Vector charge MJM E-E O-O
Charge Axial-vector charge Ω̃JM O-E E-O
Longitudinal Spin current Σ′′

JM O-O E-E
Transverse magnetic ” ΣJM E-O O-E
Transverse electric ” Σ′

JM O-O E-E
Longitudinal Convection current ∆̃′′

JM E-O O-E
Transverse magnetic ” ∆JM O-O E-E
Transverse electric ” ∆′

JM E-O O-E
Longitudinal Spin-velocity current Φ′′

JM E-E O-O
Transverse magnetic ” Φ̃JM O-E E-O
Transverse electric ” Φ̃′

JM E-E O-O

Table 2: The parity-time reversal transformation properties for the eleven operators arising in DM particle
scattering off nuclei. The nearly exact parity and CP of nuclear ground states restricts the contributing
multipoles in elastic scattering to those that transform under parity and CP as even-even (E-E): these
are the even multipoles of the vector charge operator MJM and of the longitudinal and transverse electric
projections of the spin-velocity current Φ′′

JM and Φ̃′
JM , and the odd multipoles of the longitudinal and

transverse electric projections of the spin current Σ′′
JM and Σ′

JM and of the transverse magnetic projection
of the convection current ∆JM .

Finally, we average over initial WIMP spins and sum over final spins, as in the nuclear case. The WIMP
tensors involve combinations of 1 and !Sχ. As we sum over all magnetic quantum numbers, the only surviving

terms in the bilinear products of the WIMP tensors must transform as spin scalars, and thus as 1 or as !S 2
χ .

The constant term yields 1. All cross terms linear in !Sχ must vanish. The spin terms must be proportional
to jχ(jχ + 1). The associated coefficients are easily calculated for the various products

1

2jχ + 1

∑

mχi
mχf

〈jχmχi |



























!Sχ|jχmχf
〉 · 〈jχmχf

|!Sχ

!A · !Sχ|jχmχf
〉 〈jχmχf

| !B · !Sχ

!A× !Sχ|jχmχf
〉 · 〈jχmχf

| !B × !Sχ

!A× !Sχ|jχmχf
〉 · 〈jχmχf

|!Sχ



























|jχmχi〉 =























1

!A · !B/3

2 !A · !B/3
0























jχ(jχ + 1) (91)

The results are further simplified because the resulting scalars !A · !B often involve longitudinal and transverse
quantities or !q · !v⊥T , which vanish.

Executing the associated algebra yields the final result given in Eqs. (37) and (38). The transition
probability is expressed as a product of WIMP and nuclear responses functions, where the former isolates
the particle physics in functions that are bilinear in the EFT coefficients, the cis.

A.3 Generalizing the Exchange

Our EFT approach has focused on interactions between the WIMP and nucleus mediated by a heavy ex-
change, so that the interaction is pointlike. However, nothing in the treatment of the WIMP or nuclear
vertices depends on this assumption. We believe the adaptation of this code for cases in which the exchange
is mediated by a photon or other light particle would be very simple. This would, of course, require one
to add the needed momentum-dependent propagator to the code. Once that line is added, however, we see
no reason that subsequent integrations over phase space would present any difficulties: indeed the operator
formalism we employ here is the common formalism for both electron scattering and semi-leptonic weak
interactions. The exchange in the former is a photon, while the latter is treated as a four-fermion interaction
analogous to the WIMP case.

35

new types of nuclear responses are excited due to non-
standard interactions between the DM and nuclei, however,
different form factors than the standard spin-independent
and spin-dependent ones should be employed. By selecting
the relevant nonrelativistic building blocks for DM scatter-
ing, Ref. [35] was able to elucidate the relevant nuclear
responses for nonstandard DM interactions; they also
showed how to map their nonrelativistic results onto
relativistic operators.
In particular, Ref. [35] showed that there are six inde-

pendent types of nuclear responses that can be relevant for
DM scattering—rather than just the two (spin-independent
and spin-dependent) standardly considered. These arise
when the relative DM or nucleon velocities or momentum
transfer is intertwined with the DM or nucleon spin in the
underlyingDM-nucleon interaction. These responses, along
with their zero momentum limit, are shown in Table I. To
make contact with more familiar language, the standard
spin-independent nuclear response is M (which closely
mimics the Helm form factor), while the standard spin-
dependent response is Σ0 þ Σ″. There are, however, two
other important responses, as shown in Table I: Δ and Φ″.
These novel responses correspond to a coupling to the
orbital angularmomentumand to the orbital-spin interaction
of the nucleus, respectively. The sixth response, ~Φ0, arising
only in CP nonconserving interactions, does not appear in
any of the models we consider. It is difficult to find a UV
model in which this last response arises [35].
The purpose of the present paper is to assess the impact

of the new nuclear responses on scattering rates by
examining a set of benchmark models motivated by
relativistic operators that can be easily UV completed.
We consider the relativistic operators summarized in
Table II along with their nonrelativistic reductions and
dependence on nuclear responses. We consider anapole,
magnetic dipole, and electric dipole interactions, with

coupling to the electromagnetic (EM) current arising due
to, e.g., kinetic mixing of a dark gauge field with the
Standard Model electromagnetic Uð1Þ. The anapole is
attractive because it is the leading operator through which
Majorana DM can couple to the nucleus through a vector
interaction. The electric and magnetic dipoles couple the
DM spin to the field strength and naturally arise in some
models of composite DM [22,27]. We consider momen-
tum-dependent interactions that can arise, e.g., if the
DM-nucleon interaction is mediated by a pseudoscalar—
perhaps a pseudo-Goldstone boson [24]. We also study a
model sketched in [35], for which the novel spin-and-
angular-momentum-dependent response, Φ″, is important.
A complete catalog of relativistic operators relevant for
scattering, along with their nonrelativistic reductions can be
found in [35] and [34]. See also [33].
The models we consider, besides being well motivated by

UV completions, also encompass the most interesting oper-
ators in terms of probing the new nuclear responses. As we
will see explicitly below, different nuclei can have very
different sensitivity to these new responses. This can already
be seen in the earlier work of [26], which utilized operators in
a relativistic effective field theory. The anapole interaction,
for example, leads to a proton-orbital-angular-momentum
response (Δ), which, because of the stronger Δ response of
sodium than germanium and xenon (see Table IV), can bring
the DAMA region of interest into agreement with the
CoGeNT region of interest, and simultaneously reduce
the tension between DAMA and xenon-target experiments.
In the treatment of [26], the stronger response of sodium is
apparent simply because of its large nuclear magnetic
moment.2 The new responses, as the momentum transfer
drops to zero, also only depend on the spin and orbital angular
momentum of the nucleus, so that the new responses in this
limitwell reproduce the result in[26],whichneglects possible
nonstandardmomentumdependence of the nuclear response.
As the momentum transfer becomes large compared to
inverse nuclear size, this kind of treatment breaks down.
Thus, while this “standard treatment” using operators in

a relativistic effective field theory can work well in the low
momentum transfer limit, the nuclear responses of [35]
must be employed at larger momentum transfer to correctly
model the DM-nucleus interaction. Thus direct detection
rates for weak scale or heavier DM, for which larger
momentum transfer is relevant, can be more affected by the
new nuclear responses than for low-mass DM, where the
effect of the momentum dependence of the new responses
is negligible.
In addition, while the new nuclear responses of [35]

should correctly reproduce macroscopic properties of the
nucleus like its spin and magnetic moment in the momen-
tum transfer q2 → 0 limit, in practice the responses for

TABLE I. Summary of the five nuclear responses relevant for
DM direct detection. We also include the q2 → 0 limit of the
associated response function, 4π

2Jþ1W
ðN;N0Þ
X , for N ¼ N0 ¼ p. The

response functions W are as defined in Eq. (41) of [34].
Responses M and Φ″ can interfere, as can Σ0 and Δ. In the q2 →
0 limit, 4π

2Jþ1W
ðN;N0Þ
ΔΣ0 → −2 Jþ1

3J hLNihSN 0 i. The response entering
into “standard” spin-independent scattering is M while that
entering into standard spin-dependent scattering is Σ″ þ Σ0. As
in [35], we will refer to Δ and Φ″ as “novel” responses.

X 4π
2Jþ1W

ðp;pÞ
X ð0Þ

M spin-independent Z2

Σ″ spin-dependent (longitudinal) 4 Jþ1
3J hSpi2

Σ0 spin-dependent (transverse) 8 Jþ1
3J hSpi2

Δ angular-momentum-dependent 1
2
Jþ1
3J hLpi2

Φ″ angular-momentum-and-spin-dependent ∼h~Sp · ~Lpi2a

aSee Table 1 of [35].
2The magnetic response is a particular combination of orbital

angular momentum and spin responses.
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To calculate cross-sections, one needs to square the amplitude, average over initial spins and sum 
over final states.

where the coupling coefficients ci may be different for proton and neutrons. The numberN of such operators
depends on the generality of the particle physics description. We find that 10 operators arise if we limit
our consideration to exchanges involving up to spin-1 exchanges and to operators that are the leading-order
nonrelativistic analogs of relativistic operators. Four additional operators arise if more general mediators
are allowed.

This interaction can then be embedded in the nucleus. The procedure we follow here – though we discuss
generalizations in the Appendix – assumes that the nuclear interaction is the sum of the WIMP interactions
with the individual nucleons in the nucleus. The nuclear operators then involve a convolution of the Oi,
whose momenta must now be treated as local operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular and radial operator that can be decomposed with
standard spherical harmonic methods. Because momentum transfers are typically comparable to the inverse
nuclear size, it is crucial to carry through such a multipole decomposition in order to identify the nuclear
responses associated with the various cis. The scattering probability is given by the square of the (Galilean)
invariant amplitude M, a product of WIMP and nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed over final magnetic quantum numbers. The
result can be organized in a way that factorizes the particle and nuclear physics

1

2jχ + 1

1

2jN + 1

∑

spins

|M|2 ≡
∑

k

∑

τ=0,1

∑

τ ′=0,1

Rk

(

!v⊥2
T ,

!q 2

m2
N

,
{

cτi c
τ ′

j

}

)

W ττ ′

k (!q 2b2) (3)

where the sum extends over products of WIMP response functions Rk and nuclear response functions Wk.
The Rk isolate the particle physics: they depend on specific combinations of bilinears in the low-energy
constants of the EFT – the 2N coefficients of Eq. (2) – here labeled by isospin τ (isoscalar, isovector) rather
than the n, p of Eq. (2) (see below). The WIMP response functions also depend on the relative WIMP-
target velocity !v⊥T , defined below for the nucleon (and in Sec. 3.4 for a nucleus), and three-momentum

transfer !q = !p ′ − !p = !k − !k′, where !p (!p ′) is the incoming (outgoing) WIMP three-momentum and !k (!k′)
the incoming (outgoing) nucleon three-momentum. The nuclear response functions Wk can be varied by
experimentalists, if they explore a variety of nuclear targets. The Wk are functions of y ≡ (qb/2)2, where b
is the nuclear size (explicitly the harmonic oscillator parameter if the nuclear wave functions are expanded
in that single-particle basis).

EFT provides an attractive framework for analyzing and comparing direct detection experiments. It
simplifies the analysis of WIMP-matter interactions by exploiting an important small parameter: typical
velocities of the particles comprising the dark matter halo are v/c ∼ 10−3, and thus non-relativistic. Con-
sequently, while there may be a semi-infinite number of candidate ultraviolet theories of WIMP-matter
interactions, many of these theories are operationally indistinguishable at low energies. By organizing the
effective field theory in terms of non-relativistic interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [1, 7], while not sacrificing generality. In constructing the
needed set of independent operators, the equations of motion are employed to remove redundant operators.
The operators themselves are expressed in terms of quantities that are more directly related to scattering
observables at the relevant energy scale, which makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to write operators for arbitrary dark matter spin,
a task that can be rather involved in the relativistic case.

EFT also prevents oversimplification: because it produces a complete set of effective interactions at low
energy, one is guaranteed that the description is general. Provided this interaction is then embedded in
the nucleus faithfully, it will then produce the most general nuclear response consistent with the assumed
symmetries. Consequently some very basic questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on dark matter particle interactions can be obtained
from elastic scattering? Conversely, what redundancies exist among the EFT’s low-energy constants that
cannot be resolved, regardless of the number of elastic-scattering experiments that are done?

2.1 Constructing the Nonrelativistic Operators

Because dark matter-ordinary matter interactions are more commonly described in relativistic notation, we
will begin by considering the nonrelativistic reduction of two familiar relativistic interactions. We consider

4

+
!q 2

m2
N

Rττ ′

∆ (!v⊥2
T ,

!q 2

m2
N

) 〈jN || ∆J;τ (q) ||jN 〉〈jN || ∆J;τ ′(q) ||jN 〉

+
!q 2

m2
N
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Note that five of the eight terms above are accompanied by a factor of !q 2/m2
N . This is the parameter identified

in Sec. 2.3 that governs the enhancement of the composite operators with respect to the point operators
for those Oi where composite operators contribute. Thus one can read off those response functions that are
generated by composite operators from this factor. The DM particle response functions are determined by
the cτi s,
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The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction
theory, are constructed from the Bessel spherical harmonics and vector spherical harmonics, MJM (q!x) ≡
jJ (qx)YJM (Ωx) and !MM

JL ≡ jL(qx)!YJLM (Ωx),
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The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction
theory, are constructed from the Bessel spherical harmonics and vector spherical harmonics, MJM (q!x) ≡
jJ (qx)YJM (Ωx) and !MM

JL ≡ jL(qx)!YJLM (Ωx),
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Equations (37), (38), and (39) comprise the general expression for the WIMP-nucleon spin-averaged transi-
tion probability. M, ∆, Σ′, Σ′′, Φ̃′, and Φ′′ transform as vector charge, vector transverse magnetic, axial
transverse electric, axial longitudinal, vector transverse electric, and vector longitudinal operators, respec-
tively. These are the allowed responses under the assumption that the nuclear ground state is an approximate
eigenstate of P and CP, and thus we have derived the most general form of the cross section.

As we will discuss in more detail in Sec. 5, our Mathematica script assumes that the nuclear wave
functions are of the standard shell model form – expanded over a set Slater determinants – where the
underlying single-particle basis is the harmonic oscillator. In that case Eq. (37) gives the cross section as a

sum of products of WIMP Rττ ′

k (!v⊥2
T , "q 2

m2
N
) and nuclear W ττ ′

k (y) response functions, where y = (qb/2)2 with b

the harmonic oscillator size parameter. That is, the evolution of the nuclear responses with q is determined
by the single dimensionless parameter y. Eq. (37) can then be written compactly as
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(40)
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Within this framework 

• Include general dark matter particle types

• Include general mediator particle types

• Explore possible operator degeneracies

• Determine the dominant operators

• Determine distinguishability at detectors

Simplified models for tree-level, renormalizable interactions have been examined

• Connect to models for astrophysical and collider searches

single dark matter particle, single mediator

N. Anand, A.L. Fitzpatrick, and W.C. Haxton, Phys.Rev. C89, 065501 (2014)

P. Agrawal, Z. Chacko, C. Kilic, and R.K. Mishra, arXiv:1003.1912 

JBD, L.M. Krauss, J.L. Newstead, and S. Sabharwal, PRD, arXiv: 1505.03117



non-relativistic 
reduction 
match onto dark matter 
and nuclear responses

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

qχ (34)

(35)

(36)
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(35)

qφ φχ (36)

2

with most of the previous detector development literature,
which has focused on this scenario. In a future work we
will extend this analysis to include the impact of possible
spin dependence (see for example [16–20]) upon the phys-
ics reach of DARWIN and similar detectors.

With respect to the recoil energy ER, the differential rate
per nuclei per unit time is

dR

dER
¼ !"

m"mN

Z
jvj>vmin

jvjfðvÞ d#
dER

d3v; (1)

where!" is the local darkmatter density, andm",mN are the
WIMP and nucleus masses, respectively. The integral aver-
ages over the velocity distribution of WIMPs fðvÞ weighted
by the differential cross section d#

dER
. Kinematically the mini-

mum velocity, vmin , that can contribute to a recoil of energy
ER is [5]

vmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ERmN

p
"
ERmN

$"N
þ %

#
; (2)

where $"N is the WIMP-nucleus reduced mass and % is an
inelastic scattering parameter (% ¼ 0 recovers the elastic
case). (We note that inelastic scattering is not a property of
most WIMP models, but this possibility has been raised
[21], and thus we include it here for completeness.) While
we are interested in the energy spectrum of the recoils, the
full rate can be obtained by integrating this over the range
of recoil energies that the detector is sensitive to. The
standard approach is to write the cross section in terms of
the WIMP-nucleon cross section at zero momentum trans-
fer, #0, and the nuclear form factor, F2ðERÞ,

d#

dER
¼ mN

2v2$2
"N

#0F
2ðERÞ: (3)

The WIMP-nucleon cross section can be written in terms

of contributions from neutron and proton scattering, #0 ¼
4$2

"N

& ½Zfp þ ðA& ZÞfn'2, where A and Z are the atomic

mass and number of the detector material, #"n ¼ 4$2
"n

& f2n

and #"p ¼ 4$2
"p

& f2p. Setting the proton and neutron masses
to be equal, an appropriate approximation at the level of
accuracy of relevance here, allows one to write #"n ¼
ðfnfpÞ

2#"p, such that the factor
fn
fp
neatly incorporates isospin

violating interactions. Equation (1) then becomes

dR

dER
¼ #"p

2m"$
2
"p

"
Zþ fn

fp
ðA& ZÞ

#
2
F2ðERÞGðvmin Þ; (4)

where we have defined

Gðvmin Þ ¼ !"

Z
jvj>vmin

fðvÞ
jvj d3v: (5)

Using this formalism, the astrophysical and particle phys-
ics/nuclear physics inputs are each contained in separate
terms, allowing us to examine each in turn.

B. Particle and nuclear physics parameters

1. Isospin and inelasticity

We have assumed here a simple spin-independent
scattering amplitude which means that at low energy the
scattering cross section on a nucleus is a simple constant
times some product of nuclear charges squared. While this
simplifies the analysis greatly there nevertheless remain
two important unknowns related to the specific particle
physics parameters of the WIMP sector. The first involves
the WIMP couplings to different quarks, which at low
energies get translated into possible isospin violations in
the WIMP scattering cross section. The second involves
the (at present, less generic) scenario of excitations in the
WIMP sector, which would produce possible inelasticity in
the WIMP cross section, parametrized by the quantity %
mentioned earlier. When the isospin factor is not unity or
the inelastic parameter is nonzero, the spectrum is modi-
fied, as shown in Fig. 1. The isospin factor only affects the
magnitude of the recoil rate, while the inelastic parameter
severely modifies the shape of the recoil spectrum, as can
be seen from Eq. (4). The result is that experiments
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FIG. 1 (color online). The differential event rate per femtobarn of cross section for various values of the isospin violating factor (left)
and the inelastic parameter (right), for a WIMP with m" ¼ 100 GeV in a xenon target, compared to a benchmark WIMP model with

the same mass (solid line). A Maxwell-Boltzmann phase-space distribution and the Helm form factor have been assumed (see later
sections). Left: From top to bottom, fn=fp ¼ f1:5; 1; 0:5;&1g. Right: From top to bottom, % ¼ f0; 25; 50; 75; 100g keV.
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Typically one integrates out the mediator, which amounts to assuming the 
mediator mass is much larger than the recoil momentum of the interaction
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assume that this gauge charge isn’t shared by quarks. We will couple the WIMP to the
quarks via a heavy mediator in two distinct ways, charged and uncharged mediators, each
with all possible spins consistent with angular momentum conservation. The mediator mass
is chosen to be the heaviest scale in the problem so that we can integrate it out (see appendix
B for details). This leads to relativistic effective WIMP-nucleon interactions, whose NR
limit can then be examined. In the uncharged mediator case we will consider mediators
that are neutral under all SM and WIMP gauge charges, while in the charged case, the
mediator must have both WIMP and SM gauge charges. Given the above as a guide, our
Lagrangian construction is then constrained only by gauge invariance, Lorentz invariance,
renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge so that S† is its
hermitian conjugate. To have renormalizable interactions, the neutral mediator can only be
a scalar or a vector. We denote the scalar mediator by φ and the vector mediator by Gµ.
Unless otherwise noted, all of the following coupling constants are real.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
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assume that this gauge charge isn’t shared by quarks. We will couple the WIMP to the
quarks via a heavy mediator in two distinct ways, charged and uncharged mediators, each
with all possible spins consistent with angular momentum conservation. The mediator mass
is chosen to be the heaviest scale in the problem so that we can integrate it out (see appendix
B for details). This leads to relativistic effective WIMP-nucleon interactions, whose NR
limit can then be examined. In the uncharged mediator case we will consider mediators
that are neutral under all SM and WIMP gauge charges, while in the charged case, the
mediator must have both WIMP and SM gauge charges. Given the above as a guide, our
Lagrangian construction is then constrained only by gauge invariance, Lorentz invariance,
renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge so that S† is its
hermitian conjugate. To have renormalizable interactions, the neutral mediator can only be
a scalar or a vector. We denote the scalar mediator by φ and the vector mediator by Gµ.
Unless otherwise noted, all of the following coupling constants are real.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1S
†Sφ − g2

2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector

11

c = 1 = ! (1)

(2)

E2 = m2c4 + |p|2c2 =⇒ E2 = m2 + |p|2 (3)

(4)

v " c (5)

(6)
v

c
(7)

(8)

E = m0c
2γ = m0c

2

(
1 +

1

2

(v

c

)2

+O((v/c)4)

)
(9)

(10)

KE = E −m0c
2 =

1

2
m0v

2 + m0c
2O((v/c)4) (11)

(12)

∆t ≤ 1/∆E ≤ 1/M (13)

(14)

n→ p + e− + ν̄e (15)

(16)

m2
φ & q2 = (p′ − p)2 (17)

(18)

χ(p) χ(p′) (19)

(20)

q(k) q(k′) (21)

(22)

φ(q) (23)

(24)

S(p) S(p′) (25)

(26)

Leff ⊃
h1g1

m2
φ

S†Sq̄q (27)

1

Typically one integrates out the mediator, which amounts to assuming the 
mediator mass is much larger than the recoil momentum of the interaction



In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1mSS†Sφ − g2
2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

−1
4GµνGµν + 1

2m2
GGµGµ − λG

4 (GµGµ)2

+iq̄ /Dq − mq q̄q

−g3
2 S†SGµGµ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ − mχχ̄χ

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−λ1φχ̄χ − iλ2φχ̄γ5χ − h1φq̄q − ih2φq̄γ5q, (21)

LχGq = iχ̄ /Dχ − mχχ̄χ

−1
4GµνGµν + 1

2m2
GGµGµ

+iq̄D/ q − mq q̄q

−λ3χ̄γµχGµ − λ4χ̄γµγ5χGµ

−h3q̄γµqGµ − h4q̄γµγ5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ (42)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ φ Gµ (42)

(43)

χ (44)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ φ Gµ (42)

(43)

χ Q Φ V µ (44)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ φ Gµ (42)

(43)

χ Q Φ V µ (44)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ φ Gµ (42)

(43)

χ Q Φ V µ (44)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ φ Gµ (42)

(43)

χ (44)

2

ρ0 = 0.3± 0.1GeV · cm−3 (28)

(29)

γ/W/Z (30)

(31)

L Leff (32)

(33)

nχ qχ (34)

(35)

qφ φχ (36)

(37)

χ− nucleus (38)

(39)

ψ1ψ2Z , ψ3ψ4Z → ψ1ψ2ψ3ψ4 (40)

(41)

Xµ φ Gµ (42)

(43)

χ (44)

2

Uncharged mediators

spin-0 spin-1/2 spin-1

Dark Matter

spin-0 spin-0 spin-0

spin-0

spin-1 spin-1 spin-1

spin-1spin-1/2 spin-1/2

Charged mediators

JBD, L.M. Krauss, J.L. Newstead, and S. Sabharwal, PRD, arXiv: 1505.03117



As expected/known degeneracies arise and non-standard interactions are found to dominate for 
certain interaction types

where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [51], and codes have been supplied
to calculate the full amplitude and rate [52].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i!q

mN
· S · !v⊥,

O18 ≡ i!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [54] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.

10

Two additional non-relativistic operators must be included in the vector dark matter case

Some EFT Oi terms do not appear at leading order

Appendix A: Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered pre-
viously. Specifically, the operators depend on the symmetric combination of polarization
vectors, Sij = 1

2

(
ε†

iεj + ε†
jεi

)
. This necessitates a modification to the WIMP response func-

tions by first modifying the " coefficients given in Eq. 13. Based on our non-relativistic
reduction for vector dark matter, the Lagrangian for vector dark matter and the nucleus,
interacting via an uncharged scalar or vector mediator can be written in general as:

Lvector = c1O1 + c4O4 + c5O5 + c8O8 + c9O9 + c10O10 + c11O11 + c14O14 + c17O17 + c18O18

(A1)

where we’ve defined O17 ≡ i!q
mN

· S · #v⊥ and O18 ≡ i!q
mN

· S · #SN and the ci’s are given in
table IV. To decompose these new operators we replace #v⊥ with the target velocity and the
internucleon velocities and sum over nucleons. O17 can then be put into the form

O17 → i#q

mN
.S.

[

#v⊥
T e−i!q.!xi −

A∑

i=1

1
2M

(
−1

i

←−∇ ie
−i!q·!xi + e−i!q·!xi

1
i

−→∇ i

)

int

]

. (A2)

O18 can be expanded as

O18 → 1
2

i#q

mN
· S · #σ (A3)

Together, all the terms of Lvector give rise to the following " factors from Eq. 13,

"τ
0 = cτ

1 + i

(
#q

mN
× #v⊥

T

)

· #Sχcτ
5 + (#v⊥

T · #Sχ)cτ
8 + i

(
#q

mN
· #Sχ

)

cτ
11 + i

(
#q

mN
· S · #vT

⊥

)

cτ
17

lAτ
0 = −i

(
#q

2mN
· #Sχ

)

cτ
14

#lτ
E = 0 (A4)

#lτ
M = i

(
#q

mN
× #Sχ

)

cτ
5 − #Sχcτ

8 − i

(
#q

mN
· S

)

cτ
17

#lτ
5 = 1

2
#Sχcτ

4 + i

(
#q

mN
× #Sχ

)

cτ
9 + 1

2

(

i
#q

mN

)

cτ
10 + 1

2#v⊥
T

(
#q

2mN
· #Sχ

)

cτ
14 + 1

2

(

i
#q

mN
· S

)

cτ
18

Based on the "’s above, the coefficients of the various nuclear responses are found by squaring
the amplitude and then summing over spins. To simplify calculations, we choose a convenient
basis for polarization vectors, εs

i = δs
i . Recall that the spin can then be written as the anti-

symmetric combination iSk = εijkε†
iεj. The WIMP responses unique to the vector case are
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FIG. 1. The relative strength of event rates for a 50GeV spin-1
2 WIMP in xenon for each of the

non-relativistic operators in table I, where the coefficients of each operator are set to be equal

to evade the current experimental constraints. For example, a 50 GeV WIMP producing
10 events per tonne per year is sufficiently low to evade the bounds from LUX [21]. For
demonstration purposes we set the couplings to 0.1 (or 0.1i for imaginary) in the various
Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region
for xenon (5 − 45keV). The calculated masses are given in table V. It is perhaps telling that
the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While
it is unlikely that a full model of thermal relic dark matter could be built around all of
these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the
different nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and
again for demonstration purposes, we only plot the rates for a single isotope of both ger-
manium and xenon. The choice of isotopes, 73Ge and 131Xe, was made to ensure sensitivity
to spin-dependent responses. As can be seen in the figures, many operators produce rates
with similar recoil energy dependence in the same target, but different nuclei can have very
different responses to the various operators [53]. Thus a complementary choice of nuclear
targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-
manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator
cases of spinor and vector WIMPs since the other cases produce trival results (all operators
being spin independent). To estimate the effect astrophysical uncertainties will have on
discriminating between operators, we plot the rate for a range of astrophysical parame-
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Relative strength of operators, in order to compare which operators dominate when more than one 
are present
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10 events per tonne per year is sufficiently low to evade the bounds from LUX [21]. For
demonstration purposes we set the couplings to 0.1 (or 0.1i for imaginary) in the various
Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region
for xenon (5 − 45keV). The calculated masses are given in table V. It is perhaps telling that
the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While
it is unlikely that a full model of thermal relic dark matter could be built around all of
these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the
different nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and
again for demonstration purposes, we only plot the rates for a single isotope of both ger-
manium and xenon. The choice of isotopes, 73Ge and 131Xe, was made to ensure sensitivity
to spin-dependent responses. As can be seen in the figures, many operators produce rates
with similar recoil energy dependence in the same target, but different nuclei can have very
different responses to the various operators [53]. Thus a complementary choice of nuclear
targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-
manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator
cases of spinor and vector WIMPs since the other cases produce trival results (all operators
being spin independent). To estimate the effect astrophysical uncertainties will have on
discriminating between operators, we plot the rate for a range of astrophysical parame-
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incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [46]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)
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Aside from scalar WIMPs each particular spin produces some non-relativistic operators that are 
unique to that spin

Two non-relativistic operators, O1 and O10, are ubiquitous, arising for all WIMP spins 0, 1/2, and 1

In five scenarios for spin 0, 1/2, or 1 dark matter, relativistic operators generate unique non-
relativistic operators at leading order.

The operators can produce radically different energy dependence for scattering off different 
nuclear targets.  Thus, a complementary use of different target materials will be helpful in order to 
reliably distinguish between different particle physics model possibilities for WIMP dark matter.
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

ratio dRXe
dE /dRGe

dE .

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) !

(h2, g1) !

(h4, g4) !

Sp
in

-0
W

IM
P

(y1) ! !

(y2) ! !

(y1, y2) !

(h1, λ1) !

(h2, λ1) !

(h1, λ2) !

(h2, λ2) !

(h3, λ3) !

(h4, λ3) ! !

(h3, λ4) ! !

Sp
in

-1 2
W

IM
P

(h4, λ4) !

(l1) ! ! !

(l2) ! ! !

(d1) ! ! !

(d2) ! ! !

(h1, b1) !

(h2, b1) !

(h4, b5) !

(h3, b6) ! ! ! !*
(h4, b6) ! !*

Sp
in

-1
W

IM
P

(h3, b7) !* !* !

(h4, b7) !* ! ! !

(y3) ! ! ! ! ! !

(y4) ! ! ! ! ! !

(y3, y4) ! ! ! !

a

a * indicates the purely imaginary scenario for that coupling
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘*’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.
WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV
0 0 h2, g1 O10 14 GeV
0 1 h4, g4 O10 8 GeV
0 1

2
∗

y1 O1 3.2 PeV
0 1

2
∗

y2 O1 3.2 PeV
0 1

2
∗

y1, y2 O10 41 GeV
1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
1
2 1 h4, λ3 O9 6.4 GeV
1
2 1 h3, λ4 O8 180 GeV
1
2 1 h4, λ4 O4 135 GeV
1
2 0* l1 O1 7.1 TeV
1
2 0* l2 O1 5.5 TeV
1
2 1* d1 O1 5.9 TeV
1
2 1* d2 O1 6.7 TeV
1 0 h1, b1 O1 13 TeV
1 0 h2, b1 O10 10 GeV
1 1 h4, b5 O10 5.1 GeV
1 1 h3, bRe

6 (bIm
6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, bRe
6 (bIm

6 ) O9(O18) 3 GeV(4.6 GeV)
1 1 h3, bRe

7 (bIm
7 ) O11(O8) 186 GeV(228 GeV)

1 1 h4, bRe
7 (bIm

7 ) O14(O4) 65 MeV (172 GeV)
1 1

2
∗

y3 O1 3.2 PeV
1 1

2
∗

y4 O1 3.2 PeV
1 1

2
∗

y3, y4 O11 120 TeV

22

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)
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In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of 0, 1

2 and 1. We do however only consider renormalizable inter-
actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP
is either charged under some internal gauge group or a discrete symmetry group (for example
Z2). However, we assume that this gauge charge is not shared by quarks. We will couple
the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged
mediators, each with all possible spins consistent with angular momentum conservation.
The mediator mass is chosen to be the heaviest scale in the problem (and certainly much
greater than the momentum exchange which characterizes the scattering process) so that we
can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-
nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case
we will consider mediators that are neutral under all SM and WIMP gauge charges, while
in the charged case, the mediator must have both WIMP and SM gauge charges. Given the
above as a guide, our Lagrangian construction is then constrained only by gauge invariance,
Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians
1. Scalar Dark Matter
We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the
vector mediator by Gµ with field strength tensor Gµν . Unless otherwise noted, all of the
following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with the
above assumptions is given by

LSφq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−g1mSS†Sφ − g2
2 S†Sφ2 − h1q̄qφ − ih2q̄γ5qφ, (19)
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spin-0

handed Weyl spinor. The following Fierz transformation and gamma matrix identites were
useful in the charged mediator cases, (a sign difference was found in the final identity when
compared with [60]):

(q̄χ)(χ̄q) =−1
4

[
q̄qχ̄χ + q̄γµqχ̄γµχ + 1

2 q̄σµνqχ̄σµνχ − q̄γµγ5qχ̄γµγ5χ + q̄γ5qχ̄γ5χ
]

(q̄γ5χ)(χ̄γ5q) =−1
4

[
q̄qχ̄χ + q̄γ5qχ̄γ5χ − q̄γµqχ̄γµχ + q̄γµγ5qχ̄γµγ5χ + 1

2 q̄σµνqχ̄σµνχ
]

(q̄χ)(χ̄γ5q) =−1
4

[
q̄qχ̄γ5χ + q̄γ5qχ̄χ − q̄γµqχ̄γµγ5χ + q̄γµγ5qχ̄γµχ + iεµναβ q̄σµνqχ̄σαβχ

]

(q̄γµχ)(χ̄γµq) =−
[
q̄qχ̄χ − q̄γ5qχ̄γ5χ − 1

2 q̄γµqχ̄γµχ − 1
2 q̄γµγ5qχ̄γµγ5χ

]

(q̄γµγ5χ)(χ̄γµγ5q) =−
[
−q̄qχ̄χ + q̄γ5qχ̄γ5χ − 1

2 q̄γµqχ̄γµχ − 1
2 q̄γµγ5qχ̄γµγ5χ

]

(q̄γµχ)(χ̄γµγ5q) =−
[
q̄qχ̄γ5χ − q̄γ5qχ̄χ + 1

2 q̄γµqχ̄γµγ5χ + 1
2 q̄γµγ5qχ̄γµχ

]
(B2)

σµνγ5 = i

2εµνρσσρσ (B3)

All of the following operators are collected in terms of the coefficients of the NR operators,
ci, in tables II,III and IV.

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) −→
(

hN
1 g1
m2

φ

)
O1

(S†S)(q̄γ5q) −→
(

hN
2 g1
m2

φ

)
O10

Vector Mediator

i(S†∂µS − ∂µS†S)(q̄γµq) −→ 0

i(S†∂µS − ∂µS†S)(q̄γµγ5q) −→
(

2ig4hN
4

m2
G

mN
mS

)
O10

Charged Spinor Mediator

(S†S)(q̄q) −→ y†
1y1−y†

2y2
mQmS

fN
T O1

(S†S)(q̄γ5q) −→ i
y†

2y1−y†
1y2

mQmS
∆̃N O10
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FIG. 1. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 2. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

VI. CONCLUSION

The analysis we have given here builds on previous analyses to provide for the first time,
and in great generality, all of the tools needed, at least in principle, to use event rates in
direct dark matter detectors to constrain fundamental dark matter models, outlining the
steps needed to go from fundamental Lagrangians, to relativistic operators, non-relativistic
operators, and finally nuclear matrix elements. In the process several significant facts have
been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.
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FIG. 1. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 2. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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and in great generality, all of the tools needed, at least in principle, to use event rates in
direct dark matter detectors to constrain fundamental dark matter models, outlining the
steps needed to go from fundamental Lagrangians, to relativistic operators, non-relativistic
operators, and finally nuclear matrix elements. In the process several significant facts have
been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.
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TABLE VIII. Operators for a spin-1
2 WIMP via a neutral mediator

Scalar Mediator

χ̄χq̄q −→
(

hN
1 λ1
m2

φ

)
O1

χ̄χq̄γ5q −→
(

hN
2 λ1
m2

φ

)
O10

χ̄γ5χq̄q −→
(

−hN
1 λ2mN

m2
φmχ

)
O11

χ̄γ5χq̄γ5q −→
(

hN
2 λ2mN

m2
φmχ

)
O6

Vector Mediator

χ̄γµχq̄γµq −→
(

−hN
3 λ3
m2

G

)
O1

χ̄γµχq̄γµγ5q −→
(

−2hN
4 λ3

m2
G

) (
−O7 + mN

mχ
O9

)

χ̄γµγ5χq̄γµq −→
(

−2hN
3 λ4

m2
G

)
(O8 + O9)

χ̄γµγ5χq̄γµγ5q −→
(

4hN
4 λ4

m2
G

)
O4

29

TABLE IX. Non-relativistic reduction of operators for a spin-1
2 WIMP via a charged mediator

(after using Fierz identities)

Charged Scalar Mediator

χ̄χq̄q −→ l†2l2−l†1l1
4m2

Φ
fN

T qO1

χ̄χq̄γ5q −→ i
l†1l2−l†2l1

4m2
Φ

∆q̃N O10

χ̄γ5χq̄q −→ i
l†2l1−l†1l2

4m2
Φ

mN
mχ

fN
T qO11

χ̄γ5χq̄γ5q −→ l†1l1−l†2l2
4m2

Φ

mN
mχ

∆q̃N O6

χ̄γµχq̄γµq −→ − l†1l1+l†2l2
4m2

Φ
N N

q O1

χ̄γµγ5χq̄γµq −→ l†1l2+l†2l1
2m2

Φ
N N

q (O8 + O9)

χ̄γµχq̄γµγ5q −→ l†1l2+l†2l1
2m2

Φ
∆N

q (O7 − mN
mχ

O9)

χ̄γµγ5χq̄γµγ5q −→ − l†1l1+l†2l2
m2

Φ
∆N

q O4

χ̄σµνχq̄σµνq −→ l†2l2−l†1l1
m2

Φ
δN

q O4

εµναβχ̄σµνχq̄σαβq −→ l†2l1−l†1l2
m2

Φ
δN

q (iO10 − imN
mχ

O11 + 4O12)

Charged Vector Mediator

χ̄χq̄q −→ d†
2d2−d†

1d1
4m2

V
fN

T qO1

χ̄χq̄γ5q −→ i
d†

2d1−d†
1d2

4m2
V

∆q̃N O10

χ̄γ5χq̄q −→ i
d†

2d1−d†
1d2

4m2
V

mN
mχ

fN
T qO11

χ̄γ5χq̄γ5q −→ d†
2d2−d†

1d1
4m2

V

mN
mχ

∆q̃N O6

χ̄γµχq̄γµq −→ d†
2d2+d†

1d1
8m2

V
N N

q O1

χ̄γµγ5χq̄γµq −→ −d†
2d1+d†

1d2
4m2

V
N N

q (O8 + O9)

χ̄γµχq̄γµγ5q −→ d†
2d1+d†

1d2
4m2

V
∆N

q (O7 − mN
mχ

O9)

χ̄γµγ5χq̄γµγ5q −→ −d†
2d2+d†

1d1
2m2

V
∆N

q O4
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where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector
mediation (up to gauge fixing terms) is

LSGq = ∂µS†∂µS − m2
SS†S − λS

2 (S†S)2

−1
4GµνGµν + 1

2m2
GGµGµ − λG

4 (GµGµ)2

+iq̄ /Dq − mq q̄q

−g3
2 S†SGµGµ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable
interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ − mχχ̄χ

+1
2∂µφ∂µφ − 1

2m2
φφ2 − mφµ1

3 φ3 − µ2
4 φ4

+iq̄D/ q − mq q̄q

−λ1φχ̄χ − iλ2φχ̄γ5χ − h1φq̄q − ih2φq̄γ5q, (21)

LχGq = iχ̄ /Dχ − mχχ̄χ

−1
4GµνGµν + 1

2m2
GGµGµ

+iq̄D/ q − mq q̄q

−λ3χ̄γµχGµ − λ4χ̄γµγ5χGµ

−h3q̄γµqGµ − h4q̄γµγ5qGµ. (22)

3. Spin-1 Dark Matter
If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

12

spin-1/2



FIG. 1. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 2. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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The analysis we have given here builds on previous analyses to provide for the first time,
and in great generality, all of the tools needed, at least in principle, to use event rates in
direct dark matter detectors to constrain fundamental dark matter models, outlining the
steps needed to go from fundamental Lagrangians, to relativistic operators, non-relativistic
operators, and finally nuclear matrix elements. In the process several significant facts have
been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.
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! "! #! $! %! &!

"!
!$

"!
!#

"!
!"

"!
!

"!
"

ER"'()#

h"!"

h"!#

h#!"

h#!#

h$!$

h%!$

h$!%

h%!%

FIG. 5. Ratio of rates in xenon and germanium, illustrating the discriminating power of having

multiple nuclear targets. For a 50GeV spin-1
2 WIMP with uncharged mediator (left) and a 50GeV

spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

differential event rates in these detectors, they can produce radically different energy
dependence for scattering off different nuclear targets. Thus, a complementary use
of different target materials will be necessary to reliably distinguish between different
particle physics model possibilities for WIMP dark matter.

While current detectors have only yielded upper limits, with new generations of larger
detectors with greater energy resolution and lower thresholds coming online, the search for
WIMP dark matter has never been so vibrant and promising. The tools we have provided
here should help experimenters to probe the most useful parameter space, to interpret any
non-zero signals in terms of constraints on fundamental models, and should allow theorists
who build fundamental models to frame predictions in an accurate and simple way so that
they might be directly compared with experiment.
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

ratio dRXe
dE /dRGe

dE .

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) !

(h2, g1) !

(h4, g4) !

Sp
in

-0
W

IM
P

(y1) ! !

(y2) ! !

(y1, y2) !

(h1, λ1) !

(h2, λ1) !

(h1, λ2) !

(h2, λ2) !

(h3, λ3) !

(h4, λ3) ! !

(h3, λ4) ! !

Sp
in

-1 2
W

IM
P

(h4, λ4) !

(l1) ! ! !

(l2) ! ! !

(d1) ! ! !

(d2) ! ! !

(h1, b1) !

(h2, b1) !

(h4, b5) !

(h3, b6) ! ! ! !*
(h4, b6) ! !*

Sp
in

-1
W

IM
P

(h3, b7) !* !* !

(h4, b7) !* ! ! !

(y3) ! ! ! ! ! !

(y4) ! ! ! ! ! !

(y3, y4) ! ! ! !

a

a * indicates the purely imaginary scenario for that coupling
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘*’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.
WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV
0 0 h2, g1 O10 14 GeV
0 1 h4, g4 O10 8 GeV
0 1

2
∗

y1 O1 3.2 PeV
0 1

2
∗

y2 O1 3.2 PeV
0 1

2
∗

y1, y2 O10 41 GeV
1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
1
2 1 h4, λ3 O9 6.4 GeV
1
2 1 h3, λ4 O8 180 GeV
1
2 1 h4, λ4 O4 135 GeV
1
2 0* l1 O1 7.1 TeV
1
2 0* l2 O1 5.5 TeV
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2 1* d1 O1 5.9 TeV
1
2 1* d2 O1 6.7 TeV
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1 1 h3, bRe

6 (bIm
6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, bRe
6 (bIm

6 ) O9(O18) 3 GeV(4.6 GeV)
1 1 h3, bRe

7 (bIm
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1 1 h4, bRe
7 (bIm

7 ) O14(O4) 65 MeV (172 GeV)
1 1

2
∗

y3 O1 3.2 PeV
1 1

2
∗

y4 O1 3.2 PeV
1 1

2
∗

y3, y4 O11 120 TeV
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.
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TABLE X. Non-relativistic reduction of operators for a spin-1 WIMP

Scalar Mediator

X†
µXµq̄q −→

(
b1hN

1
m2

φ

)
O1

X†
µXµq̄γ5q −→

(
b1hN

2
m2

φ

)
O10

Vector Mediator

(X†
ν∂µXν − ∂µX†

νXν)(q̄γµq) −→ 0

(X†
ν∂µXν − ∂µX†

νXν)(q̄γµγ5q) −→
(

−3b5hN
4

m2
G

mN
mX

)
O10

∂ν(Xν†Xµ + X†
µXν)(q̄γµq) −→

(
Re(b6)hN

3
m2

G

mN
mX

)
(O5 + O6 − q2

m2
N

O4)

∂ν(Xν†Xµ + X†
µXν)(q̄γµγ5q) −→

(
−2Re(b6)hN

4
m2

G

mN
mX

)
O9

∂ν(Xν†Xµ − X†
µXν)(q̄γµq) −→

(
−4Im(b6)hN

3
m2

G

mN
mX

)
O17

∂ν(Xν†Xµ − X†
µXν)(q̄γµγ5q) −→

(
4Im(b6)hN

4
m2

G

mN
mX

)
O18

εµνρσ

(
Xν†∂ρXσ + Xν∂ρXσ†

)
(q̄γµq) −→

(
Re(b7)hN

3
m2

G

mN
mX

)
O11

εµνρσ

(
Xν†∂ρXσ + Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
Re(b7)hN

4
m2

G

mN
mX

)
(i q2

mXmN
O4 − imN

mX
O6 − 2O14)

εµνρσ

(
Xν†∂ρXσ − Xν∂ρXσ†

)
(q̄γµq) −→

(
2Im(b7)hN

3
m2

G

)
(O8 + O9)

εµνρσ

(
Xν†∂ρXσ − Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
4Im(b7)hN

4
m2

G

)
O4

Charged Spinor Mediator

(X†
µXν)(q̄γµγνq) −→

(
y†

3y3−y†
4y4

mQmX

) (
fN

T qO1 + 2δN
q O4

)

(X†
µXν)(q̄γµγνγ5q) −→

(
y†

4y3−y†
3y4

mQmX

)
(i∆N

q̃ O10 + iδN
q O11 − 2iδN

q O12 − 2iδN
q O18)

Appendix C: Quarks to Nucleons

To go from the fundamental interactions of WIMPs with quarks to scattering from point-
like nucleons, one must evaluate the quark (parton) bilinears in the nucleons. For a full
discussion see the appendix of [60] and [61]. We write the nucleon couplings in terms of the
quark couplings times a form factor (in the limit of zero momentum transfer): The scalar
bilinear for light quarks can be evaluated from

〈N | mq q̄q |N〉 = mNfN
T q (C1)
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Appendix C: Quarks to Nucleons

To go from the fundamental interactions of WIMPs with quarks to scattering from point-
like nucleons, one must evaluate the quark (parton) bilinears in the nucleons. For a full
discussion see the appendix of [60] and [61]. We write the nucleon couplings in terms of the
quark couplings times a form factor (in the limit of zero momentum transfer): The scalar
bilinear for light quarks can be evaluated from

〈N | mq q̄q |N〉 = mNfN
T q (C1)
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN
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O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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where YJM and !YJLM are spherical harmonics and vector spherical harmonics respectively.
We are only considering elastic transitions, and assuming parity and CP as symmetries of the
nuclear ground state. This eliminates some of the responses, and only M, Φ′′

, Σ′
, ∆, Σ′′

, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial
spins and sum over final spins. The matrix element squared for the nuclear portion of the
amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied
to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR
operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
!q

mN
· S · !v⊥,

O18 ≡ i
!q

mN
· S · !SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the
details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear
responses are in interpreting direct detection data. Previous work [56] demonstrated that
using only the SI/SD form factors (even with additional momentum dependence taken into
account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where
‘simplified model’ means a single WIMP with a single mediator coupling it to the quark
sector. This is useful for two reasons; it allows us to better explore which NR operators
arise from a broad set of UV complete theories, and also make connection with the growing
body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-
tions with different nuclei arise from different UV complete models will allow us to identify
degeneracies between competing models. Further, it can also help optimize target selection
for maximum discrimination of the UV model parameter space.
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FIG. 3. Rates for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

FIG. 4. Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with

uncharged mediators and imaginary couplings, assuming mediator mass of 1TeV and O(1) coupling

constants. Also shown is the ratio of rates in xenon and germanium (right).

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP
spins we have explored.

• In 5 scenarios relativistic operators generate unique non-relativistic operators at lead-
ing order.

• Two new non-relativistic operators not previously considered arise at low energies if
spin-1 WIMP dark matter is allowed for.

• While the different operators that can contribute to event rates in detectors using
specific elements or isotopes cannot be distinguished on the basis of their impact on the
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FIG. 6. Ratio of rates in xenon and germanium, illustrating the discriminating power of having

multiple nuclear targets. For a 50GeV spin-1
2 WIMP with uncharged mediator (left) and a 50GeV

spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP
spins we have explored.

• In 5 scenarios, relativistic operators generate unique non-relativistic operators at lead-
ing order.

• Two new non-relativistic operators not previously considered within the context of
the full array of allowed nuclear responses arise at low energies if spin-1 WIMP dark
matter is allowed for.

• While the different operators that can contribute to event rates in detectors using
specific elements or isotopes cannot be distinguished on the basis of their impact on the
differential event rates in these detectors, they can produce radically different energy
dependence for scattering off different nuclear targets. Thus, a complementary use
of different target materials will be necessary to reliably distinguish between different
particle physics model possibilities for WIMP dark matter.

While current detectors have only yielded upper limits, with new generations of larger
detectors with greater energy resolution and lower thresholds coming online, the search for
WIMP dark matter has never been so vibrant and promising. The tools we have provided
here should help experimenters to probe the most useful parameter space, to interpret any
non-zero signals in terms of constraints on fundamental models, and should allow theorists
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FIG. 3. Rates for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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constants. Also shown is the ratio of rates in xenon and germanium (right).

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators
that are unique to that spin.

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP
spins we have explored.

• In 5 scenarios relativistic operators generate unique non-relativistic operators at lead-
ing order.

• Two new non-relativistic operators not previously considered arise at low energies if
spin-1 WIMP dark matter is allowed for.

• While the different operators that can contribute to event rates in detectors using
specific elements or isotopes cannot be distinguished on the basis of their impact on the
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Interference Effects



In the full amplitude, two types of interference effects arise
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FIG. 1. Upper limits on the dimensionless isoscalar coefficients c03 (left) and c08 (right) as a function of WIMP mass for
SuperCDMS Soudan (light blue) [10], CDMS II Ge reanalysis (dark blue) [? ], and CDMS II Si (red) [27], and estimated limits
for LUX (black) [11], for the Maxwellian halo (solid) and an alternate halo model (dashed).

[30], and other halo parameters as above.

Figure 1 shows the upper limits for two example oper-
ators, isoscalar operators O3 (left) and O8 (right), as a
function of WIMP mass. Limits on all operators for a
small range of masses can be found in Table I. Limits on
all operators for a small range of masses can be found in
Table I. Solid lines correspond to the Maxwellian halo,
whereas dashed lines show the limit calculated assum-
ing the alternate velocity distribution function discussed
above. The SuperCDMS Soudan, CDMS II Ge (reanal-
ysis), and CDMS II Si limits use the candidate events,
thresholds, and detection efficiencies discussed in [10], [?
], and [27] respectively, while the estimated LUX limit
assumes zero observed events and functional form for the
detection efficiency that follows a hyperbolic tangent ver-
sus energy centered at 2.5 keVnr but with a step function
cutoff that goes to zero below 3 keVnr.

Because of the different nuclear responses for the three
target elements considered, the relative strength of the
limits varies from operator to operator. In particular,
O8 (Fig. 1, right) includes contributions from the ∆ re-
sponse, which is greater in germanium than in silicon or
xenon. This contribution strengthens the SuperCDMS
Soudan constraint relative to LUX and CDMS II Si. In
addition, the shape of the curve for a single target ele-
ment changes from operator to operator. For example,
O3 depends on the square of the momentum transfer,
naturally suppressing the event rate at low energies. As
a result, the limits at low WIMP mass for O3 are weaker
than for other operators.

The difference between the two WIMP velocity distri-
butions becomes apparent when the only events expected
above the detection thresholds are due to WIMPs in the
high-velocity tails. Since both CDMS and LUX have
thresholds of a few keV, this disparity appears only at
the lowest WIMP masses. The difference is also more

pronounced for LUX, since its target nucleus, xenon, is
heavier than silicon or germanium. A dark matter parti-
cle must have a higher velocity to deposit a given recoil
energy in xenon than in germanium or silicon; higher-
energy recoils become comparatively rarer. For the Su-
perCDMS Soudan result, the difference in velocity dis-
tributions leads to a factor of two difference in the limit
around 4GeV/c2, whereas for LUX, the difference in
velocity distribution leads to a factor of two difference
around 7GeV/c2.

FIG. 2. Polar limits on O1 isospin for SuperCDMS Soudan
(blue) [10], LUX [11] (black), and CDMS II Si (red) [27] at a
WIMP mass of 6GeV/c2.

Since the EFT explicitly includes isospin dependence,
we can also use the optimum interval method to set polar

SuperCDMS Collaboration (K. Schneck et al.), PRD 91 (2015), arXiv:1503.03379
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known [1]. A generic weakly-interacting massive parti-
cle (WIMP) is a very attractive dark matter candidate
[2]. Numerous experiments are engaged in efforts to de-
tect rare collisions between WIMPs and target nuclei in
terrestrial detectors. Results from DAMA [3], CoGeNT
[4], CRESST-II [5], and CDMS II Si [6] can be inter-
preted in terms of interactions of WIMPs with masses
of 6-30 GeV/c2. A similar range of masses could also ac-
count for a possible excess in the gamma-ray flux near the
galactic center in Fermi-LAT data [7, 8]. Under standard
assumptions for spin-independent WIMP-nucleon inter-
actions, however, such interpretations are difficult to rec-
oncile with the limits set by CDMSlite [9], SuperCDMS
[10], LUX [11], and PICO [12].

Standard WIMP scattering calculations make simpli-
fying assumptions about the type of interaction between
the nucleon and the dark matter particle: typically only
isospin-conserving spin-independent couplings, or spin-
dependent couplings to either the proton or neutron are
considered. This results in constraints on the three cor-
responding WIMP-nucleon cross sections. Relaxing such
assumptions can suppress the interaction for some tar-
get elements by orders of magnitude relative to others
[13]. In particular, assuming different spin-independent
dark matter couplings to protons, fp, and neutrons, fn,
can reconcile much of the tension between the CDMS II
Si allowed region and the SuperCDMS Soudan and LUX
exclusion limits [14]. However, such solutions often re-
quire a high degree of fine-tuning.

In addition, the calculation of dark matter scattering
rates typically assumes a Maxwellian velocity distribu-
tion [15]. As shown in [16, 17], N-body simulations are
not well described by such a distribution. Consequently,
alternate halo models have been proposed. One such ve-
locity distribution is discussed in [18, 19] and takes the
form

f(v) = exp

[
− v

v0

] (
v2esc − v2

)p
, (1)

for dark matter velocities smaller than the galactic escape
velocity vesc. For values of v0/vesc and p consistent with
N-body simulations, this function falls off faster than the
standard Maxwellian distribution. This difference can
significantly affect the expected dark matter event rate,
especially for low-mass WIMPs for which experiments
are only sensitive to the high-velocity tail of the distri-
bution. It has been shown that choosing certain values
for the parameters of this alternate halo model can rec-
oncile the tension between CDMS II Si and XENON100
[20], though it cannot also account for the tension with
LUX because of that experiment’s lower energy thresh-
old.

Recently, an effective field theory (EFT) approach for
WIMP scattering has been developed that considers all
leading-order and next-to-leading order operators that
can occur in the effective Lagrangian that describes the
WIMP-nucleus interaction [21–23]. This formalism intro-
duces new operators that rely on a range of nuclear prop-

erties in addition to the standard spin-independent and
spin-dependent cases. It also explicitly includes isospin
interference and interference between operators, creating
a rich parameter space of possible dark matter interac-
tions that are very sensitive to the specific choice of de-
tector material.
The EFT framework parametrizes the WIMP-nucleus

interaction in terms of fourteen operators, Oi, which are
listed in Eq. 2 and include the standard spin-independent
and spin-dependent interactions. These operators feature
explicit dependence on !v⊥ (the relative velocity between
the incoming WIMP and the nucleon) and the momen-
tum transfer !q, in addition to the WIMP and nucleon
spins, !Sχ and !SN . Note that O2 is not considered since it
cannot arise from the non-relativistic limit of a relativis-
tic operator at leading order. In addition, each operator
can independently couple to protons or neutrons. We for-
mulate this isospin dependence in terms of isoscalar and
isovector interactions, following the conventions of [22].

O1 = 1χ1N

O3 = i!SN ·
[

!q

mN
× !v⊥

]

O4 = !Sχ · !SN

O5 = i!Sχ ·
[

!q

mN
× !v⊥

]

O6 =

[
!Sχ · !q

mN

] [
!SN · !q

mN

]

O7 = !SN · !v⊥

O8 = !Sχ · !v⊥

O9 = i!Sχ ·
[
!SN × !q

mN

]

O10 = i!SN · !q

mN

O11 = i!Sχ · !q

mN

O12 = !Sχ ·
[
!SN × !v⊥

]

O13 = i
[
!Sχ · !v⊥

] [
!SN · !q

mN

]

O14 = i

[
!Sχ · !q

mN

] [
!SN · !v⊥

]

O15 = −
[
!Sχ · !q

mN

] [(
!SN × !v⊥

)
· !q

mN

]
(2)

These operators contribute to six types of nuclear re-
sponse functions. The spin-independent response is de-
noted by M and is typically the strongest of the six func-
tions since it is related to the number of nucleons in the
target nucleus. The main contribution to this response
comes from the standard spin-independent operator O1,
but it also contains higher-order contributions from op-
erators O5, O8, and O11. There are two spin-dependent

The SuperCDMS collaboration examined the sensitivity of current and upcoming experiments to non-
standard operators with an eye on interference effects.

They also studied the effects of a non-SHM velocity distribution
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At higher masses, the distribution of limits is still close
to the zero-background limit because the shape of the
observed spectrum is very different from the expected
spin-independent WIMP rate.

The difference in the limits between the spin-
independent and EFT cases demonstrates the impor-
tance of correctly modeling the expected WIMP signal.
Algorithms that assume the standard spin-independent
rate when calculating limits will interpret events from
EFT interactions with different spectral shapes as back-
ground, and thus, this assumption could lead to a bias in
the exclusion limits reported by experiments, especially
in the case where events are observed.

IV. INTERFERENCE IN THE EFT
PARAMETER SPACE

A. General interference framework

The EFT framework also provides a more general de-
scription of interference among operators such as the
“xenophobic” isospin violation case discussed in the lit-
erature [13]. It not only allows for interference between
the isospin components of individual operators, but also
among different operators. The generalized interference
can be written as a matrix equation in the large EFT pa-
rameter space, but because operators interfere in pairs,
and only certain pairs interfere, this large matrix can be
decomposed into block-diagonal form. We consider the
2 × 2 case of isospin interference and the 4 × 4 case of
isospin and operator-operator interference.

The generalized amplitude for the 4 × 4 case can be
written as the product of the vector of operator coeffi-
cients cτi with the amplitude matrix, where superscript 0
and 1 indicate isoscalar and isovector, respectively, and
the subscripts indicate the operator being considered:

[
c0i c1i c0j c1j

]





A00
ii A01

ii A00
ij A01

ij

A10
ii A11

ii A10
ij A11

ij

A00
ji A01

ji A00
jj A01

jj

A10
ji A11

ji A10
jj A11

jj









c0i
c1i
c0j
c1j




. (3)

The amplitudes Aττ ′

ij are the product of the WIMP and
nuclear response functions for the interaction specified
by cτi and cτ

′

j and depend on properties such as tar-
get element, WIMP mass, WIMP spin, WIMP velocity,
and nuclear recoil energy. We evaluate the Aττ ′

ij with-
out integrating over the dark matter velocity distribu-
tion to avoid introducing more variables. Amplitudes are
summed over the isotopes for a given element according
to their natural abundances.

Finding the eigenvectors of this matrix will give the
“principal components” of the interaction space. We ex-
pect that three of the four eigenvalues should be small,
since the matrix for a single isotope is an outer product

and therefore should have a single nonzero eigenvalue.
The vector with the largest eigenvalue corresponds to
the maximal amplitude for scattering in the interference
space under consideration, while the three small eigen-
values correspond to local extrema in the scattering am-
plitude which tend to suppress the event rate. To be
maximally sensitive to the parameter space for a given
interference case, we would like to choose target ele-
ments whose constructive interference eigenvectors span
the space of interactions.
As an example, we first consider isospin interference for

a single operator in an already well-understood case. Fig-
ure 5 shows the constructive isospin interference eigen-
vectors for scattering via operator O4 (the standard spin-
dependent operator) for several elemental targets, evalu-
ated at a WIMP mass of 100GeV/c2 and nuclear recoil
energy of 100 keV. The vectors are plotted in the space
of the isoscalar coefficient versus the isovector coefficient.
The proton-neutron space can be recovered from this ba-
sis via a 45-degree rotation. The amplitude in a given
direction indicates the target’s response to that operator
and illustrates the sensitivity of each material to the cor-
responding operator. In addition, if we were to plot polar
limits as in Fig. 2 for O4, we would see that the direc-
tion of the constructive interference vector corresponds
to the minor axis of the ellipse. In the two-dimensional
case, the destructive interference vector is perpendicular
to the constructive vector and corresponds to the major
axis of the ellipse in a polar limit plot.

FIG. 5. Constructive interference eigenvectors for 2D O4

isospin interference. Proton-dominated interactions occur
along the x = y diagonal, while neutron-dominated inter-
actions occur along the x = −y diagonal.

Since O4 is the standard spin-dependent operator, we
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see that the constructive interference eigenvectors fall
into two categories based on the nucleon content of the
target nucleus. The elements with unpaired protons (flu-
orine, sodium, and iodine) have maximal scattering rates
when the interaction is proton-dominated, correspond-
ing to c0 = c1. On the other hand, the elements with
unpaired neutrons (germinum, xenon, and silicon) have
maximal scattering rates when the interaction is neutron-
dominated, corresponding to c0 = −c1. Consequently,
to span this space and therefore be maximally sensi-
tive to all possible spin-dependent interactions, we should
choose one element each from the neutron- and proton-
dominated sets.

We can apply this same procedure to the more general
4D case to demonstrate the complementarity of the dif-
ferent target elements. As an example, Figure 6 shows
all 2D projections of the four-dimensional eigenvectors
in the interference space for O8 and O9, evaluated for a
WIMP mass of 100GeV/c2 and nuclear recoil energy of
30 keV. The eigenvectors for scattering in silicon, germa-
nium, xenon, iodine, and sodium indicate that they are
most sensitive to various combinations of isoscalar and
isovector O8 scattering. However, the vector for fluorine
shows that it is sensitive to both O8 and O9. This varia-
tion across targets allows different experiments to probe
different regions of the EFT parameter space, increasing
the overall sensitivity of the direct detection method.

FIG. 6. Constructive interference eigenvectors for 4D O8/O9

interference.

To demonstrate the effect of this four-dimensional in-
terference on the differential event rate, we evaluate the
event rate using the operator coefficients from two four-
dimensional interference eigenvectors from Fig. 6 that

point in different directions in the parameter space. Fig-
ure 7 shows the differential event rate for several targets
evaluated at the constructive interference vectors for flu-
orine (top) and germanium (bottom) for O8/O9 interfer-
ence. Since the fluorine eigenvector is not parallel to the
germanium eigenvector, the germanium event rate eval-
uated at the fluorine vector is suppressed and vice versa.
In addition, since the xenon and germanium eigenvectors
are nearly parallel in this case, the two event rates are
comparable at the 30 keV nuclear recoil energy at which
the eigenvectors are evaluated.

FIG. 7. Differential event rate evaluated at the O8/O9 con-
structive interference vector from Fig. 6 for fluorine (top) and
germanium (bottom).

This example shows the large variation in signal
strength that can occur for different combinations of op-
erators. In this case, varying the coefficients from the
germanium eigenvector to the fluorine eigenvector led to
an order-of-magnitude suppression of the rate in germa-
nium, silicon, and xenon, and a change in the energy
spectrum for fluorine. Similar suppression can also occur
for the other interference terms present in the effective
field theory.
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FIG. 8. Relative event rates for LZ (black), SuperCDMS SNOLAB Ge iZIP (blue), and SuperCDMS SNOLAB Si (red),
normalized to 1 observed event in SuperCDMS Ge (3GeV/c2) or LZ (10, 300GeV/c2). From left to right are shown the
rates for a 3, 10, and 300GeV/c2 WIMP, assuming isoscalar interactions and the standard Maxwellian halo model. The
3GeV/c2 case also shows the rates from SuperCDMS SNOLAB Ge high-voltage (light blue), which has similar parameters to
SuperCDMS Si high-voltage, but a target mass of 6 kg. The top row shows cumulative event rates, while the bottom row shows
events per time per target mass. True interaction strengths may differ from this calculation since the interaction may proceed
via a linear combination of operators.

all seven possible cases of four-dimensional operator-
operator interference. The sum of the squares of the EFT
coefficients is equal for all cases presented; however, be-
cause of the relative strength of various operators and
the presence of interference, the rate can be suppressed
by many orders of magnitude. We characterize the inter-
ference using the magnitude of the eigenvalue: the largest
eigenvalue corresponds to the maximally-enhanced event
rate, while small eigenvalues correspond to varying levels
of destructive interference.

The relative event rates in Fig. 9 indicate that con-
structive interference can only modestly enhance the
event rate. In the case of O1/O3 interference, the maxi-
mal rate is only ∼ 1.5% larger than the pure O1 rate. For
operators such asO4 that depend on the spin of a nucleon
in the nucleus, the enhancement relative to the respective
isoscalar operator tends to be slightly larger. In particu-
lar, the constructive interference eigenvector for O4/O5

and O4/O6 interference corresponds to WIMP-neutron
spin-dependent scattering and is approximately a factor
of 2 larger than the isoscalar O4 rate.

Since germanium, silicon, and xenon have similar prop-
erties, the event rate in SuperCDMS and LZ is suppressed
equally for most interference cases. However, there are
a few notable exceptions. From Fig. 8, we see that for a
3GeV/c2 WIMP interacting via a pure isoscalar opera-
tor, the event rate in SuperCDMS Si high-voltage tends
to be at least an order of magnitude smaller than the
rate in SuperCDMS Ge. When interference is consid-
ered, the rate in silicon may become equal to or larger
than that in germanium. As an example, the O1/O3

right-most destructive interference case in Fig. 9 corre-
sponds to maximal O1 isospin violation in germanium
(fn/fp ∼ −0.8) as discussed in [13]. For this choice of co-
efficients, the rate in xenon and germanium is suppressed
relative to pure isoscalar O1 scattering in that target by
a factor of ∼500 and ∼2000, respectively, while the rate
in silicon is suppressed by a factor of ∼100. A second
instance of this suppression is seen for O4/O6 interfer-
ence at 3GeV/c2 in the second plot from the left: the
rate in both silicon and germanium is suppressed, but
the suppression in germanium is much larger, leading to

LZ SuperCDMS 
SNOLAB Ge 
iZIP

SuperCDMS 
SNOLAB Si

SuperCDMS 
SNOLAB Ge 
High Voltage
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FIG. 9. Event rate suppression relative to O1 scattering in LZ (black), SuperCDMS SNOLAB Ge iZIP (blue), and SuperCDMS
SNOLAB Si (red) for interference in germanium, with interference ranging from constructive (left) to maximally destructive
(right), as determined by the magnitude of the corresponding eigenvalue. The rate for SuperCDMS SNOLAB Ge high-voltage
(light blue) is shown for the 3GeV/c2 case where LZ sees no events above threshold. The seven operator-operator interference
cases are shown, as well as pure isoscalar O1, which is used as a reference point.

a greater number of events observed in silicon.

In addition, there exist several cases for higher WIMP
masses where the rate in LZ is smaller than that in Super-
CDMS Ge, despite LZ’s 100× larger exposure. Maximal
destructive interference (right-most plot) for O4/O5 and
O8/O9 suppresses the event rate in xenon enough that
SuperCDMS will see orders of magnitude more events
than LZ, even for larger WIMP masses where LZ typi-
cally has an advantage. For additional interference cases
the rate in LZ is less than an order of magnitude larger
than that in SuperCDMS Ge. Although the cases pre-
sented here are arguably fine-tuned, the existence of re-
gions of parameter space where interference suppresses
the rate in one experiment by orders of magnitude rel-
ative to another further supports the need for multiple

experiments which use a variety of target elements.

V. CONCLUSIONS

The interaction between dark matter particles and nu-
clei might be much more complicated than direct detec-
tion experiments have typically assumed. The inclusion
of new operators within the framework of an EFT might
have profound consequences for current and proposed ex-
periments. As a result, in this richer parameter space,
data from multiple experiments with different targets is
essential in order to determine the precise nature of the
interaction. In addition, when modeling dark matter sig-
nals, experiments must consider how an interaction due
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Figure 1. In all panels, cyan contours represent 2D 90% confidence intervals from a fit ofmχ, η and of
the coupling constants in the legends to the direct detection experiments indicated in parenthesis. In
each panel, colored regions correspond to the 2D profile Likelihood associated with the cyan contours.
Yellow contours denote 2D 90% credible regions obtained by fitting mχ and a single coupling constant
to the LUX data.

and Ô14 depend on both the momentum transfer operator and the transverse relative veloc-
ity operator.

All non-interfering operators contribute to the nuclear spin current through the nu-
clear response operators Σ′

LM ;τ and Σ′′
LM ;τ , which also appear in the theory of electroweak

scattering from nuclei, and characterize the familiar spin-dependent dark matter-nucleon in-
teraction operator Ô4. At the same time, the operator Ô13 induces a nuclear spin-velocity
current through the nuclear response operator Φ̃′

LM ;τ , which is specific to dark matter-nucleon
interactions.

The top panels in Fig. 1 show the results that we obtain fitting c07, c
1
7, η and mχ to

current direct detection experiments. Results are presented in terms of 2D profile Likelihoods
(colored regions) and associated 2D 90% confidence intervals (cyan contours) in the planes
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A global analysis of current data shows isoscalar/isovector interference generally makes exclusion 
limits weaker

R. Catena and P. Gondolo, JCAP 1508 (2015), arXiv:1504.06554
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Figure 3. In all panels, green and cyan contours represent 2D 90% confidence intervals from a
global fit of mχ, η and of the coupling constants in the legends to all direct detection experiments in
Sec. 4. In each panel, the colored region corresponds to the 2D profile Likelihood associated with the
less stringent exclusion limit at the reference value mχ ∼ 100 GeV in that figure. Yellow contours
represent 2D 90% credible regions obtained by fitting mχ and a single coupling constant to the LUX
data.

limits in Figs. 1 and 2 reflects the number of q̂ and v̂⊥
T operators multiplying cτ7 , c

τ
10, c

τ
13

and cτ14 in the expressions for l̂τ5 and l̂τE in Eq. (2.3). In addition, it also depends on the
relative amplitude of the nuclear response functions W ττ ′

Σ′ , W ττ ′
Σ′′ and W ττ ′

Φ̃′ integrated over
the relevant signal regions.

5.2 Isoscalar-isovector interference patterns

For any interaction operator in Tab. 1, including operators that do not interfere in pairs as
Ô7, Ô10, Ô13, and Ô14, we observe isoscalar-isovector interference patterns in the rate (2.10).
As an example, let us focus on the operator Ô7. The operator Ô7 contributes to the square
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operator interference tends to have a smaller effect
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Figure 5. 2D 90% confidence intervals (cyan contours) and profile Likelihoods (colored regions) from
a global fit of the model parameters in the legends, η and mχ to current direct detection experiments.
Contours are presented in the six planes c04 −mχ, c05 −mχ, c06 −mχ, c14 −mχ, c15 −mχ, and c16 −mχ.
Yellow lines represent 2D 90% credible regions obtained by fitting mχ and a single coupling constant
to the LUX data.

proportional to

〈|MNR|2〉c1c3spins =
4π

2J + 1

∑

ττ ′

[
cτ1c

τ ′
1 W ττ ′

M (y) +
1

8

q2

m2
N

v⊥2
T cτ3c

τ ′
3 W ττ ′

Σ′ (y)

+
q2

m2
N

(
q2

4m2
N

cτ3c
τ ′
3 W ττ ′

Φ′′ (y) + cτ1c
τ ′
3 W ττ ′

Φ′′M (y)

)]
. (5.5)

In Eq. (5.5) terms with τ $= τ ′ describe isoscalar-isovector interference effects similar to those
discussed in Sec. 5.2. The term ∝ cτ1c

τ ′
3 arises from the interference of Ô1 and Ô3. Integrating

Eq. (5.5) over a typical signal region, cancellations between different terms occur, as the
integrated nuclear response functions W ττ ′

M and W ττ ′
Σ′ , for τ $= τ ′, and W ττ ′

Φ′′M , for τ = τ ′, are
negative for many isotopes.

Because of cancellations in (5.5), numerical noise affects the exclusion limits derived
simultaneously varying η, mχ, c01, c

1
1, c

0
3, and c13. To circumvent this problem, while exploring

all interference patterns, here we present exclusion limits obtained in four complementary
ways. In a first analysis we fit mχ, c01, c

0
3, and η to current dark matter direct detection

experiments. In a second analysis, we simultaneously place limits on the constants c11 and c13
while fitting the same data. Our third and fourth analysis respectively consider the constants
c01 − c11, and c03 − c13 as free parameters in the global fit.

Fig. 3 shows the 2D 90% confidence intervals (colored contours) and profile Likelihoods
(colored regions) resulting from the four analyses described above. To derive the contours
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The usual spin-dependent operator suffers from less 
interference effects than does the spin-independent
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Figure 7. This figure illustrates the main result of this work. In 10 planes spanned by mχ and one
of the effective couplings we show the corresponding 99% CR contours (green), the 95% CL contours
(blue) and the associated 2D profile likelihoods. These statistical indicators have been constructed
through a global fit of all the datasets considered in this work (except DAMA and CoGeNT) in which
we have simultaneously varied the dark matter mass, all the effective couplings and the nuisance
parameters introduced in the previous sections. From the 95% CL contours in this figure one can
extract the maximum strength compatible with current direct detection data of the different types of
dark matter-nucleon interaction as a function of the dark matter mass. The top-left panel shows the
1D marginal PDF and the 1D profile likelihood of the dark matter mass resulting from this global
analysis. The 1D PDF is suppressed at large mχ because of volume effects, whereas the 1D profile
likelihood is lower at small mχ because of threshold effects (see text).

discussed in detail in the case of the LUX experiment in Fig. 1: the 2D marginal posterior
PDFs peak at low masses because of volume effects, whereas the 2D profile likelihoods are
approximately flat down to 20 GeV or so, and then start decreasing below this mass because
of threshold effects. Fig. 7 answers the question of which is the maximum strength allowed
by current direct detection data for the 10 types of interaction considered in this paper. The
interactions that are currently better constrained are those described by the operators O1,
O3, O4, O8 and O11.

The results of this section show that only limits on the coupling constants c0i derived
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Current experiments constrain some non-standard interactions at the same level or more than the 
standard spin-dependent interaction

R. Catena and P. Gondolo, JCAP 1409 (2014), arXiv:1405.2637
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Figure 2. Analysis of the benchmark points P9 – P16. The eight panels show the 2D 95% confidence
intervals that we obtain fitting mχ and c01 (black contours), mχ and c04 (blue contours), as well as mχ

and the constant c0i != 0 in Tab. 3 (red contours) to the synthetic data. Green (magenta) crosses and
stars represent the best fit values and the posterior means associated with the black (blue) contours.
Cyan dots denote the benchmark points. In each panel, we report the posterior PDF that we find
fitting mχ and c01 to the synthetic data. Fitting the interaction operators O1 and O4 to future direct
detection data, when the interaction underlying the data is of a different type, induces a bias in
the interpretation the experimental results. There are cases in which this bias cannot be identified
through a simple goodness of fit test (see text around Fig. 3).

of the dark matter particle properties. Interestingly, the benchmark points P9 – P16 can be
divided in two groups, depending on the accuracy within which mχ is determined in this
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50GeV

R. Catena, JCAP 1409 (2014), arXiv:1407.0127

Theoretical bias in the 
fits for ton-scale Ge 
and Xe
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Figure 5. Same as for Fig. 2, but for the benchmark points P17 – P24.

parable values of χ2
red for the benchmark points P10, P12 and P14. Fig. 3 (right panel) reports

the binned data, and the theoretical expectations for the benchmark point P13. In summary,
for mχ = 50 GeV the operator O1 provides a good fit to the synthetic data generated from

the interaction operators O5 = −i"Sχ · ("q/mN × "v⊥χN ), O7 = "SN · "v⊥χN , O8 = "Sχ · "v⊥χN , and

O9 = −i"Sχ · ("SN × "q/mN ). The interaction operator O1 provides a good fit to these data for
the following reason. For mχ = 50 GeV, features in the energy recoil spectrum depending
on the velocity or on the momentum transfer, which could distinguish the operators O5, O7,
O8 and O9 from the operator O1, move below the experimental thresholds (see Fig. 3, right
panel).
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Figure 4. Same as for Fig. 2, but for the benchmark points P1 – P8. In the panels, we do not report
the best fit points, since they are essentially superimposed to the posterior means.

the same notation introduced in the caption of Tab. 1. Fig. 3 (left panel) shows the binned
data, and the expected number of events in each bin for the benchmark point P11.

A second group includes the benchmark points P10, P12, P13 and P14. At these bench-
mark points, we find confidence intervals based on the fitting procedure B, comparable with
those that we obtain using the fitting procedure A. A chi-square goodness of fit test applied
to the synthetic data generated from these benchmark points gives as a result similar values
of χ2

red for the fitting procedures A and B. For instance, at the benchmark point P13, we find
χ2
red = 1.13 and χ2

red = 1.15 for the fitting procedures A and B, respectively. We obtain com-
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Figure 4. Same as for Fig. 2, but for the benchmark points P1 – P8. In the panels, we do not report
the best fit points, since they are essentially superimposed to the posterior means.

the same notation introduced in the caption of Tab. 1. Fig. 3 (left panel) shows the binned
data, and the expected number of events in each bin for the benchmark point P11.

A second group includes the benchmark points P10, P12, P13 and P14. At these bench-
mark points, we find confidence intervals based on the fitting procedure B, comparable with
those that we obtain using the fitting procedure A. A chi-square goodness of fit test applied
to the synthetic data generated from these benchmark points gives as a result similar values
of χ2

red for the fitting procedures A and B. For instance, at the benchmark point P13, we find
χ2
red = 1.13 and χ2

red = 1.15 for the fitting procedures A and B, respectively. We obtain com-
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Figure 2. Analysis of the benchmark points P9 – P16. The eight panels show the 2D 95% confidence
intervals that we obtain fitting mχ and c01 (black contours), mχ and c04 (blue contours), as well as mχ

and the constant c0i != 0 in Tab. 3 (red contours) to the synthetic data. Green (magenta) crosses and
stars represent the best fit values and the posterior means associated with the black (blue) contours.
Cyan dots denote the benchmark points. In each panel, we report the posterior PDF that we find
fitting mχ and c01 to the synthetic data. Fitting the interaction operators O1 and O4 to future direct
detection data, when the interaction underlying the data is of a different type, induces a bias in
the interpretation the experimental results. There are cases in which this bias cannot be identified
through a simple goodness of fit test (see text around Fig. 3).

of the dark matter particle properties. Interestingly, the benchmark points P9 – P16 can be
divided in two groups, depending on the accuracy within which mχ is determined in this
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Figure 5. Same as for Fig. 2, but for the benchmark points P17 – P24.

parable values of χ2
red for the benchmark points P10, P12 and P14. Fig. 3 (right panel) reports

the binned data, and the theoretical expectations for the benchmark point P13. In summary,
for mχ = 50 GeV the operator O1 provides a good fit to the synthetic data generated from

the interaction operators O5 = −i"Sχ · ("q/mN × "v⊥χN ), O7 = "SN · "v⊥χN , O8 = "Sχ · "v⊥χN , and

O9 = −i"Sχ · ("SN × "q/mN ). The interaction operator O1 provides a good fit to these data for
the following reason. For mχ = 50 GeV, features in the energy recoil spectrum depending
on the velocity or on the momentum transfer, which could distinguish the operators O5, O7,
O8 and O9 from the operator O1, move below the experimental thresholds (see Fig. 3, right
panel).
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Fitting a non-standard interaction with SI/SD assumptions
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where Cχ ≡ 4jχðjχ þ 1Þ=3. The shell model predicts that
the magnetic moment of a nucleus, T, is given by

~μT ¼ 2~μphSpiþ 2~μnhSniþ hLpi: ð22Þ

Referring to Table I, one can check that in the q2 → 0 limit,
the term in square brackets goes to Jþ1

6J ~μ2T and ~Wðp;pÞ
M → Z2.

In this limit, Eq. (21) reproduces the cross section derived
in [26],
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When drawing bounds or regions of interest, we will
parametrize the anapole coupling strength via
~σ ¼ f2aμ2p=πM4.

C. Dipole-interacting dark matter

We next consider Dirac fermion DM that acquires dipole
moments so that the effective WIMP-nucleon interaction is
given by
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Here again, we evaluate Eq. (2), taking c1; c4; c5; c6 from
Eq. (25), and substitute the WIMP form factors Rk of [34]
to obtain
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As for Eq. (21), one can verify that in the q2 → 0 limit, we
reproduce the results of [26],7
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As in [44], when drawing bounds or regions of interest, we
will parametrize the magnetic dipole coupling strength via
~σ ¼ f2mdμ

2
p=πM4 and take Λ ¼ 1 GeV.

Likewise, the electric dipole reduces to
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Similar to the anapole and magnetic dipole, this reduces to

σelectric dipole
T

¼ μ2T
π

!
fed
M2

"
2 ~q2

Λ2
Cχ

!
~Wðp;pÞ
M þ terms of order

~q2

m2
N

"
:

ð30Þ

For the electric dipole, the interesting terms depending on
the novel response function WΦ″ (arising from O15) are
momentum-suppressed compared to the spin-independent
term. Thus, at the low energies relevant for direct detection,
the cross section has the same form as the momentum-
suppressed, spin-independent “pseudoscalar-mediated”
cross section considered in [24] and below, and is an
example of how a momentum-suppressed spin-independent
interaction could naturally arise with proton-only

7Up to a factor of 4 having to do with the normalization of
operator coefficients.
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M → Z2.

In this limit, Eq. (21) reproduces the cross section derived
in [26],
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When drawing bounds or regions of interest, we will
parametrize the anapole coupling strength via
~σ ¼ f2aμ2p=πM4.

C. Dipole-interacting dark matter

We next consider Dirac fermion DM that acquires dipole
moments so that the effective WIMP-nucleon interaction is
given by
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Here again, we evaluate Eq. (2), taking c1; c4; c5; c6 from
Eq. (25), and substitute the WIMP form factors Rk of [34]
to obtain
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As for Eq. (21), one can verify that in the q2 → 0 limit, we
reproduce the results of [26],7
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As in [44], when drawing bounds or regions of interest, we
will parametrize the magnetic dipole coupling strength via
~σ ¼ f2mdμ

2
p=πM4 and take Λ ¼ 1 GeV.

Likewise, the electric dipole reduces to
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Similar to the anapole and magnetic dipole, this reduces to
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For the electric dipole, the interesting terms depending on
the novel response function WΦ″ (arising from O15) are
momentum-suppressed compared to the spin-independent
term. Thus, at the low energies relevant for direct detection,
the cross section has the same form as the momentum-
suppressed, spin-independent “pseudoscalar-mediated”
cross section considered in [24] and below, and is an
example of how a momentum-suppressed spin-independent
interaction could naturally arise with proton-only

7Up to a factor of 4 having to do with the normalization of
operator coefficients.
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where Cχ ≡ 4jχðjχ þ 1Þ=3. The shell model predicts that
the magnetic moment of a nucleus, T, is given by
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When drawing bounds or regions of interest, we will
parametrize the anapole coupling strength via
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Here again, we evaluate Eq. (2), taking c1; c4; c5; c6 from
Eq. (25), and substitute the WIMP form factors Rk of [34]
to obtain

σmagnetic dipole
T

¼ μ2T
π

!
fmd

M2

"
2 ~q2

Λ2

#$
Cχ~v⊥2

T þ
~q2

4m2
χ

%
~Wðp;pÞ
M

þ Cχ
~q2

m2
N

$
~Wðp;pÞ
Δ − ~μn ~Wðp;nÞ

ΔΣ0 − ~μp ~Wðp;pÞ
ΔΣ0

þ 1

4
ð ~μ2p ~Wðp;pÞ

Σ0 þ 2~μn ~μp ~Wðp;nÞ
Σ0 þ ~μ2n ~Wðn;nÞ

Σ0 Þ
%&

: ð26Þ

As for Eq. (21), one can verify that in the q2 → 0 limit, we
reproduce the results of [26],7
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As in [44], when drawing bounds or regions of interest, we
will parametrize the magnetic dipole coupling strength via
~σ ¼ f2mdμ

2
p=πM4 and take Λ ¼ 1 GeV.

Likewise, the electric dipole reduces to
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For the electric dipole, the interesting terms depending on
the novel response function WΦ″ (arising from O15) are
momentum-suppressed compared to the spin-independent
term. Thus, at the low energies relevant for direct detection,
the cross section has the same form as the momentum-
suppressed, spin-independent “pseudoscalar-mediated”
cross section considered in [24] and below, and is an
example of how a momentum-suppressed spin-independent
interaction could naturally arise with proton-only

7Up to a factor of 4 having to do with the normalization of
operator coefficients.
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where Cχ ≡ 4jχðjχ þ 1Þ=3. The shell model predicts that
the magnetic moment of a nucleus, T, is given by

~μT ¼ 2~μphSpiþ 2~μnhSniþh Lpi: ð22Þ

Referring to Table I, one can check that in the q2 → 0 limit,
the term in square brackets goes to Jþ1

6J ~μ2T and ~Wðp;pÞ
M → Z2.

In this limit, Eq. (21) reproduces the cross section derived
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When drawing bounds or regions of interest, we will
parametrize the anapole coupling strength via
~σ ¼ f2aμ2p=πM4.

C. Dipole-interacting dark matter

We next consider Dirac fermion DM that acquires dipole
moments so that the effective WIMP-nucleon interaction is
given by
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Here again, we evaluate Eq. (2), taking c1; c4; c5; c6 from
Eq. (25), and substitute the WIMP form factors Rk of [34]
to obtain
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As for Eq. (21), one can verify that in the q2 → 0 limit, we
reproduce the results of [26],7
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As in [44], when drawing bounds or regions of interest, we
will parametrize the magnetic dipole coupling strength via
~σ ¼ f2mdμ

2
p=πM4 and take Λ ¼ 1 GeV.

Likewise, the electric dipole reduces to

Lelectric dipole
int ¼ fed
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Λ
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Similar to the anapole and magnetic dipole, this reduces to

σelectric dipole
T

¼ μ2T
π

!
fed
M2

"
2 ~q2

Λ2
Cχ

!
~Wðp;pÞ
M þ terms of order

~q2

m2
N

"
:

ð30Þ

For the electric dipole, the interesting terms depending on
the novel response function WΦ″ (arising from O15) are
momentum-suppressed compared to the spin-independent
term. Thus, at the low energies relevant for direct detection,
the cross section has the same form as the momentum-
suppressed, spin-independent “pseudoscalar-mediated”
cross section considered in [24] and below, and is an
example of how a momentum-suppressed spin-independent
interaction could naturally arise with proton-only

7Up to a factor of 4 having to do with the normalization of
operator coefficients.
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“photonic” [45] couplings. In Sec. III, we will use the
momentum-suppressed, spin-independent case (q2 × SI) to
establish roughly what sort of error to expect in form
factors of [34,35] at larger momentum transfer by compar-
ing results for the q2 × SI rate using either the spin-
independent (M) form factors of [34,35] or using the
Helm form factor.

D. ð~L · ~SÞ generating
In the case of both the anapole and magnetic dipole

operators, the new response Δ, as well as Σ0 (which is not

the usual spin-dependent combination Σ0 þ Σ″), compete
with, and in some cases dominate over, the charge form
factor M. By contrast, the new Φ″ response in the electric
dipole operator is suppressed by q2=m2

N in comparison to
the charge form factor, so that, unless the mediator couples
only to the neutron, the standard form factor M always
dominates in the electric dipole operator. Here we consider
what types of interactions allow the ð~L · ~SÞ-generating Φ″

response to dominate, when the contribution from M is
subdominant. In particular, we consider the interaction
highlighted in [35],

LLS
int ¼

fLS
Λ2

χ̄γμχ
X

N¼n;p

!
κN1

qαqα

m2
N

N̄γμN þ κN2 N̄
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2mN

N
"

ð31Þ
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"
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""
: ð32Þ

From Eqs. (38)–(40) of [34]
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"
: ð33Þ

To parametrize the overall coupling strength we will use
~σ ¼ f2LSμ

2
p=πΛ4. We will consider the case where

κN1 −
κN2
4

¼ 0 and κp2 ¼ κn2 ¼ 2: ð34Þ

Of the target elements we examine in this paper, for all but
fluorine the Φ″ response dominates over the Σ0 response
(see Table IV). Even for fluorine the ~v⊥2

T term becomes
negligible for recoil energies of order 1 keV and above.
Therefore we compute rates without including the ~v⊥2

T
term.

E. Pseudoscalar-mediated dark matter

Lpseudoscalar
int

¼ 1

M2

X

N¼n;p

ðfN1 iχ̄γ5χN̄N þ fN2 iχ̄χN̄γ5N þ fN3 χ̄γ
5χN̄γ5NÞ:

ð35Þ

The terms in (35) are included in decreasing order of
importance: if f1, f2, and f3 are comparable, the f1 term
dominates over the f2 term, which dominates over the f3

term. This is because the f1 term leads to a q2-suppressed
spin-independent interaction, the f2 term to a
q2-suppressed spin-dependent interaction, and the f3 term
to a q4-suppressed spin-dependent interaction. We thus
consider each term separately and focus on the isospin
benchmark: fni ¼ fpi . If the DM is a scalar, only the f2 term
survives, and an overall factor ofmχ=2 in comparison to the
fermionic case enters into the matrix element.
The nonrelativistic reductions of the relevant operators

are given by8

iχ̄γ5χN̄N → −
mN

mχ
O11; ð36Þ

iχ̄χN̄γ5N → O10; ð37Þ

χ̄γ5χN̄γ5N → −
mN

mχ
O6; ð38Þ

and the associated cross section is

8See Table 1 of [34].
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“photonic” [45] couplings. In Sec. III, we will use the
momentum-suppressed, spin-independent case (q2 × SI) to
establish roughly what sort of error to expect in form
factors of [34,35] at larger momentum transfer by compar-
ing results for the q2 × SI rate using either the spin-
independent (M) form factors of [34,35] or using the
Helm form factor.
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To parametrize the overall coupling strength we will use
~σ ¼ f2LSμ

2
p=πΛ4. We will consider the case where
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4

¼ 0 and κp2 ¼ κn2 ¼ 2: ð34Þ

Of the target elements we examine in this paper, for all but
fluorine the Φ″ response dominates over the Σ0 response
(see Table IV). Even for fluorine the ~v⊥2

T term becomes
negligible for recoil energies of order 1 keV and above.
Therefore we compute rates without including the ~v⊥2

T
term.

E. Pseudoscalar-mediated dark matter
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The terms in (35) are included in decreasing order of
importance: if f1, f2, and f3 are comparable, the f1 term
dominates over the f2 term, which dominates over the f3

term. This is because the f1 term leads to a q2-suppressed
spin-independent interaction, the f2 term to a
q2-suppressed spin-dependent interaction, and the f3 term
to a q4-suppressed spin-dependent interaction. We thus
consider each term separately and focus on the isospin
benchmark: fni ¼ fpi . If the DM is a scalar, only the f2 term
survives, and an overall factor ofmχ=2 in comparison to the
fermionic case enters into the matrix element.
The nonrelativistic reductions of the relevant operators

are given by8

iχ̄γ5χN̄N → −
mN

mχ
O11; ð36Þ

iχ̄χN̄γ5N → O10; ð37Þ

χ̄γ5χN̄γ5N → −
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8See Table 1 of [34].
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LSD
int ¼ χ̄γμγ5χ
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N̄γμγ5N →
X
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cN4 O4

with cN4 ¼ −
4fNSD
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; ð11Þ

leading to the cross section

σSDT ¼ μ2T
π
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fNSDf
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where, as in [35], we have defined the DM spin-dependent
constant,

Cχ ≡
4jχðjχ þ 1Þ

3
: ð13Þ

The SD cross section is often expressed as a function of the
proton-DM zero-momentum-transfer cross section σSDp ,

σSDT ¼ μ2T
μ2p
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where

σSDp ¼
μ2p
π
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Λ4
3ðfpSDÞ2: ð15Þ

Note that the combination of nuclear responses,

X
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fNSDf
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Σ0 ð0Þ þ ~WðN;N0Þ

Σ″ ð0ÞÞ ¼ 4
J þ 1

J
ðfpSDhSpiþ fnSDhSniÞ2; ð16Þ

gives rise to the usual spin-dependent factors.

B. Anapole dark matter

Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
proceeds via the following effective interaction6:

Lanapole
int ¼ fa

M2
χ̄γμγ5χJ EM

μ ; ð17Þ

where

J EM
μ ≡

X

N¼n;p

N̄
!
QN

Kμ

2mN
− ~μN

iσμνqν

2mN

"
N ð18Þ

is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton

: ð19Þ

The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →

2fa
M2

X

N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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where, as in [35], we have defined the DM spin-dependent
constant,

Cχ ≡
4jχðjχ þ 1Þ

3
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The SD cross section is often expressed as a function of the
proton-DM zero-momentum-transfer cross section σSDp ,
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gives rise to the usual spin-dependent factors.

B. Anapole dark matter

Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
proceeds via the following effective interaction6:
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χ̄γμγ5χJ EM

μ ; ð17Þ

where

J EM
μ ≡
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is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton

: ð19Þ

The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →

2fa
M2

X

N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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Majorana fermion DM scattering off of nucleons via a
spin-1 mediator that kinetically mixes with the photon
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is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton
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The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →
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N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
magnetic moment,

~μ ¼ magnetic moment
nuclear magneton
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The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,

Lanapole
int →
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N¼n;p

ðQNO8 þ ~μNO9Þ; ð20Þ

where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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is the electromagnetic current restricted to nucleons. We
have used the conventions of [34], taking Kμ ¼ kμ þ k0μ

and four-momentum-transfer qμ ¼ p0μ − pμ ¼ kμ − k0μ

with p (p0) the incoming (outgoing) DM four-momentum
and similarly k (k0) the incoming (outgoing) nucleon four-
momentum. We have used ~μ to denote a dimensionless
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~μ ¼ magnetic moment
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The relevant EM constants are ~μn ¼ −1.9, ~μp ¼ 2.8,
Qp ¼ 1, and Qn ¼ 0.
In the nonrelativistic limit,
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where the nonrelativistic operators O8 and O9 are as
defined in [34] and Table II.
Evaluating Eq. (2), taking c8; c9 from Eq. (20), and

substituting the “WIMP form factors” Rk found in [34] and
reproduced in Appendix A, we obtain (for Dirac DM)

6The nonrelativistic reduction for this and other interactions
considered in the paper can be read from Table 1 of [34]. To do
so, one must recall the Gordon identities, ūðp0ÞγμuðpÞ ¼
ūðp0Þððpþp0Þμ

2m þ iσμνðp0−pÞν
2m ÞuðpÞ and ūðp0Þσμνðp0 − pÞνγ5uðpÞ ¼

ūðp0Þðiðpþ p0Þμγ5ÞuðpÞ. Note that signs in Table 1 in v1 of
[34] for the nonrelativistic reduction of relativistic operators with
an odd power of momentum transfer are incorrect by a factor of
−1, because the convention q ¼ p − p0 was used rather than the
stated q ¼ p0 − p convention.
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Leading vector coupling for 
Majorana dark matter

Electromagnetic current for 
nucleons

Nuclear effects
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π
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#
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4
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Σ0 þ 2~μn ~μp ~Wðp;nÞ
Σ0 þ ~μ2n ~Wðn;nÞ

Σ0 Þ
%&

;

ð21Þ

where Cχ ≡ 4jχðjχ þ 1Þ=3. The shell model predicts that
the magnetic moment of a nucleus, T, is given by

~μT ¼ 2~μphSpiþ 2~μnhSniþ hLpi: ð22Þ

Referring to Table I, one can check that in the q2 → 0 limit,
the term in square brackets goes to Jþ1

6J ~μ2T and ~Wðp;pÞ
M → Z2.

In this limit, Eq. (21) reproduces the cross section derived
in [26],

σanapoleT ¼ μ2T
π
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N

"
:

ð23Þ

When drawing bounds or regions of interest, we will
parametrize the anapole coupling strength via
~σ ¼ f2aμ2p=πM4.

C. Dipole-interacting dark matter

We next consider Dirac fermion DM that acquires dipole
moments so that the effective WIMP-nucleon interaction is
given by

Lmagnetic dipole
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Here again, we evaluate Eq. (2), taking c1; c4; c5; c6 from
Eq. (25), and substitute the WIMP form factors Rk of [34]
to obtain
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As for Eq. (21), one can verify that in the q2 → 0 limit, we
reproduce the results of [26],7
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As in [44], when drawing bounds or regions of interest, we
will parametrize the magnetic dipole coupling strength via
~σ ¼ f2mdμ

2
p=πM4 and take Λ ¼ 1 GeV.

Likewise, the electric dipole reduces to
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Similar to the anapole and magnetic dipole, this reduces to
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For the electric dipole, the interesting terms depending on
the novel response function WΦ″ (arising from O15) are
momentum-suppressed compared to the spin-independent
term. Thus, at the low energies relevant for direct detection,
the cross section has the same form as the momentum-
suppressed, spin-independent “pseudoscalar-mediated”
cross section considered in [24] and below, and is an
example of how a momentum-suppressed spin-independent
interaction could naturally arise with proton-only

7Up to a factor of 4 having to do with the normalization of
operator coefficients.
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where Cχ ≡ 4jχðjχ þ 1Þ=3. The shell model predicts that
the magnetic moment of a nucleus, T, is given by
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When drawing bounds or regions of interest, we will
parametrize the anapole coupling strength via
~σ ¼ f2aμ2p=πM4.

C. Dipole-interacting dark matter
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""
: ð25Þ

Here again, we evaluate Eq. (2), taking c1; c4; c5; c6 from
Eq. (25), and substitute the WIMP form factors Rk of [34]
to obtain
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As for Eq. (21), one can verify that in the q2 → 0 limit, we
reproduce the results of [26],7

σmagnetic dipole
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N

"
: ð27Þ

As in [44], when drawing bounds or regions of interest, we
will parametrize the magnetic dipole coupling strength via
~σ ¼ f2mdμ

2
p=πM4 and take Λ ¼ 1 GeV.

Likewise, the electric dipole reduces to

Lelectric dipole
int ¼ fed
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Similar to the anapole and magnetic dipole, this reduces to

σelectric dipole
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2 ~q2

Λ2
Cχ

!
~Wðp;pÞ
M þ terms of order

~q2

m2
N

"
:

ð30Þ

For the electric dipole, the interesting terms depending on
the novel response function WΦ″ (arising from O15) are
momentum-suppressed compared to the spin-independent
term. Thus, at the low energies relevant for direct detection,
the cross section has the same form as the momentum-
suppressed, spin-independent “pseudoscalar-mediated”
cross section considered in [24] and below, and is an
example of how a momentum-suppressed spin-independent
interaction could naturally arise with proton-only

7Up to a factor of 4 having to do with the normalization of
operator coefficients.
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fluorine, germanium, iodine, and xenon targets, and then fit
the data given different underlying assumptions about the
form factors relevant for the interaction. One hundred
events were generated assuming an underlying distribution
for 80 GeVor 250 GeV DM scattering via a representative
set of the benchmark interactions discussed in Sec. II with
the full form factors. Perfect resolution and acceptance are
assumed. For fits, exposures were adjusted so that 100
events would be expected in the 0–100 keVenergy range at
the same cross section that leads to 100 events off of iodine
given an exposure of 105 kg days and mχ ¼ 250 GeV. For
comparison, we also simulated 100 events in the narrower

0–50 keV recoil energy range, and exposures were sim-
ilarly adjusted for fits. We fit the data using either the
proper form factors or the foil form factors discussed in
Sec. III B. Binned log likelihood (lnL) was computed for
10 keV bins given the 0–100 keV range or 5 keV bins given
the 0–50 keV range. Region-of-interest contours are set
using lnL ¼ lnLmax − CDF−1 (ChiSq[2], C.L.)/2 with
C:L: ¼ 68%, where C.L. is the confidence level.
Here we aim to concretely demonstrate how a reasonable

yet in-principle-inaccurate model of the momentum
dependence of the nuclear response of a target can affect
an inference of the underlying WIMP physics. We have

Anapole, m 80 GeV solid , 250 GeV dotted
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FIG. 3 (color online). For the anapole interaction, (top two panels) expected event spectrum (pink curves) alongside the ratio of the
foil rate to the true rate (blue curves), and (bottom four panels) fits for idealized iodine-target and xenon-target experiments assuming
full form factors (pink curves, used to generate the events in the first place) or foil form factors (blue curves). True mass and
cross sections are marked with an “×.” The solid line is for simulated 80 GeV DM and the dashed line for 250 GeV. In the middle left
panel no curve appears for the 250 GeV case because a fit with the wrong form factors gives a poor fit to the data. The results from fits to
two sets of simulated data (100 events with 0 < ER < 50 keV or 0 < ER < 100 keV) for each target are shown in the bottom four
panels.
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Simulated over 8000 recoil energy spectra for various models

Model name Lagrangian !q, v Dependence Response fn/fp

SI χ̄χN̄N 1 M +1

SD χ̄γµγ5χN̄γµγ5N 1 Σ′ + Σ′′ –1.1

Anapole χ̄γµγ5χ∂νFµν
v⊥2 M

photon–like
!q 2/m2

N ∆+ Σ′

Millicharge χ̄γµχAµ m2
Nm2

χ/!q
4 M photon–like

MD (light med.) χ̄σµνχFµν
1 +

v⊥2m2
N

#q 2 M
photon–like

1 ∆+ Σ′

ED (light med.) χ̄σµνγ5χFµν m2
N/!q 2 M photon–like

MD (heavy med.) χ̄σµν∂µχ∂αFαν

#q 4

Λ4 +
v⊥2m2

N#q 2

Λ4 M
photon–like

!q 4/Λ4 ∆+ Σ′

ED (heavy med.) χ̄σµνγ5∂µχ∂αFαν !q 2m2
N/Λ4 M photon–like

SIq2 iχ̄γ5χN̄N !q 2/m2
χ M +1

SDq2 (Higgs-like/flavor–univ.) iχ̄χN̄γ5N !q 2/m2
N Σ′′ +1/− 0.05

SDq4 (Higgs-like/flavor–univ.) χ̄γ5χN̄γ5N !q 4/m2
χm

2
N Σ′′ +1/− 0.05

!L · !S-like
χ̄γµχ

∂2N̄γµN
m2

N
+

+χ̄γµχ
∂νN̄σµνN

2mN

!q 4/m4
N M

+1!q 4/m4
N Φ′′

#q 2v⊥2

m2
N

+ #q 4

m2
χm

2
N

Σ′

Table 1. Scattering models and corresponding relativistic operators considered in this work are listed
here. In model names, “MD” stands for “magnetic dipole”, and “ED” for “electric dipole”; “heavy med.”
and “light med.” refers to the mediator mass, as compared to the characteristic value of momentum
transfer. SIq2 , SDq2 , and SDq4 represent the pseudoscalar–mediated models; note that they do not
simply correspond to q2(q4)× SI(SD); also note that SDq2 and SDq4 taken with two different values of
fn/fp (denoted as Higgs–like and flavor–universal; values are listed in the last column) are treated as
two separate models each for the purposes of our analysis in later sections. N is a nucleon field; Aµ is
the photon field; Fµν is the EM field strength; v⊥ is the transverse velocity; !q 2 = 2mTER is the three–
momentum transfer; and Λ is a heavy–mass or compositeness scale appearing in the dipole models with
a heavy mediator. The leading momentum and velocity dependence of the response corresponding
to the given operator is listed (schematically) in the third column, and the corresponding response
functions in the fourth column. The last column contains a list of benchmark values for fn/fp used for
simulations in this work. “Photon-like” refers to the fact that ratios analogous to fn/fp are completely
determined by the EM properties of the target nucleus when the mediator is a photon.

interference terms. Refs. [16, 17] parameterized the generalized responses as follows3

dσT
dER

(ER, v) =
mT

2πv2

∑

(N,N ′)

[ ∑

X=M,Σ′,Σ′′

RX

(
ER, v, c

(N)
i , c(N

′)
j

)
W̃ (N,N ′)

X (y)

+
2mTER

m2
N

∑

X=Φ′′,∆,MΦ′′,∆Σ′

RX

(
ER, v, c

(N)
i , c(N

′)
j

)
W̃ (N,N ′)

X (y)

]
,

(3.6)

3Note that Eq. 3 of [17] is schematic. Compare the following to Eq. 40 of [17].

– 6 –

Future prospects for distinguishing models 
V. Glusevic, M. Gresham, S.D. McDermott, A.H.G. Peter, and K. Zurek, arXiv:1506.04454



V. Glusevic, M. Gresham, S.D. McDermott, A.H.G. Peter, and K. Zurek, arXiv:1506.04454

Label A (Z) Energy window [keVnr] Exposure [kg-yr]
Xe 131 (54) 5-40 2000
Ge 73 (32) 0.3-100 100
I 127 (53) 22.2-600 212
F 19 (9) 3-100 606
Na 23 (11) 6.7-200 38
Ar 40 (18) 25-200 3000
He 4 (2) 3-100 300

Xe(lo) 131 (54) 1-40 2000
Xe(hi) 131 (54) 5-100 2000

Xe(wide) 131 (54) 1-100 2000
I(lo) 127 (53) 1-600 212
XeG3 131 (54) 5-40 40 000

I+ 127 (53) 1-600 424
F+ 19 (9) 3-100 1200

Table 3. Mock experiments considered in this work. The efficiency and the fiducialization of the
target mass are included in the exposure. The first group of experiments is used for most of the
simulations in this work and is chosen such to be representative of the reach of G2 experiments for
Xe, Ge, I, and F. The exposure for Xe and Ge is chosen to agree with the projected exclusion curves
for LZ and SuperCDMS presented in Ref. [1]. The second group of experiments is used to test impact
of the energy window on prospects for model selection; note that only the energy window differs from
the corresponding experiments of the first group. The last group represents futuristic experiments,
where XeG3 reaches the level of atmospheric neutrino backgrounds.

Figure 4. Examples of simulated nuclear recoil energy spectra, for three different models from Table
1, on a Xe experiment described in Table 3, for a 50 GeV DM particle, with a cross section set to
current upper limit, calculated in §6.1. Error bars include only the Poisson noise. For this work, we
create a large number of simulated spectra such as the ones shown here. For illustration purposes
only, we bin the events according to their energy; we perform all analyses on unbinned data.

To simulate a recoil–energy spectrum observed with a single experiment under a chosen
scattering model M, given a set of its parameter values Θ (mχ, σp, and fn/fp), we use
the following procedure. For each simulation, we first draw a number N from a Poisson
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Figure 8. The key results of set–I model selection are shown in this Figure. Each of the columns
represents analysis of simulations from either a single experiment, or a joint analysis of several ex-
periments (denoted on the x–axis). Each panel corresponds to simulations for a single underlying
scattering model (indicated in the header) for 50 GeV DM mass; σp is set to its current upper limit.
Each horizontal colored line represents a single realization of the data under that model, and the
spread of the lines on the y–axis is due to the Poisson noise. Evidences for all 8 models from set
I are compared to compute the probability of the right underlying model, shown on the y–axis. A
pile–up of many simulations at more than 90% probability signifies a high chance of selecting the
correct underlying model. This chance is generally low if only Xe and Ge are considered, but greatly
improved if F or I targets of modest exposure are added to the analysis. See Figures 21, 22, and 23
for related results for other models of set I and for other DM particle masses.

Appendix A). However, these targets are highly complementary to Xe and Ge for the purposes
of model selection—the probability of selecting the correct model when data from Xe, Ge,
and either I or F is analyzed jointly is much greater than when Xe and Ge are considered on
their own. In other words, even if E({EGe

R , EXe
R }|Mi) ! E({EGe

R , EXe
R }|Mj), such that model

i and j are indistinguishable using only Xe and Ge, we find that including a F or I experiment
can break the degeneracy, so that E({EGe

R , EXe
R , EF(I)

R }|Mi) "= E({EGe
R , EXe

R , EF(I)
R }|Mj).

We now discuss the first conclusion in more detail. If we look at the shapes of the recoil
spectra for set I, as shown in Figure 2, we see that certain subsets of models look similar
on these targets within the relevant energy windows. These are the models with a similar
energy (momentum) dependence of the dominant scattering response R(ER, v) of Eq. (3.6)
(see also the middle column of Table 1). For SI, SD, and Anapole, the dominant response
on a target with a small net spin (such as Xe and Ge) does not have any additional energy
dependence, so R does not vary strongly with ER. For the light–mediator dipole models, there
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Figure 9. Same as Figure 8, except that the vertical axis shows the sum of probabilities for all
models that have the same momentum dependence. In contrast with prospects for selecting the right
underlying model (shown in Figure 8), Ge and Xe targets are able to confidently identify momentum
dependence of the underlying interaction. The simulations used here are for DM particle mass of 50
GeV.

is an additional ∼ 1/ER enhancement of the recoil spectrum at low energies. For the heavy–
mediator dipole models, there is a turnover feature due to an additional ER suppression.
Millicharge DM has a steep enhancement that goes like ∼ 1/E2

R. These dependences dictate
the level of model degeneracy we observe in results for Xe and Ge. Combining the data from
these two experiments does not alleviate this degeneracy. For example, the probabilities of
the right model pile up around 33% for SI, SD, and Anapole (as expected from this three–fold
degeneracy), and around 50% for the dipole models with the light mediator, and for the dipole
models with a heavy mediator. When we examine the probabilities of individual models, we
confirm this picture; for example, electric– and magnetic–dipole models with a light mediator
always appear to be “false positives” to each other in the sense that the model probability in
simulations created under one of the two models is roughly evenly distributed between the
correct model and its counterpart.

These observations motivate a slightly different presentation of the results. In Figure
9, the simulations and fits are the same as those used for Ge and Xe in Figure 8, with one
difference in the presentation: the y–axis now represents the sum of probabilities for the several
models that share the same energy dependence of the scattering rate. In other words, we sum
the probability for SI + SD + Anapole, and also for light–mediator models (including dipoles
and the Millicharge), and finally for the heavy–mediator dipoles. This Figure shows that Xe
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Figure 15. Top and middle row: Examples of marginalized posteriors for the DM mass, for a subset of
our baseline simulations. The fitting model in all four panels is the standard SI interaction, while the
model used to create simulations is magnetic–dipole scattering with a light mediator (upper row), and
electric–dipole scattering with a heavy mediator (middle row). The LHS and RHS panels correspond
to simulations for a xenon and germanium targets, respectively. These posteriors demonstrate mass–
estimation biases when a wrong model is fit to data; the input DM mass is 50 GeV, shown with a
vertical red line. Bottom row: an example of simulated recoil–energy spectrum, shown together with
the true underlying model (blue solid), and the fitting model (red dashed) for maximum–likelihood
values of the fitting parameters. These simulations correspond to the posteriors shown in the middle
row of this Figure. By eye, SI does not look like a bad fit to these data, for either xenon (LHS) or
germanium (RHS).

has been pointed out in the literature that direct detection data are not very likely to be
able to reconstruct this parameter [55], or even that fine-tuning such a parameter can upset
expectations of relative experimental sensitivities [56].12 We thus investigate the impact of
this uncertainty on the DM mass measurements and on model selection in this Section.

First, we investigate how the uncertainty on fn/fp impacts the extraction of the DM
particle mass. In Figure 16, we show the marginalized 2D posterior for DM mass versus
fn/fp for our baseline simulations of several scattering models, where data from Xe, Ge, and
F experiments is jointly analyzed. When performing fits to recover these posteriors, we let
fn/fp vary as a free parameter between -10 and 10 and fit the right scattering model (with
the right operator and scattering rate, described in Table 1, but with a free fn/fp) to the

12Even in the face of tree–level fine–tuning for special regions of parameter space, large nucleus–dependent
next–to–leading–order corrections may spoil the cancellations [57].
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Figure 14. Examples of marginalized posteriors for the DM mass are shown to demonstrate the
quality of projected mass estimation. A representative subset of baseline simulations described in 6.2.1
is used, and the right scattering model is fit to simulated data. Each posterior line is reconstructed
from a joint analysis of Ge, Xe, and F data. The input DM mass is (top to bottom): 15, 50, and 500
GeV, shown with a vertical red line. As usual, the accuracy of mass reconstruction is degraded for
higher masses; however, it does not have a strong dependence on the underlying model.

measurements with different targets might be a hallmark of a wrong scattering hypothesis
(compare LHS and RHS panels of the top row in this Figure: biases are different on different
targets), it is important to keep in mind that such a cross check may not be available if the
signal is only strong enough to be seen with a large exposure (the case of Xe here). On
the other hand, when a simulation with a turnover feature (here: from a heavy–mediator
dipole model) is fit by the standard SI interaction, the posteriors are artificially wide, with a
smaller bias (see the middle row of plots in Figure 15). By eye, however, it is not possible to
determine that the SI model was a bad fit to data; see the bottom row of Figure 15, while
model selection with Ge and Xe is able to pick out only the right momentum–dependence
class (see bottom right panel of Figure 9).

In conclusion, model selection is an important step that should ideally precede parameter
estimation in future data analyses, as fitting of the wrong scattering model can severely impact
both the accuracy and precision of key DM parameter measurements.

6.4 fn/fp uncertainty

As discussed in §3 and emphasized in [38], there are large modeling uncertainties in the
choice of the ratio of neutron to proton coupling for some of the models considered here. It
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Target dependence of the annual modulation in direct dark matter searches

Eugenio Del Nobile, Graciela B. Gelmini, and Samuel J. Witte
Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (USA)

Due to Earth’s revolution around the Sun, the expected scattering rate in direct dark matter
searches is annually modulated. This modulation is expected to differ between experiments when
given as a function of recoil energy ER, e.g. due to the gravitational focusing effect of the Sun. A
better variable to compare results among experiments employing different targets is the minimum
speed vmin a dark matter particle must have to impart a recoil energy ER to a target nucleus. It is
widely believed that the modulation expressed as a function of vmin is common to all experiments,
irrespective of the dark matter distribution. We point out that the annual modulation as a function of
vmin, and in particular the times at which the rate is maximum and minimum, could be very different
depending on the detector material. This would be an indication of a scattering cross section with
non-factorizable velocity and target material dependence. Observing an annual modulation with at
least two different target elements would be necessary to identify this type of cross section.

INTRODUCTION

Dark matter (DM) is the most abundant form of mat-
ter in the Universe and its nature still remains a mys-
tery. More than 80% of the mass of our galaxy resides
in a spheroidal DM halo, which extends well beyond the
visible disk. Efforts to detect new elementary particles
which could constitute the DM are multi-pronged.

Direct DM detection experiments attempt to detect
the energy deposited by DM particles in the dark halo
of our galaxy when they collide with nuclei inside a de-
tector. An unmistakable signature of the expected DM
signal is an annual modulation of the rate caused by the
rotation of Earth around the Sun [1]. For DM velocity
distributions that are smooth and isotropic in the galactic
frame at Earth’s location, the expected differential rate
for DM scattering onto a target nuclide T in all direct
DM detection experiments could be well represented by
the first two terms of a harmonic expansion (see e.g. [2]),

dRT

dER
(ER, t) = S0(ER) + Sm(ER) cos

(
2π

1 year
(t− t0)

)
.

(1)
Here ER is the nuclear recoil energy and t0 is the time
at which the speed of Earth with respect to the galaxy
is maximum, close to June 1st. At high ER, with Sm

positive t0 equals the time tmax at which the rate is max-
imum, while tmin, the time at which the rate is minimum,
is six months apart from tmax (except for a shift of about
a day due to the eccentricity of Earth’s orbit). At low
ER, Sm could become negative, implying t0 equals tmin

instead of tmax (see e.g. Fig. 8.2 of [3]). Anisotropies in
the local DM velocity distribution modify this picture,
in particular by making tmax and tmin energy dependent.
The gravitational focusing (GF) of DM particles due to
the Sun inherently makes the local DM halo anisotropic
[4]. Ref. [5] has shown GF to have a significant effect on
the phase of the modulation at low enough recoil energy.

Since ER depends on the target nuclide mass, it is not
a good variable to compare the annual modulation of the

rate among experiments employing different targets. A
better variable is vmin, the minimum speed a DM particle
must have in Earth’s rest frame to impart a recoil energy
ER onto a target nucleus. It is typically assumed that
tmax and tmin as functions of vmin do not depend on the
target, and consequently they can be used to test the
agreement between putative DM signals across multiple
detectors.
Here we point out that, in general, the annual modula-

tion of the rate as a function of vmin can vary significantly
for different target materials. Specifically, we show that if
the velocity and target dependence cannot be factored in
the differential scattering cross section, observables asso-
ciated with the modulation, such as tmax and tmin, may
be highly target dependent. Our observation does not
rely on any assumption regarding the DM distribution.
As an illustration, we show that for DM particles with
a magnetic dipole moment tmax and tmin depend on the
target material.

DM SIGNAL AND ITS MODULATION

For the spin-independent and spin-dependent contact
interactions usually considered, the differential scattering
cross section is

dσT

dER
(ER, v) =

mTσTFT (ER)2

2µ2
T

1

v2
, (2)

with mT the target nuclide mass, µT the DM-nucleus
reduced mass, σT the total cross section for a point-like
nucleus, and FT (ER) the appropriate nuclear form factor.
The differential scattering rate per unit target mass,

dRT

dER
(ER, t) =

CT

mT

ρ

m

∫

v!vmin(ER)
v f(v, t)

dσT

dER
d3v ,

(3)
with Eq. (2) becomes

dRT

dER
(ER, t) = CT

ρ

m

σTFT (ER)2

2µ2
T

η(vmin(ER), t) , (4)
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As the Earth moves around the Sun, the nuclear recoil rate due to dark matter 
interactions acquires a time dependence (annual modulation)
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The scattering rate at dark-matter direct-detection experiments should modulate annually due to
the Earth’s orbit around the Sun. The rate is typically thought to be extremized around June 1,
when the relative velocity of the Earth with respect to the dark-matter wind is maximal. We point
out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are
focused by the Sun’s gravitational potential, affecting their phase-space density in the lab frame.
Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which
is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)
GeV dark matter may also be significant, depending on the threshold energy of the experiment.

An annually modulating signal at a direct-detection
experiment is considered to be one of the tell-tale sig-
natures of dark matter [1] (for a recent review, see [2]).
Due to the motion of the Sun around the Galactic Center,
there is a “wind” of dark matter (DM) particles in the
Solar reference frame. This wind would result in a con-
stant flux in the lab frame, but the Earth’s orbit around
the Sun leads, instead, to an annually modulating signal.

The time dependence in the detection rate can be seen
explicitly as follows. For typical spin-independent and
-dependent interactions, the differential rate for a DM
particle scattering off a target nucleus is proportional to

dR

dEnr
∝ ρ

∫ ∞

vmin

f (v, t)

v
d3v , (1)

where ρ is the local DM density, vmin is the minimum
DM speed to induce a nuclear recoil with energy Enr,
and f(v, t) is the DM velocity distribution in the lab
frame [3, 4]. The time dependence in the rate is due to
the changing distribution of DM velocities over a year.

As explored in [5, 6], a harmonic analysis of the mod-
ulation signal can lead to valuable information about the
particle and astrophysics properties of the dark sector.
While [6] focused specifically on the contributions to the
higher-order modes from the eccentricity of the Earth’s
orbit, the Galactic escape velocity, and velocity substruc-
ture, other physical effects can also come into play. Here,
we discuss focusing from the Sun’s gravitational potential
and its effects on the phase of the modulation.

The DM velocity distribution is warped by the gravita-
tional field of the Sun, a phenomenon referred to as grav-
itational focusing (GF). Specifically, the Sun’s potential
deflects the incoming, unbound DM particles, increasing
their density and speed as they pass by the Sun. The
effect of GF on the interstellar medium around a star
was considered by [7, 8], and the relevance of GF for DM
was explored in [9–12]. Ref. [9] concluded that the effect
on the total rate is negligible. In this Letter, however,
we show that GF actually has a profound effect on the

phase of the modulation and is highly relevant for current
direct-detection experiments.

GF affects the time dependence of the differential
rate as follows. The Earth is traveling fastest into the
DM wind around June 1. This means that during the
fall (∼September 1), the Earth is in front of the Sun,
fully exposed to the DM wind, and during the spring
(∼March 1), it is behind the Sun. As Fig. 1 illustrates,
GF is stronger during the spring than the fall because
the DM particles have spent more time near the Sun; the
changes in their density and velocity distribution are ac-
cordingly more significant. Thus, when GF is accounted
for, the time dependence in (1) arises not only from the
velocity distribution but also from the density. The ef-
fect on the rate is more pronounced for slower-moving
particles that linger in the Sun’s potential.

To more precisely calculate the effect of GF, we use
the fact that the phase-space density of the DM along
trajectories is constant in time due to Liouville’s theo-

Sun

Earth

DM Wind

June 1 

Sept 1 March 1 

Dec 1 

Wednesday, July 31, 13

FIG. 1: A schematic illustration of the effect of gravitational
focusing on unbound DM particles. The phase-space den-
sity of DM at Earth is greater around March 1 than around
September 1 due to this effect.
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This can in turn create interesting effects for 
some velocity dependent interactions.

M.S. Alenazi and P. Gondolo, PRD 74 (2006) astro-ph/0608390
S.K. Lee, M. Lisanti,  and B.R. Safdi, JCAP 1311 (2013) arXiv:1307.5323
E. Del Nobile, G.B. Gelmini, and S.J. Witte, JCAP 1508 (2015) arXiv:1505.07538

Other mechanisms such as gravitational focusing can have a significant 
impact on the phase of the modulation, which can vary depending on vmin
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FIG. 1. Time of maximum τmax (top) and minimum τmin

(bottom) of η and η̃ in the SHM, as functions of vmin, including
(solid lines) and neglecting (dashed lines) GF. The bottom
panel shows τmin − τ̂min, with τ̂min the time six month apart
from τmax. Neglecting GF, τmin is almost indistinguishable
from τ̂min, and thus is not shown.

FIG. 2. Rate fractions f ≡ r/(r + r̃) and f̃ ≡ r̃/(r + r̃) for
fluorine, iodine, xenon, and germanium. Solid (dashed) lines
for m = 100 GeV (1 TeV).

tmax and minimum tmin of the rate for magnetic DM,
shown in Fig. 3 for scattering off fluorine, sodium, iodine,
xenon and germanium. Solid (dashed) lines correspond
to m = 100 GeV (1 TeV). Also shown in Fig. 3 are the
ER thresholds for LUX [47] (3.1 keV, employing Xe),
SuperCDMS [48] (1.6 keV, Ge), DAMA [49] (6.7 keV
for Na and 22.2 keV for I), and PICO [50] (3.2 keV,
F), translated into vmin for mT averaged over isotopic

composition and elastic scattering for m = 100 GeV. For
larger m, these thresholds move to lower vmin values.
Fig. 3 shows that tmax and tmin become essentially tar-

get independent above vmin ! 300 km/s. This is due
to the fact that the differences between η and η̃, which
are central to the target dependence of the rate, rapidly
vanish at vmin ! 300 km/s (see Fig. 1). The target-
independent nature of this region is not specific to mag-
netic DM and occurs whenever the SHM is assumed, at
least with 1/v2 and vn-dependent terms in the differen-
tial cross section and n " 0. This is because all velocity
integrals arising from terms going as vn with n " 0 in
the differential cross section have very similar phases at
all vmin values, i.e. they are all comparable to η̃ in Fig. 1.
The target-dependent effects addressed in this paper thus
rely on having both a 1/v2 term and a vn term, n " 0,
in the differential cross section.
At sufficiently small values of vmin the rate is always

dominated by r̃ (i.e. f̃ ! 1 and f ! 0), as shown in
Fig. 2. This is due to the 1/v2min factor appearing in
Eq. (6). Therefore in the small vmin limit one can disre-
gard the contribution of r and correctly assume tmax and
tmin coincide with the τmax and τmin of η̃ shown in Fig. 1.
This explains why tmax in Fig. 3 occurs in May at small
vmin values regardless of the target.
Assuming at least one target isotope has a non-zero

nuclear magnetic moment, the dipole-dipole part of the
interaction becomes dominant, and thus r > r̃, at large
values of vmin. This is due to the fact that the spin-
independent charge form factor decreases faster than the
magnetic form factor. Fig. 2 confirms that for the ele-
ments and DM masses considered, there is a vmin value
above which r dominates and below which r̃ dominates.
In Fig. 3 this corresponds to the time variation of the
rate being determined by η or η̃, respectively. For ger-
manium, this switch occurs at large vmin values because
of its small average magnetic moment. How and where
this switch in vmin occurs determine the main features of
tmax and tmin in Fig. 3.
For each element, the features in Fig. 2 move to smaller

vmin values as the DM particle mass increases. This is in
part because the vmin value corresponding to a particu-
lar ER decreases, but also because the 1/µ2

T and µ2
T /m

2

factors in Eq. (6) decrease. Notice that, as m increases,
the vmin value above which r becomes the dominant term
in the rate may fall below 300 km/s, leading to the ap-
pearance of a feature in Fig. 3. This happens with xenon
when m goes from 100 GeV to 1 TeV.

We emphasize that the interplay between η and η̃ does
not only affect observables associated with the modula-
tion of the rate, such as tmax and tmin, but also the extent
to which the standard approximation of the modulation
given in Eq. (1) holds. Fig. 4 shows that the difference be-
tween tmin and t̂min ≡ tmax− 6 months is target and DM
particle mass dependent, and can be large, e.g. tmin− t̂min

for m = 100 GeV could be as large as ±45 days. This

3

FIG. 1. Time of maximum τmax (top) and minimum τmin

(bottom) of η and η̃ in the SHM, as functions of vmin, including
(solid lines) and neglecting (dashed lines) GF. The bottom
panel shows τmin − τ̂min, with τ̂min the time six month apart
from τmax. Neglecting GF, τmin is almost indistinguishable
from τ̂min, and thus is not shown.
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FIG. 2. Rate fractions f ≡ r/(r + r̃) and f̃ ≡ r̃/(r + r̃) for
fluorine, iodine, xenon, and germanium. Solid (dashed) lines
for m = 100 GeV (1 TeV).

tmax and minimum tmin of the rate for magnetic DM,
shown in Fig. 3 for scattering off fluorine, sodium, iodine,
xenon and germanium. Solid (dashed) lines correspond
to m = 100 GeV (1 TeV). Also shown in Fig. 3 are the
ER thresholds for LUX [47] (3.1 keV, employing Xe),
SuperCDMS [48] (1.6 keV, Ge), DAMA [49] (6.7 keV
for Na and 22.2 keV for I), and PICO [50] (3.2 keV,
F), translated into vmin for mT averaged over isotopic

composition and elastic scattering for m = 100 GeV. For
larger m, these thresholds move to lower vmin values.
Fig. 3 shows that tmax and tmin become essentially tar-

get independent above vmin ! 300 km/s. This is due
to the fact that the differences between η and η̃, which
are central to the target dependence of the rate, rapidly
vanish at vmin ! 300 km/s (see Fig. 1). The target-
independent nature of this region is not specific to mag-
netic DM and occurs whenever the SHM is assumed, at
least with 1/v2 and vn-dependent terms in the differen-
tial cross section and n " 0. This is because all velocity
integrals arising from terms going as vn with n " 0 in
the differential cross section have very similar phases at
all vmin values, i.e. they are all comparable to η̃ in Fig. 1.
The target-dependent effects addressed in this paper thus
rely on having both a 1/v2 term and a vn term, n " 0,
in the differential cross section.
At sufficiently small values of vmin the rate is always

dominated by r̃ (i.e. f̃ ! 1 and f ! 0), as shown in
Fig. 2. This is due to the 1/v2min factor appearing in
Eq. (6). Therefore in the small vmin limit one can disre-
gard the contribution of r and correctly assume tmax and
tmin coincide with the τmax and τmin of η̃ shown in Fig. 1.
This explains why tmax in Fig. 3 occurs in May at small
vmin values regardless of the target.
Assuming at least one target isotope has a non-zero

nuclear magnetic moment, the dipole-dipole part of the
interaction becomes dominant, and thus r > r̃, at large
values of vmin. This is due to the fact that the spin-
independent charge form factor decreases faster than the
magnetic form factor. Fig. 2 confirms that for the ele-
ments and DM masses considered, there is a vmin value
above which r dominates and below which r̃ dominates.
In Fig. 3 this corresponds to the time variation of the
rate being determined by η or η̃, respectively. For ger-
manium, this switch occurs at large vmin values because
of its small average magnetic moment. How and where
this switch in vmin occurs determine the main features of
tmax and tmin in Fig. 3.
For each element, the features in Fig. 2 move to smaller

vmin values as the DM particle mass increases. This is in
part because the vmin value corresponding to a particu-
lar ER decreases, but also because the 1/µ2
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factors in Eq. (6) decrease. Notice that, as m increases,
the vmin value above which r becomes the dominant term
in the rate may fall below 300 km/s, leading to the ap-
pearance of a feature in Fig. 3. This happens with xenon
when m goes from 100 GeV to 1 TeV.

We emphasize that the interplay between η and η̃ does
not only affect observables associated with the modula-
tion of the rate, such as tmax and tmin, but also the extent
to which the standard approximation of the modulation
given in Eq. (1) holds. Fig. 4 shows that the difference be-
tween tmin and t̂min ≡ tmax− 6 months is target and DM
particle mass dependent, and can be large, e.g. tmin− t̂min
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with ρ and m the local DM particle density and mass,
respectively, and CT the nuclide mass fraction in the de-
tector. Here we defined the velocity integral

η(vmin, t) ≡
∫

v!vmin

f(v, t)

v
d3v , (5)

where f(v, t) is the DM velocity distribution in Earth’s
frame. The time dependence arises due to Earth’s rev-
olution around the Sun. The modulation of the rate
in Eq. (4) is determined by the time dependence of
η(vmin, t), which is common to all experiments. There-
fore, for the interaction in Eq. (2), tmax and tmin for
fixed vmin do not depend on the target material. This
remains true for other differential cross sections where
the velocity and target dependences can be factored. In
general, however, the differential cross section can con-
sist of multiple terms with different velocity dependences
and target-dependent coefficients, e.g. with DM parti-

cles interacting through a magnetic dipole [6–31] or an
anapole moment [6, 28–35]. It also happens with some
of the interactions described by the effective operators
studied e.g. in [36–41] (see [26, 42–45] for explicit for-
mulas of scattering amplitudes). In this case the annual
modulation of the rate can be strongly target element
dependent.

AN EXAMPLE: MAGNETIC DIPOLE DM

Here we study in detail the case of a Dirac fermion
DM candidate χ that interacts with nuclei through a
magnetic dipole moment λχ, with interaction Lagrangian
L = (λχ/2) χ̄σµνχFµν . The differential cross section for
elastic scattering off a target nucleus T with ZT protons
and spin ST is

dσT

dER
(vmin, v) = αλ2

χ

{
Z2
T
mT

2µ2
T

[
1

v2min

− 1

v2

(
1− µ2

T

m2

)]
F 2
SI,T (ER(vmin)) +

λ̂2
T

v2
mT

m2
p

(
ST + 1

3ST

)
F 2
M,T (ER(vmin))

}
, (6)

with α = e2/4π the electromagnetic constant, mp the

proton mass, λ̂T the nuclear magnetic moment in units
of the nuclear magneton e/(2mp) = 0.16 GeV−1, and
ER(vmin) = 2µ2

T v
2
min/mT . The first term is due to DM

dipole-nuclear charge interaction, and the correspond-
ing charge form factor coincides with the usual spin-
independent nuclear form factor FSI,T (ER), while the
second term is due to the dipole-dipole interaction and
has a nuclear magnetic form factor FM,T (ER) (both form
factors are normalized to 1 at zero momentum transfer).
We compute the cross section with the formalism and the
form factors provided in [42, 43].

The differential cross section in Eq. (6) contains two
terms with different velocity dependence: one with the
usual 1/v2 factor and another independent of v. The
differential rate (see Eq. (3)) is thus also a sum of two
terms, one containing η(vmin, t) in Eq. (5) and the other
containing

η̃(vmin, t) ≡
∫

v!vmin

v f(v, t) d3v . (7)

For purposes of illustration we assume the Standard Halo
Model (SHM), in which the DM velocity distribution is
an isotropic Maxwellian on average at rest with respect
to the galaxy (see e.g. [46] for details). Under this as-
sumption the two velocity integrals η and η̃ have a very
different time dependence. This can be seen in Fig. 1
where their time of maximum τmax and minimum τmin

are shown. Instead of τmin, we plot τmin − τ̂min where

τ̂min is the time six months apart from τmax. Fig. 1
shows the effect of including (solid lines) and neglecting
(dashed lines) GF. Neglecting GF, τmin is almost indis-
tinguishable from τ̂min, and thus is not shown. Unless
otherwise stated, we include GF and the eccentricity of
Earth’s orbit in our calculations. Notice that τmax (τmin)
as a function of vmin coincides with the maximum (mini-
mum) of the differential rate, tmax (tmin), only when the
velocity and target dependence can be factored in the
differential scattering cross section.

The modulation of the differential rate depends on the
interplay of the terms containing η and η̃. Since the
relative coefficients are in general target dependent, as
well as DM particle mass dependent, the modulation also
depends on the target and onm. Let us denote with r and
r̃ the terms of the expected differential rate containing η
and η̃, so that dRT /dER = r + r̃. Fig. 2 shows the rate
fractions f ≡ r/(r+ r̃) and f̃ ≡ r̃/(r+ r̃) as functions of
vmin for four different target elements (fluorine, iodine,
xenon, and germanium) employed by current DM direct
detection experiments. For target elements with more
than one isotope (Xe, Ge), we sum Eq. (3) over isotopic
composition. Solid (dashed) lines in Fig. 2 correspond
to a 100 GeV (1 TeV) DM particle. Notice that because
of the negative sign in one of the dipole-charge terms
in Eq. (6), r and f are allowed to take negative values.
When this happens, f̃ > 1 since f + f̃ = 1.

Figs. 1 and 2 can be used in combination to understand
the target-dependent behavior of the time of maximum
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of the nuclear magneton e/(2mp) = 0.16 GeV−1, and
ER(vmin) = 2µ2

T v
2
min/mT . The first term is due to DM

dipole-nuclear charge interaction, and the correspond-
ing charge form factor coincides with the usual spin-
independent nuclear form factor FSI,T (ER), while the
second term is due to the dipole-dipole interaction and
has a nuclear magnetic form factor FM,T (ER) (both form
factors are normalized to 1 at zero momentum transfer).
We compute the cross section with the formalism and the
form factors provided in [42, 43].

The differential cross section in Eq. (6) contains two
terms with different velocity dependence: one with the
usual 1/v2 factor and another independent of v. The
differential rate (see Eq. (3)) is thus also a sum of two
terms, one containing η(vmin, t) in Eq. (5) and the other
containing

η̃(vmin, t) ≡
∫

v!vmin

v f(v, t) d3v . (7)

For purposes of illustration we assume the Standard Halo
Model (SHM), in which the DM velocity distribution is
an isotropic Maxwellian on average at rest with respect
to the galaxy (see e.g. [46] for details). Under this as-
sumption the two velocity integrals η and η̃ have a very
different time dependence. This can be seen in Fig. 1
where their time of maximum τmax and minimum τmin

are shown. Instead of τmin, we plot τmin − τ̂min where

τ̂min is the time six months apart from τmax. Fig. 1
shows the effect of including (solid lines) and neglecting
(dashed lines) GF. Neglecting GF, τmin is almost indis-
tinguishable from τ̂min, and thus is not shown. Unless
otherwise stated, we include GF and the eccentricity of
Earth’s orbit in our calculations. Notice that τmax (τmin)
as a function of vmin coincides with the maximum (mini-
mum) of the differential rate, tmax (tmin), only when the
velocity and target dependence can be factored in the
differential scattering cross section.

The modulation of the differential rate depends on the
interplay of the terms containing η and η̃. Since the
relative coefficients are in general target dependent, as
well as DM particle mass dependent, the modulation also
depends on the target and onm. Let us denote with r and
r̃ the terms of the expected differential rate containing η
and η̃, so that dRT /dER = r + r̃. Fig. 2 shows the rate
fractions f ≡ r/(r+ r̃) and f̃ ≡ r̃/(r+ r̃) as functions of
vmin for four different target elements (fluorine, iodine,
xenon, and germanium) employed by current DM direct
detection experiments. For target elements with more
than one isotope (Xe, Ge), we sum Eq. (3) over isotopic
composition. Solid (dashed) lines in Fig. 2 correspond
to a 100 GeV (1 TeV) DM particle. Notice that because
of the negative sign in one of the dipole-charge terms
in Eq. (6), r and f are allowed to take negative values.
When this happens, f̃ > 1 since f + f̃ = 1.

Figs. 1 and 2 can be used in combination to understand
the target-dependent behavior of the time of maximum

2

with ρ and m the local DM particle density and mass,
respectively, and CT the nuclide mass fraction in the de-
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independent nuclear form factor FSI,T (ER), while the
second term is due to the dipole-dipole interaction and
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relative coefficients are in general target dependent, as
well as DM particle mass dependent, the modulation also
depends on the target and onm. Let us denote with r and
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and η̃, so that dRT /dER = r + r̃. Fig. 2 shows the rate
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FIG. 1. Time of maximum τmax (top) and minimum τmin

(bottom) of η and η̃ in the SHM, as functions of vmin, including
(solid lines) and neglecting (dashed lines) GF. The bottom
panel shows τmin − τ̂min, with τ̂min the time six month apart
from τmax. Neglecting GF, τmin is almost indistinguishable
from τ̂min, and thus is not shown.

FIG. 2. Rate fractions f ≡ r/(r + r̃) and f̃ ≡ r̃/(r + r̃) for
fluorine, iodine, xenon, and germanium. Solid (dashed) lines
for m = 100 GeV (1 TeV).

tmax and minimum tmin of the rate for magnetic DM,
shown in Fig. 3 for scattering off fluorine, sodium, iodine,
xenon and germanium. Solid (dashed) lines correspond
to m = 100 GeV (1 TeV). Also shown in Fig. 3 are the
ER thresholds for LUX [47] (3.1 keV, employing Xe),
SuperCDMS [48] (1.6 keV, Ge), DAMA [49] (6.7 keV
for Na and 22.2 keV for I), and PICO [50] (3.2 keV,
F), translated into vmin for mT averaged over isotopic

composition and elastic scattering for m = 100 GeV. For
larger m, these thresholds move to lower vmin values.
Fig. 3 shows that tmax and tmin become essentially tar-

get independent above vmin ! 300 km/s. This is due
to the fact that the differences between η and η̃, which
are central to the target dependence of the rate, rapidly
vanish at vmin & 300 km/s (see Fig. 1). The target-
independent nature of this region is not specific to mag-
netic DM and occurs whenever the SHM is assumed, at
least with 1/v2 and vn-dependent terms in the differen-
tial cross section and n > 0. This is because all velocity
integrals arising from terms going as vn with n > 0 in
the differential cross section have very similar phases at
all vmin values, i.e. they are all comparable to η̃ in Fig. 1.
The target-dependent effects addressed in this paper thus
rely on having both a 1/v2 term and a vn term, n > 0,
in the differential cross section.
At sufficiently small values of vmin the rate is always

dominated by r̃ (i.e. f̃ ! 1 and f ! 0), as shown in
Fig. 2. This is due to the 1/v2min factor appearing in
Eq. (6). Therefore in the small vmin limit one can disre-
gard the contribution of r and correctly assume tmax and
tmin coincide with the τmax and τmin of η̃ shown in Fig. 1.
This explains why tmax in Fig. 3 occurs in May at small
vmin values regardless of the target.
Assuming at least one target isotope has a non-zero

nuclear magnetic moment, the dipole-dipole part of the
interaction becomes dominant, and thus r > r̃, at large
values of vmin. This is due to the fact that the spin-
independent charge form factor decreases faster than the
magnetic form factor. Fig. 2 confirms that for the ele-
ments and DM masses considered, there is a vmin value
above which r dominates and below which r̃ dominates.
In Fig. 3 this corresponds to the time variation of the
rate being determined by η or η̃, respectively. For ger-
manium, this switch occurs at large vmin values because
of its small average magnetic moment. How and where
this switch in vmin occurs determine the main features of
tmax and tmin in Fig. 3.
For each element, the features in Fig. 2 move to smaller

vmin values as the DM particle mass increases. This is in
part because the vmin value corresponding to a particu-
lar ER decreases, but also because the 1/µ2

T and µ2
T /m

2

factors in Eq. (6) decrease. Notice that, as m increases,
the vmin value above which r becomes the dominant term
in the rate may fall below 300 km/s, leading to the ap-
pearance of a feature in Fig. 3. This happens with xenon
when m goes from 100 GeV to 1 TeV.

We emphasize that the interplay between η and η̃ does
not only affect observables associated with the modula-
tion of the rate, such as tmax and tmin, but also the extent
to which the standard approximation of the modulation
given in Eq. (1) holds. Fig. 4 shows that the difference be-
tween tmin and t̂min ≡ tmax− 6 months is target and DM
particle mass dependent, and can be large, e.g. tmin− t̂min

for m = 100 GeV could be as large as ±45 days. This
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integrals arising from terms going as vn with n > 0 in
the differential cross section have very similar phases at
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rely on having both a 1/v2 term and a vn term, n > 0,
in the differential cross section.
At sufficiently small values of vmin the rate is always

dominated by r̃ (i.e. f̃ ! 1 and f ! 0), as shown in
Fig. 2. This is due to the 1/v2min factor appearing in
Eq. (6). Therefore in the small vmin limit one can disre-
gard the contribution of r and correctly assume tmax and
tmin coincide with the τmax and τmin of η̃ shown in Fig. 1.
This explains why tmax in Fig. 3 occurs in May at small
vmin values regardless of the target.
Assuming at least one target isotope has a non-zero

nuclear magnetic moment, the dipole-dipole part of the
interaction becomes dominant, and thus r > r̃, at large
values of vmin. This is due to the fact that the spin-
independent charge form factor decreases faster than the
magnetic form factor. Fig. 2 confirms that for the ele-
ments and DM masses considered, there is a vmin value
above which r dominates and below which r̃ dominates.
In Fig. 3 this corresponds to the time variation of the
rate being determined by η or η̃, respectively. For ger-
manium, this switch occurs at large vmin values because
of its small average magnetic moment. How and where
this switch in vmin occurs determine the main features of
tmax and tmin in Fig. 3.
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vmin values as the DM particle mass increases. This is in
part because the vmin value corresponding to a particu-
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factors in Eq. (6) decrease. Notice that, as m increases,
the vmin value above which r becomes the dominant term
in the rate may fall below 300 km/s, leading to the ap-
pearance of a feature in Fig. 3. This happens with xenon
when m goes from 100 GeV to 1 TeV.

We emphasize that the interplay between η and η̃ does
not only affect observables associated with the modula-
tion of the rate, such as tmax and tmin, but also the extent
to which the standard approximation of the modulation
given in Eq. (1) holds. Fig. 4 shows that the difference be-
tween tmin and t̂min ≡ tmax− 6 months is target and DM
particle mass dependent, and can be large, e.g. tmin− t̂min
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FIG. 3. Time of maximum tmax (left) and minimum tmin (right) of the scattering rate as functions of vmin for a 100 GeV (solid
lines) and 1 TeV (dashed lines) magnetic dipole DM particle scattering elastically off different targets, assuming the SHM. For
germanium, the two lines would overlap (only dashed is shown). Also shown are the low energy thresholds for several current
direct detection experiments, for m = 100 GeV (for larger m the thresholds shift to lower vmin values).

FIG. 4. tmin − t̂min, with t̂min the time six month apart from
tmax. See Fig. 3 for details.

implies that higher order terms in the Fourier expansion
of the rate beyond Eq. (1) cannot be neglected.

To illustrate how important the target element depen-
dence of the rate modulation can be, consider the sig-
nal due to a 100 GeV DM particle being detected with
both xenon and fluorine near the present LUX and PICO
thresholds. Were the modulation due solely to η or η̃, the
two experiments should observe nearly the same value of
tmax, see Fig. 1. Instead, due to the target-dependent
interplay of η and η̃, the tmax observed with the two tar-
get elements could differ by more than four months and
the modulation in xenon would be better described by
Eq. (1) than the modulation in fluorine.

As we already mentioned, in order to observe the
target-dependent effects described so far, it is essential
that the experimental threshold in vmin, which depends
on the threshold in ER, the DM particle mass and the
scattering kinematics, is below 300 km/s. Fig. 3 shows
that m = 100 GeV is already large enough with present
thresholds to observe this effect. For lower m the ef-
fect will only be present with the light targets, for elastic
scattering.
Should DM scatter inelastically off nuclei, the scat-

tering kinematics would be different from that of elas-
tic scattering. Inelastic scattering [51, 52] can happen
if there are at least two almost degenerate DM par-
ticles with masses m and m + δ (δ ! m). If the
particle with mass m scatters into the m + δ particle,
vmin = |(mTER/µT ) + δ| /

√
2mTER. In particular, if

δ < 0 (exothermic scattering [52]), the vmin value cor-
responding to given ER and m can be much smaller than
in the case of elastic scattering.
All the effects we have described here rely on having

a DM-nucleus differential cross section with a particular
v dependence. The issue remains of how such a cross
section could be identified experimentally. We believe
that this would require observing an annual modulation
in at least two experiments with different target materi-
als. If the velocity and target dependence in the differ-
ential cross section factorize, the observables associated
with the modulation as functions of vmin would be in-
dependent of the target element, for any DM distribu-
tion. However, experiments do not measure their signal
in vmin, but in energy, and the values of m and δ enter-
ing the ER–vmin relation are not known a priori. This
problem could be overcome by comparing observables of
the modulation, like tmax and tmin, of at least two experi-

Target dependence for the time of maximum and minimum scattering rate 
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implies that higher order terms in the Fourier expansion
of the rate beyond Eq. (1) cannot be neglected.

To illustrate how important the target element depen-
dence of the rate modulation can be, consider the sig-
nal due to a 100 GeV DM particle being detected with
both xenon and fluorine near the present LUX and PICO
thresholds. Were the modulation due solely to η or η̃, the
two experiments should observe nearly the same value of
tmax, see Fig. 1. Instead, due to the target-dependent
interplay of η and η̃, the tmax observed with the two tar-
get elements could differ by more than four months and
the modulation in xenon would be better described by
Eq. (1) than the modulation in fluorine.

As we already mentioned, in order to observe the
target-dependent effects described so far, it is essential
that the experimental threshold in vmin, which depends
on the threshold in ER, the DM particle mass and the
scattering kinematics, is below 300 km/s. Fig. 3 shows
that m = 100 GeV is already large enough with present
thresholds to observe this effect. For lower m the ef-
fect will only be present with the light targets, for elastic
scattering.
Should DM scatter inelastically off nuclei, the scat-

tering kinematics would be different from that of elas-
tic scattering. Inelastic scattering [51, 52] can happen
if there are at least two almost degenerate DM par-
ticles with masses m and m + δ (δ ! m). If the
particle with mass m scatters into the m + δ particle,
vmin = |(mTER/µT ) + δ| /

√
2mTER. In particular, if

δ < 0 (exothermic scattering [52]), the vmin value cor-
responding to given ER and m can be much smaller than
in the case of elastic scattering.
All the effects we have described here rely on having

a DM-nucleus differential cross section with a particular
v dependence. The issue remains of how such a cross
section could be identified experimentally. We believe
that this would require observing an annual modulation
in at least two experiments with different target materi-
als. If the velocity and target dependence in the differ-
ential cross section factorize, the observables associated
with the modulation as functions of vmin would be in-
dependent of the target element, for any DM distribu-
tion. However, experiments do not measure their signal
in vmin, but in energy, and the values of m and δ enter-
ing the ER–vmin relation are not known a priori. This
problem could be overcome by comparing observables of
the modulation, like tmax and tmin, of at least two experi-

Difference between the time of minimum scattering rate 
and six months from the maximum time as a function of 
target element.

Factorizability of the velocity dependence of the cross-
section could possibly be determined from multiple 
experiments
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-
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Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,
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A. Solar neutrinos

Direct dark matter detection experiments that are sen-
sitive to neutrino-nucleus coherent scattering are prima-
rily sensitive to two sources of solar neutrinos, so cal-
led 8B and hep neutrinos. The 8B neutrinos arise from
the decay 8B → 7Be∗ + e+ + νe, which occurs in ap-
proximately 0.02% of the terminations of the proton-
proton (pp) chain. The total flux measured with the
neutral current (NC) interaction of 8B solar neutrinos
is φNC = 5.09 ± 0.64 × 106 cm−2 s−1 (about 16% un-
certainty) [10]. Our calculations use the theoretical value
φNC = 5.69 ± 0.61 × 106 cm−2 s−1 of the solar neu-
trino fluxes from Ref. [11]. This is near the flux predic-
tion of the high metallicity standard solar model (SSM),
and thus provides a conservative estimate of the 8B neu-
trino background in dark matter detectors. Note that
the low metallicity solution predicts a lower value of the
8B flux normalization, which is statistically inconsistent
with the high metallicity SSM (for a detailed discussion
see Ref. [12]). The hep neutrinos arise from the reaction
3He + p →4 He + e+ + νe, which occurs in approxima-
tely 2 × 10−5% of the terminations of the pp chain. At
the lowest neutrino energies, electron capture reaction on
7Be is the second largest neutrino source that leads to two
monoenergetic neutrino lines at 384.3 and 861.3 keV with
a branching ratio of 10% and 90% respectively due to the
7Li excited state. According to the BS05(OP) solar mo-
del, we chose a 7Be neutrino flux of 4.84× 109 cm−2 s−1

with a theoretical uncertainty of about 10.5% [11]. For
the analysis in this paper we are also sensitive to carbon-
nitrogen-oxygen cycle (CNO) neutrinos. The uncertainty
in the solar composition is the dominant source of un-
certainty in the CNO neutrino fluxes. We take an uncer-
tainty of 30% on the CNO neutrino fluxes [13, 14].
Through neutrino-electron scattering, dark matter de-

tection experiments are also sensitive to neutrinos produ-
ced directly in the pp chain. The total flux of neutrinos
produced in the pp chain is 5.94×1010 cm−2 s−1. Because
the neutrino-electron scattering cross section is flavor de-
pendent, in this case we must consider the flavor compo-
sition of the neutrino flux that arrives on the Earth. For
the energies that we are sensitive to, the electron neutrino
survival probability is approximately 55% [15]. Following
Ref. [11], we will consider an uncertainty of 1% on the pp
neutrino flux.

B. Atmospheric neutrinos

Atmospheric neutrinos are produced through cosmic
ray collisions in the Earth’s atmosphere. The collisions
produce pions which then decay to muon and elec-
tron neutrinos and antineutrinos. The atmospheric neu-
trino flux has been detected by several experiments :
Super-Kamiokande [16], SNO [17], MINOS [18], and Ice-

Neutrino Energy [MeV]
-110 1 10 210

3
10

]
-1

.M
e
V

-1
.s

-2
N

e
u
tr

in
o
 F

lu
x
 [
c
m

-310

1

310

610

910

1210

1310
pp

pep

hep

7Be_384.3keV

7Be_861.3keV

8B

13N

15O

17F
dsnbflux_8

dsnbflux_5

dsnbflux_3

AtmNu_e

AtmNu_ebar

AtmNu_mu

AtmNu_mubar

Figure 1: Relevant neutrino fluxes which are backgrounds to
direct dark matter detection experiments : Solar, atmospheric,
and diffuse supernovae [7].

Cube [19]. In these experiments, the direction of the de-
tected muon is reconstructed. Modern direct dark mat-
ter detectors do not have directional sensitivity and are
mainly sensitive to the low component of the atmosphe-
ric neutrino flux, i.e. less than approximately 100 MeV.
At these energies, the uncertainty on the predicted at-
mospheric neutrino flux is approximately 20% [20]. Due
to a cutoff in the rigidity of cosmic rays induced by the
Earth’s geomagnetic field at low energies, the atmosphe-
ric neutrino flux is larger for detectors that are nearer to
the poles [20].

C. Diffuse supernova neutrinos

The diffuse supernova neutrino background (DSNB) is
the flux from the past history of all supernova explosions
in the Universe. The DSNB flux is a convolution of the
core-collapse supernova rate as a function of redshift with
the neutrino spectrum per supernova. The core-collapse
rate is derived from the star-formation rate and stellar
initial mass function ; for a recent review on the predic-
ted DSNB flux see Beacom [21]. The neutrino spectrum
of a core-collapse supernova is believed to be similar to
a Fermi-Dirac spectrum, with temperatures in the range
3-8 MeV. The calculations in this paper assume the fol-
lowing temperatures for each neutrino flavor : Tνe = 3
MeV, Tν̄e = 5 MeV, and Tνx = 8 MeV. Here Tνx re-
present the remaining four flavors : νµ, ν̄µ, ντ , and ν̄τ .
Because of the scaling of the coherent neutrino scatte-
ring cross section (integrated over all recoil energies), the
flavors with the largest temperature dominate the event
rate. Following [21], we will consider a systematic uncer-
tainty on the DSNB flux of 50%.
Figure 1 presents the relevant neutrino fluxes that will

be a background for dark matter direct detection. Shown
are the different contributions from solar, atmospheric,
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Figure 2: Neutrino-induced nuclear recoil spectra for the different neutrino sources, for a Ge target (left) and a Xe target
(right).

and diffuse supernova neutrinos. Note that we are not
considering geoneutrinos nor reactor neutrinos in this
study. Indeed, as shown in [6], the contribution of the
geoneutrinos to the neutrino-induced recoil energy spec-
trum is at least 2 orders of magnitude below the solar
neutrino contribution over the whole energy range. The
reactor neutrinos are strongly dependent on the location
of the experiment with respect to the surrounding nuclear
reactors and on the power these reactors are working
at. While this contribution should be estimated indepen-
dently for each experiment, we are not considering them
as this is beyond the scope of this paper and will there-
fore only discuss the case of cosmic neutrinos as shown
in Fig. 1.

III. WIMP AND NEUTRINO BACKGROUND
EVENT RATE CALCULATIONS

A. WIMP-induced nuclear recoil rate calculation

Like most spiral galaxies, the Milky Way is believed to
be immersed in a halo of WIMPs which outweighs the
luminous component by at least an order of magnitude
[4, 22, 23]. The velocity distribution of dark matter in the
halo is traditionally modeled as a Maxwell-Boltzmann,
characterized by a density profile that scales as 1/r2 and
leading to the observed flat rotation curve [24]. Recent
results from N-body simulations in fact indicate that
this Maxwell-Boltzmann assumption is an oversimplifi-
cation [25–27], as there is a wider peak and there are fe-
wer particles in the tail of the distribution ; this result has
important implications for interpretation of experimental
results [28]. Further, substructures, streams, and a dark
disk may create distinct features in the velocity distribu-
tion [29–32]. Since the goal of this paper is to examine
the effects of the neutrino background on the extraction
of a WIMP signal, to make the connection to previous

experimental studies in this paper we just consider the
Maxwell-Boltzmann model, which is characterized by the
following WIMP velocity distribution in the Earth frame,

f(!v) =







1
Nesc(2πσ2

v)
3/2 exp

[

− (#v+#Vlab)
2

2σ2
v

]

if |!v + !Vlab| < vesc

0 if |!v + !Vlab| ≥ vesc
(1)

where σv is the WIMP velocity dispersion related to
the local circular velocity v0 such that σv = v0/

√
2,

!Vlab and vesc are respectively the laboratory and the
escape velocities with respect to the galactic rest frame,
and Nesc is the correction to the normalization of the
velocity distribution due to the velocity cutoff (vesc).

The differential recoil energy rate is then given by [24],

dR

dEr
= MT ×

ρ0σ0

2mχm2
r

F 2(Er)

∫

vmin

f(!v)

v
d3v (2)

where ρ0 is the local dark matter density, mχ is the
WIMP mass, mr = mχmN/(mχ + mN ) is the WIMP-
nucleus reduced mass and σ0 is the normalized to nucleus
cross section. Note that we will assume that the WIMP
couples identically to the neutrons and protons, though
generically a larger theoretical parameter space is avai-
lable [33]. F (Er) is the nuclear form factor that describes
the loss of coherence for recoil energies above ∼10 keV.
In the following, we will consider the standard Helm form
factor [24]. For the sake of comparison with running ex-
periments, we will consider the standard values of the dif-
ferent astrophysical parameters : ρ0 = 0.3 GeV/c2/cm3,
v0 = 220 km/s, Vlab = 232 km/s and vesc = 544 km/s.

Neutrino Fluxes from 
each source

Recoil spectra due to 
neutrinos

Germanium Xenon
J. Billard, L. Strigari, and E. Figueroa-Feliciano, PRD 89 (2014), arXiv:1307.5458
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Figure 5: Left : Set of derived background-free sensitivity curves for exposures that attain one neutrino event, for different
thresholds from 0.001 (purple) to 100 keV (red) in logarithmic steps. The black line is constructed by joining the best sensitivity
for each mass, and represents a one neutrino event contour line in the WIMP-nucleon cross section vs WIMP mass plane. Right :
Background-free exclusion limits (solid lines) for four different Xe-based experiments with threshold of 10 eV, 500 eV, 5 keV,
and 10 keV and exposures of 10 kg-years, 2 ton-years, 100 ton-years, and 5,000 ton-years respectively. Also shown in dashed
lines are the neutrino iso-event contour lines for 18.5 (blue), 657 (green), 4.5 (red), and 154 (magenta) events.

the number of electrons Z per atom. In the limit where
mN ! Eν , one can deduce that the minimum neutrino
energy Emin

ν required to generate a nuclear recoil at an
energy Er is :

Emin
ν =

√

mNEr

2
. (9)

However, in the case of an electronic recoil, the expression
of Emin

ν is the following :

Emin
ν =

1

2

(

Er +
√

Er(Er + 2me)
)

. (10)

Figure 2 presents the nuclear recoil rate as a function
of recoil energy for all neutrino components for a Ge tar-
get (left panel) and Xe target (right panel). As shown
in Fig. 2, most of the solar neutrinos are at very low re-
coiling energies (below 0.1 keV) except the 8B and hep
neutrinos that will dominate the event rate from 0.1 to
8 keV. Above these energies, atmospheric neutrinos will
dominate with a subdominant contribution from the dif-
fuse supernova background neutrinos.
Figure 3 presents the expected number of nuclear re-

coils as a function of the threshold energy and with an
upper bound on the recoil energy range of 100 keV. It
is interesting to notice that the 8B neutrinos dominate
the expected number of neutrino-induced nuclear recoils
for threshold energies between 10 eV and 10 keV. As
shown on Fig. 3, a ton-scale experiment with a 0.1 keV
threshold can then expect about 500 and 1000 neutrino-
induced nuclear recoils for a Ge and Xe based experiment,
respectively.
Finally, Fig. 4 presents the total neutrino backgrounds

as well as a WIMP spectrum for a benchmark model

that best fits the 8B neutrino-induced nuclear recoil
spectrum (black solid line). It is also interesting to
see that a WIMP signal could almost perfectly be
mimicked by solar neutrino backgrounds. The neu-
trino background from coherent neutrino scattering
is given by the blue dashed line, and the electroweak
and neutrino magnetic moment ν + e− → ν + e−

contributions are shown by the solid red and cyan
lines. The dark cyan line corresponds to the expected
event rate considering the experimental constraint on
the neutrino magnetic moment (µν = 3.2 × 10−11µb)
while the light cyan line considers the theoretical upper
bound from the most general extensions of the standard
model (µν = 10−14µb). As dark matter experiments
aim at rejecting electronic recoils, the dashed red and
cyan lines correspond to the event rate expected in a
XENON-like experiment where the rejection factor is
taken to be flat in energy and equal to 99.5% [43] and
equal to 105 in a Ge-based CDMS-like experiment [44].
Therefore, after electron recoil rejection, one can easily
deduce that neutrino-electron backgrounds should not
be an issue for Ge-based CDMS-like experiments while
they could contribute significantly to the total neutrino
backgrounds for XENON-like experiments for recoil
energies above 4 keV. That being said, unless otherwise
stated we will only consider neutrino backgrounds from
coherent neutrino scattering.

For a particular experiment, Fig. 3 gives the number of
neutrino events for an experiment with a fixed threshold
and exposure and a 100% efficiency over the whole recoil
energy range (from the threshold to 100 keV). In this
paragraph we present a novel way to represent the level
of the neutrino CNS background on the WIMP-nucleon

Sensitivity curves for Xenon

Reach is a neutrino background of one event obtained for various thresholds (.001 keV-100 keV) and 
(background free) threshold/exposure (10 kg-yr-5,000 ton-yr) combinations
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required to obtain one neutrino event are 32.5, 21.5, and 98 ton-years.

As a final calculation, we have mapped out the WIMP
discovery limit across the 500 MeV/c2 to 10 TeV/c2,
shown in Fig. 12 (right). To cover this large WIMP mass
range, we combined the discovery limits of two Xe-based
pseudo-expriments with a threshold of 3 eV and 4 keV.
To ensure we are well into the systematics limited regime,
exposures were increased to obtain 500 neutrino events.
This line thus represents a hard lower discovery limit
for dark matter experiments. Interestingly, we can de-
note three distinct features in the discovery limits coming
from the combination of 7Be and CNO neutrinos, 8B
and hep neutrinos and atmospheric neutrinos at WIMP
masses of 0.5, 6, and above 100 GeV/c2 respectively. Also
shown are the current exclusion limits and regions of in-
terest from several experimental groups. If the potential
WIMP signals around 10 GeV/c2 are shown not to be
from WIMPs, the remaining available parameter space
for WIMP discovery is bounded at the top by the LUX
Collaboration and at the bottom by the neutrino back-
ground. Progress below this line would require very large
exposures, lower systematic errors on the neutrino flux,
detection of annual modulation, and/or large directional
detection experiments.

VII. CONCLUSION

We have examined the limitations on the discovery po-
tential of WIMPs in direct detection experiments due
to the neutrino backgrounds from the Sun, atmosphere,
and supernovae. We have specifically focused on experi-
ments that are only sensitive to energy deposition from
WIMPs. We have determined the minimum detectable
spin-independent cross section as a function of WIMP
mass over a wide range of masses from 500 MeV/c2 to
10 TeV/c2 that could lead to a significant dark mat-
ter detection. WIMP-nucleon cross sections of ∼10−45

and ∼10−49 cm2 are the maximal sensitivity to light and
heavy WIMP dark matter respectively that direct detec-
tion searches without directional sensitivity could reach,
given the uncertainties on the neutrino fluxes. This limit
is roughly about 3 to 4 orders of magnitude below the
most recent experimental constraints. In the case of light
WIMPs (about 6 GeV/c2) next generation experiments
might already reach the saturation regime with about 100
neutrino background events. For heavier WIMPs (above
20 GeV/c2) we have shown that progress below 10−48

cm2 will be strongly limited by the very large increases in
exposure required for decreasing gains in discovery reach.
As a main conclusion of this work, our results show

that the cosmic neutrino background poses a hard limit
on the discovery potential of future direct detection ex-
periments. However, it is possible to reduce the impact
of neutrino backgrounds on direct searches experiments
in four ways :

1. An improvement in the theoretical estimation and
experimental determination of the neutrino fluxes.
In particular more precise measurements of the dif-
ferent neutrino flux components by future experi-
ments will improve the ultimate discovery limit of
dark matter experiments.

2. A utilization of different target nuclei. As we have
shown in Fig. 8, even though utilizing different tar-
get nuclei generally does not improve sensitivity
as much as an increase in exposure does, it will
be important for independent measurements of the
neutrino fluxes and the coherent scattering cross
section. This is consistent with several recent ana-
lyses [48, 49]. However, it is certainly likely that if
the WIMP couples differently to the proton and
neutron, as in the case of isospin-violating dark
matter, the utilization of different target nuclei will
be even more important.

Discovery limits as a function of background neutrino events for Argon, Germanium, and Xenon.

A given experiment has a 90% probability to obtain at least a 3σ detection

6GeV WIMP: Ge 240 kg-yr, Xe 130 kg-year, Ar 430 kg-yr

100GeV WIMP: Ge 32.5 ton-yr, Xe 21.5 ton-year, Ar 98 ton-yr
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To ensure we are well into the systematics limited regime,
exposures were increased to obtain 500 neutrino events.
This line thus represents a hard lower discovery limit
for dark matter experiments. Interestingly, we can de-
note three distinct features in the discovery limits coming
from the combination of 7Be and CNO neutrinos, 8B
and hep neutrinos and atmospheric neutrinos at WIMP
masses of 0.5, 6, and above 100 GeV/c2 respectively. Also
shown are the current exclusion limits and regions of in-
terest from several experimental groups. If the potential
WIMP signals around 10 GeV/c2 are shown not to be
from WIMPs, the remaining available parameter space
for WIMP discovery is bounded at the top by the LUX
Collaboration and at the bottom by the neutrino back-
ground. Progress below this line would require very large
exposures, lower systematic errors on the neutrino flux,
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detection experiments.
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on the discovery potential of future direct detection ex-
periments. However, it is possible to reduce the impact
of neutrino backgrounds on direct searches experiments
in four ways :

1. An improvement in the theoretical estimation and
experimental determination of the neutrino fluxes.
In particular more precise measurements of the dif-
ferent neutrino flux components by future experi-
ments will improve the ultimate discovery limit of
dark matter experiments.

2. A utilization of different target nuclei. As we have
shown in Fig. 8, even though utilizing different tar-
get nuclei generally does not improve sensitivity
as much as an increase in exposure does, it will
be important for independent measurements of the
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section. This is consistent with several recent ana-
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FIG. 3: Evolution of the discovery limit as a function of expo-
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other backgrounds, 100% efficiency, and an energy threshold
of 3 eV to fully map the low WIMP mass discovery limit.
Features appearing on the discovery limits with increasing
exposures are due to the different components of the total
neutrino background, see Table II.

GeV/c2 (right panel) as a function of exposure which
is given in number of expected neutrinos and ton-year
on the bottom and top x-axes. Those calculations were
done considering different values of the systematic un-
certainties on the relevant neutrino background. From
looking at Fig. 2, one can understand the impact of the
neutrino background on the discovery potential which is
worth describing in a couple of main points:

• At the lowest exposures, where the neutrino
background is negligible, and if no other back-
grounds are present, the discovery potential evolves
as ∼ 1/MT where MT refers to the exposure
(mass×time) of the considered experiment.

• As soon as the experiment starts to become sensi-
tive to the neutrino background, the discovery po-
tential evolves as ∼ 1/

√
MT as we are in a Poisson

background subtraction regime.

• When the exposure gets even bigger and the WIMP
and neutrino signals are very similar, such as for a
WIMP of 6 GeV/c2 for a Xe target, the discov-
ery potential starts to flatten out due to the sys-
tematic uncertainties. Indeed, in the extreme case
where there is no discrimination power between the
WIMP signal and the neutrino background, one
would expect the discovery potential to evolve as
[10]:

σdisco ∝

√
1 + ξ2Nν

Nν
(8)

where ξ is the relative uncertainty on the relevant
neutrino background. One can then see that the

level and exposure at which the discovery potential
flattens out is directly related to the level of this
systematic uncertainty, as illustrated by Eq. 8 and
shown in Fig. 2. This clearly highlights the need for
reducing systematic uncertainties on the neutrino
fluxes. Note that this saturation of the discovery
potential can span about 2 orders of magnitude in
exposure and therefore clearly represents a chal-
lenge to the development of future direct detection
experiments.

• Once enough neutrino events have been accumu-
lated (between a few thousand and a million, de-
pending on the systematic uncertainty), one can get
back to a standard Poisson background subtraction
regime and therefore overcome the previously de-
scribed saturation regime. This is due to the small
differences in the tails of the neutrino- and WIMP-
induced spectra which lead to additional discrim-
ination power, e.g., Fig 1 (right panel) around
6.5 keV for the 6 GeV/c2 case. However, these
small differences in the induced spectra only be-
come relevant at very high exposures (especially at
the high WIMP mass region) which are well be-
yond what is envisioned for the next generation of
experiments.

In Figure 3 we illustrate the evolution of the discov-
ery limit, in the light of the neutrino background, as a
function of the WIMP mass. We use an idealized Xe-
based experiment with a recoil energy threshold of 3 eV
and perfect efficiency to map out the low and high WIMP
mass range. This figure clearly shows that there are some
particular WIMP mass ranges for which we expect the
neutrino background to dramatically affect the discov-
ery potential, i.e. going through a saturation regime. A
few examples are for masses around mχ = 0.8 GeV/c2,
mχ = 6 GeV/c2, mχ = 8 GeV/c2 and above mχ = 100
GeV/c2 where the WIMP signal is well mimicked by the
7Be, 8B, hep and the atmospheric neutrinos respectively.
For WIMP masses with strong differences between the
WIMP and the neutrino recoil spectra, the discovery po-
tential evolves close to 1/

√
MT as one can see from Fig. 3

for WIMP masses between 1 GeV/c2 and 4 GeV/c2 for
example.
Interestingly, from Figs. 2 and 3 we can clearly see that

the neutrino background will impact the low WIMP mass
(below 10 GeV/c2) and the high WIMP mass (above
10 GeV/c2) regions at very different exposures due to
the vastly different rates of neutrino backgrounds seen
in Fig 1. Indeed, the discovery limit evolution with ex-
posure transitions from 1/MT to 1/

√
MT as soon as

the expected neutrino background nears 1 event, which
corresponds to exposures of a few kg-years for very-low-
threshold experiments in the low-mass region and a few
tens of ton-years for the high-mass region for idealized
perfect-efficiency experiments (actual exposure values de-
pend on the target, threshold, and efficiency of a given
experiment). The saturation regime exists for exposures

Discover limit for Xenon
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Figure 12: Left : Neutrino isoevent contour lines (long dash orange) compared with current limits and regions of interest. The
contours delineate regions in the WIMP-nucleon cross section vs WIMP mass plane which for which dark matter experiments
will see neutrino events (see Sec. IIID). Right : WIMP discovery limit (thick dashed orange) compared with current limits
and regions of interest. The dominant neutrino components for different WIMP mass regions are labeled. Progress beyond
this line would require a combination of better knowledge of the neutrino background, annual modulation, and/or directional
detection. We show 90% confidence exclusion limits from DAMIC [55] (light blue), SIMPLE [56] (purple), COUPP [57] (teal),
ZEPLIN-III [58] (blue), EDELWEISS standard [59] and low-threshold [60] (orange), CDMS II Ge standard [61], low-threshold
[62] and CDMSlite [63] (red), XENON10 S2-only [64] and XENON100 [65] (dark green) and LUX [66] (light green). The filled
regions identify possible signal regions associated with data from CDMS-II Si [1] (light blue, 90% C.L.), CoGeNT [67] (yellow,
90% C.L.), DAMA/LIBRA [68] (tan, 99.7% C.L.), and CRESST [69] (pink, 95.45% C.L.) experiments. The light green shaded
region is the parameter space excluded by the LUX Collaboration.

3. Measurement of annual modulation. In the case of
a 6 GeV/c2 WIMP, next generation experiments
could reach sufficiently high statistics to disen-
tangle the WIMP and the neutrino contributions
using the 6% annual modulation rate of dark mat-
ter interactions [54]. However, in the case of hea-
vier WIMPs, very large and unrealistic exposures
would be required to obtain enough events to detect
such predicted annual modulation for cross sections
around 10−48 cm2. Furthermore, the atmospheric
neutrino event rate also undergoes annual modula-
tion due to the change in temperature of the atmos-
phere throughout the year [50]. A dedicated study
taking into account systematic uncertainties in the
neutrino fluxes and their modulations is required
to assess the feasibility of annual modulation dis-
crimination in light of atmospheric neutrino back-
grounds.

4. Measurement of the nuclear recoil direction as

suggested by upcoming directional detection expe-
riments [51]. Since the main neutrino background
has a solar origin, the directional signal of such
events is expected to be drastically different than
the WIMP-induced ones [52, 53]. This way, a
better discrimination between WIMP and neutrino
events will enhance the WIMP detection signifi-
cance allowing us to get stronger discovery limits.
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Figure 12. Results of model selection preformed amongst set–I models, analogous to Figure 8, but
for He, Ge, and Na experiment defined in Table 3, for a 7 GeV DM particle.
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Figure 13. This Figure illustrates prospects for selecting the right underlying interaction with
futuristic direct detection experiments, if the signal is just below the reach of G2 experiments described
in Table 3. The content of this Figure is analogous to Figure 8, where only set–I interaction models
are compared as competing hypotheses, in light of simulated data from futuristic mock experiments
(denoted on the x–axis). Results for a representative subset of simulations are shown here.

a turnover feature (like the heavy–mediator model shown in the middle panel of this Figure),
where the number of expected events at high energies is maximal. In these cases, the high–
energy lever arm compensates for the high energy threshold. However, the complementarity
of Ar with Xe and Ge, despite its superior exposure and high–energy capabilities, does not
match that of F or I (see Figure 23 in Appendix A for comparison).

We also examine the model–selection capability of targets that are kinematically favor-
able for detection of very low–mass DM particles that are otherwise below the sensitivity of
most targets. For this purpose, we create simulations for a 7 GeV DM particle, the lowest
DM mass considered in this work. We simulate spectra on helium, sodium, and germanium
targets as represented in Table 3, and we once again repeat the model selection exercise using
set–I models as competing hypotheses. Results for a representative subset of simulations is
shown in Figure 12. We also draw attention to Figure 7, showing the number of expected
events for low–mass DM particles on these targets. This gives a sense of the statistical sam-
ple on hand for a single simulated data set. Figure 12 shows that the single most successful
experiment is Ge, partly owing to its low energy threshold. He and Na do not seem to have
much model selection power by themselves for the model simulations examined in this Figure.
However, there is once again a degree of complementarity amongst these three targets that
shows as a visible improvement in model selection success probability when several data sets
are combined.
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If a signal is not seen at the next generation of experiments, future prospects 
may be quite diminished

Label A (Z) Energy window [keVnr] Exposure [kg-yr]
Xe 131 (54) 5-40 2000
Ge 73 (32) 0.3-100 100
I 127 (53) 22.2-600 212
F 19 (9) 3-100 606
Na 23 (11) 6.7-200 38
Ar 40 (18) 25-200 3000
He 4 (2) 3-100 300

Xe(lo) 131 (54) 1-40 2000
Xe(hi) 131 (54) 5-100 2000

Xe(wide) 131 (54) 1-100 2000
I(lo) 127 (53) 1-600 212
XeG3 131 (54) 5-40 40 000

I+ 127 (53) 1-600 424
F+ 19 (9) 3-100 1200

Table 3. Mock experiments considered in this work. The efficiency and the fiducialization of the
target mass are included in the exposure. The first group of experiments is used for most of the
simulations in this work and is chosen such to be representative of the reach of G2 experiments for
Xe, Ge, I, and F. The exposure for Xe and Ge is chosen to agree with the projected exclusion curves
for LZ and SuperCDMS presented in Ref. [1]. The second group of experiments is used to test impact
of the energy window on prospects for model selection; note that only the energy window differs from
the corresponding experiments of the first group. The last group represents futuristic experiments,
where XeG3 reaches the level of atmospheric neutrino backgrounds.

Figure 4. Examples of simulated nuclear recoil energy spectra, for three different models from Table
1, on a Xe experiment described in Table 3, for a 50 GeV DM particle, with a cross section set to
current upper limit, calculated in §6.1. Error bars include only the Poisson noise. For this work, we
create a large number of simulated spectra such as the ones shown here. For illustration purposes
only, we bin the events according to their energy; we perform all analyses on unbinned data.

To simulate a recoil–energy spectrum observed with a single experiment under a chosen
scattering model M, given a set of its parameter values Θ (mχ, σp, and fn/fp), we use
the following procedure. For each simulation, we first draw a number N from a Poisson
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create a large number of simulated spectra such as the ones shown here. For illustration purposes
only, we bin the events according to their energy; we perform all analyses on unbinned data.

To simulate a recoil–energy spectrum observed with a single experiment under a chosen
scattering model M, given a set of its parameter values Θ (mχ, σp, and fn/fp), we use
the following procedure. For each simulation, we first draw a number N from a Poisson
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4.4. Future projects and complementarity

Existing results and projected sensitivities for the spin-independent WIMP-nucleon interactions as a
function of the WIMP mass are summarized in Figure 3, adapted from [91]. In spite of observed anomalies
in a handful of experiments, that could be interpreted as due to WIMPs, albeit not consistently, we have
no convincing evidence of a direct detection signal induced by galactic dark matter. Considering LUX’s
lack of a signal in 85.3 live-days×118 kg of liquid xenon target, excluding ∼33GeV WIMPs with interaction
strengths above 7.6×10−46cm2, it becomes clear that, at the minimum, ton-scale experiments are required
for a discovery above the 5-sigma confidence level (unless the WIMP is lighter than ∼10GeV, where larger
cross sections are feasible). Several large-scale direct detection experiments are in their planning phase and
will start science runs within this decade.

Figure 3: Summary for spin-independent
WIMP-nucleon scattering results. Existing
limits from the noble gas dark matter ex-
periments ZEPLIN-III [69], XENON10 [71],
XENON100 [75], and LUX [39], along with
projections for DarkSide-50 [85], LUX [39],
DEAP3600 [90], XENON1T, DarkSide G2,
XENONnT (similar sensitivity as the LZ
project [92], see text) and DARWIN [93] are
shown. DARWIN is designed to probe the
entire parameter region for WIMP masses
above ∼6GeV/c2, until the neutrino back-
ground (yellow region) will start to dominate
the recoil spectrum. Experiments based on the
mK cryogenic technique such as SuperCDMS
[94] and EURECA [95] have access to lower
WIMP masses. Figure adapted from [91].

The next phase in the LUX program, LUX-ZEPLIN (LZ), foresees a 7 t LXe detector in the same SURF
infrastructure, with an additional scintillator veto to suppress the neutron background. Construction is
expected to start in 2014, and operation in 2016, with the goal of reaching a sensitivity of 2×10−48cm2 after
three years of data taking [92]. The upgrade of XENON1T, XENONnT, is to increase the sensitivity by
another order of magnitude, thus also reaching 2×10−48cm2. While much of the XENON1T infrastructure
will be reused, the inner detector will be designed and constructed once XENON1T is taking science data,
with planned operation between 2018-2021. The XMASS collaboration plans a 5 t (1 t fiducial) single-phase
detector after its current phase, with greatly reduced backgrounds and an aimed sensitivity of ∼10−46cm2.
In its second stage, PandaX will operate a total of 1.5 t LXe as WIMP target, with ∼1 t xenon in the fiducial
volume. All sub-systems of the existing experiment, with the exception of the central TPC, are designed to
accommodate the larger target mass [83]. The DarkSide collaboration plans a 5 t LAr dual-phase detector,
with 3.3 t as active target mass, in the existing neutron and muon veto at LNGS. The aimed sensitivity is
10−47cm2 [96].

DARk matter WImp search with Noble liquids (DARWIN) is an initiative to build an ultimate, multi-ton
dark matter detector at LNGS [97, 93]. Its primary goal is to probe the spin-independent WIMP-nucleon
cross section down to the 10−49 cm2 region for ∼50GeV/c2 WIMPs, as shown in Figure 3. It would thus
explore the experimentally accessible parameter space, which will be finally limited by irreducible neutrino
backgrounds. Should WIMPs be discovered by an existing or near-future experiment, DARWIN will measure
WIMP-induced nuclear recoil spectra with high-statistics, constraining the mass and the scattering cross
section of the dark matter particle [98, 99]. Other physics goals of DARWIN are the first real-time detection
of solar pp-neutrinos with high statistics and the search for the neutrinoless double beta decay [27]. The
latter would establish whether the neutrino is its own anti-particle, and can be detected via 136Xe, which
has a natural abundance of 8.9% in xenon.
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The ultimate reach and extent of direct detection 
experiments

...perhaps not...
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We have fit the various Oi to the neutrino rate 
for the 8B neutrino flux, with exposures chosen 
to give 200 expected neutrino events

I. INTRODUCTION

TABLE I. List of NR effective operators described in [? ]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

TABLE II. List of detectors considered in this work
Target theshold (low/high)

xenon 3.0 eV / 4.0 keV

germanium 5.3 eV / 7.9 keV

silicon 14 eV / 20 keV

flourine 33 eV / 28 eV

2

TABLE III. List of NR effective operators categorized by the best fit mass to 8B neutrinos in xenon

(the other targets follow suit)

Operator Mass (GeV) Exp. (t.y)

O1 6 3.4

O4 6 2.8

O7 6.2 1.7

O8 6.3 3.4

q2 and q2v2
T

O5 4.8 0.47

O9 4.6 0.42

O10 4.6 0.42

O11 4.6 0.51

O12 4.6 0.35

O14 4.8 0.47

q2v2
T , q4 and q4v2

T

O3 4.2 0.28

O6 4.2 0.37

O13 4.2 0.34

O15 4.1 0.27

7
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Similarly, for Ge, Si, and F
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Discovery Potential
We’ve calculated the smallest cross-section which will produce a 3σ fluctuation above the 
background 90% of the time

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN
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O6 ( "q
mN
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· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [46]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
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× !v⊥)
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mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)
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The standard floor is recovered for the first set of operators
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]
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)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
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i , (4)
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TABLE III. List of NR effective operators categorized by the best fit mass to 8B neutrinos in xenon

(the other targets follow suit)

Operator Mass (GeV) Exp. (t.y)

O1 6 3.4

O4 6 2.8

O7 6.2 1.7

O8 6.3 3.4

q2 and q2v2
T

O5 4.8 0.47

O9 4.6 0.42

O10 4.6 0.42

O11 4.6 0.51

O12 4.6 0.35

O14 4.8 0.47

q2v2
T , q4 and q4v2

T

O3 4.2 0.28

O6 4.2 0.37

O13 4.2 0.34

O15 4.1 0.27
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N
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)
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(!SN × !v⊥) · "q
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)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]
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In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
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i , (4)

6

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N
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)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N
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)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

6

incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.
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)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)

6

incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.
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)
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i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
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but disappears for different momentum dependent operators
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Hermitian vectors are:

i
!q

mN
, !v⊥ = !v + !q

2µN
, !Sχ, !SN , (3)

where !q = !p′ − !p = !k − !k′ is the momentum transfer, !v is the velocity of WIMP with respect
to the nucleus of the detector, µN is the reduced mass of the system and !Sχ and !SN are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by !p and !p′ the
incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)
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incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.
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i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)
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could allow for isospin violation by having different couplings to neutron and proton inside
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15∑
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TABLE III. List of NR effective operators categorized by the best fit mass to 8B neutrinos in xenon

(the other targets follow suit)

Operator Mass (GeV) Exp. (t.y)

O1 6 3.4

O4 6 2.8

O7 6.2 1.7

O8 6.3 3.4

q2 and q2v2
T

O5 4.8 0.47

O9 4.6 0.42

O10 4.6 0.42

O11 4.6 0.51

O12 4.6 0.35

O14 4.8 0.47

q2v2
T , q4 and q4v2

T

O3 4.2 0.28

O6 4.2 0.37

O13 4.2 0.34

O15 4.1 0.27

7

but disappears for different momentum dependent operators
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operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [46]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑

α=n,p

15∑

i=1
cα

i Oα
i , (4)

where the coefficients cα
i are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑

τ=0,1

15∑

i=1
cτ

i Oit
τ (5)

6

incoming and outgoing WIMP momenta and by !k and !k′ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition
!q ·!v⊥ = 0. Here we will briefly outline the procedure employed in [46] in going from the NR
operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [46]

O1 1χ1N

O2 (!v⊥)2

O3 i!SN · ( "q
mN

× !v⊥)

O4 !Sχ · !SN

O5 i!Sχ · ( "q
mN

× !v⊥)

O6 ( "q
mN

· !SN )( "q
mN

· !Sχ)

O7 !SN · !v⊥

O8 !Sχ · !v⊥

O9 i!Sχ · (!SN × "q
mN

)

O10 i "q
mN

· !SN

O11 i "q
mN

· !Sχ

O12 !Sχ · (!SN × !v⊥)

O13 i(!Sχ · !v⊥)( "q
mN

· !SN )

O14 i(!SN · !v⊥)( "q
mN

· !Sχ)

O15 −(!Sχ · "q
mN

)
(
(!SN × !v⊥) · "q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as
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where the coefficients cα
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(a) Tree level (b) Loop processes

FIG. 1: The tree and loop level contributions to scattering of
Majorana fermions through a Z boson. For all box diagrams,
the crossed box diagram is included in calculations but not
depicted. In the last diagram, a Higgs mediates the scattering
through a Z loop.

The bounds on SI cross sections are currently 5 – 7 or-
ders of magnitude higher than the SD ones, and this looks
to continue to be the case in the future. Therefore if any
of the SD interactions discussed above induce subleading
SI couplings, such an effect could potentially be visible
in a SI experiment. There are two sources for such ef-
fects. First, there are kinematically suppressed contri-
butions of tree level scattering that were ignored above.
These are easily estimated from Tables I–III given earlier.
Second, the tree-level SD interactions can induce SI cou-
plings at loop level. These are not as simple to estimate,
and should be calculated to confirm their effect.
Let us consider a Z (or Z ′ exchange) with a Majo-

rana fermion, as in Fig. 1a. While the dominant contri-
bution comes from Of

8 , also present is Of
6 , the anapole

coupling. We see that this gives rise to a SI interaction
suppressed by v2. Similarly, both the scalar exchange of
Fig. 2a and the equivalent diagram for vector exchange
give an anapole coupling after using Fiertz identities. A
fermion exchange of the same form in the case of vec-
tor DM produces Ov

7 as well as Ov
8 in the chiral limit,

which again mediates a v2 suppressed SI coupling. In all
of these cases, there is a SI scattering cross section no
more than O(106) smaller than the SD one, independent
of any other field content of a model. This means that
such interactions would be seen in SI experiments simul-
taneously or in the next generation of experiements after
they appear in SD ones. Only the pseudoscalar exchanges
evade this, as they lead to no v2 suppressed subleading
contributions to DM-nucleon scattering at all.
All the aforementioned interactions should also be

computed at the one-loop level. While these will be sup-
pressed by loop factors and extra couplings, they may
also generate SI interactions. For large enough couplings,
these loops might even give rise to interactions larger
than the kinematically-suppressed ones discussed above,
and so might be even more readily detectable.
Without making any further assumptions about the

underlying model, we can already identify diagrams
which will produce SI interactions at loop-level. For SD
interactions involving a t-channel exchange, at a mini-
mum, exchanging two mediators in a box diagram will
give rise to a SI interaction. For an s or u-channel pro-
cesses, a SI loop level contribution can come from a loop
with W or Z bosons exchanged between the quarks.

(a) Tree level (b) Loop processes

FIG. 2: The tree and loop level contributions to scattering of
Majorana fermions through a s-channel scalar.

Consider the exchange of a Z with axial couplings to
quarks. (We will discuss the case of a Z ′ shortly.) In
that case, the quark level operator for tree-level scatter-
ing (Fig. 1a) is

g22
2 cos2 θW

T q
3

Q

2

1

m2
Z

χ̄γµγ5χ q̄γµγ
5q , (1)

where Q is the coupling of the DM to the Z. Then the
DM-proton SD cross section generated is (see Apps. A
and B for details)

σχp
SD ≈ (1.5× 10−39 cm2)

(

Q

0.1

)2

, (2)

with the DM-neutron cross sections about 20% smaller.
In this case, two one-loop processes lead to SI effective
interactions: one with two Z exchanges, and a Higgs cou-
pling through a Z loop to the DM (Fig. 1b). We work in
the limit mq # mZ # mDM. (This limit is generally the
one in which the DM has the correct relic abundance in
models where the only coupling of the DM to the quarks
is through electroweak bosons, while foregoing the last
inequality only yields O(1) changes, see Ref. [30].) The
SI contribution to the effective coupling is then [30, 31]1

1

4π

g42 Q
2

cos4 θW mZ

[

(T q
3 )

2

2m2
Z

+
1

4m2
h

]

mq χ̄χ q̄q . (3)

Taking a reference value of mh = 120 GeV, this interac-
tions will induce a SI cross section of

σχN
SI = (4× 10−47 cm2)

(

Q2

0.1

)2

. (4)

Asking that the SD signal be just beyond current SD
experimental bounds implies Q ∼ 0.3, giving a SI cross

1 In deriving this result, along with those following, we have set
several quark operators, such as

mq χ̄χq̄q, χ̄χq̄i/∂q,

4

3mDM

χ̄i∂µγνχ q̄i

(

i∂µγν + ∂νγµ
−

1

2
gµν /∂

)

q,

which all simplify to mq χ̄χ q̄q on shell, but can have different
nuclear matrix elements, to their on-shell value. In fact this
seems to yield a conservative estimate, as out of the nuclear
matrix elements known, the first one has the smallest value (for
a detailed discussion of these issues see Ref. [32]).
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plings at loop level. These are not as simple to estimate,
and should be calculated to confirm their effect.
Let us consider a Z (or Z ′ exchange) with a Majo-

rana fermion, as in Fig. 1a. While the dominant contri-
bution comes from Of

8 , also present is Of
6 , the anapole

coupling. We see that this gives rise to a SI interaction
suppressed by v2. Similarly, both the scalar exchange of
Fig. 2a and the equivalent diagram for vector exchange
give an anapole coupling after using Fiertz identities. A
fermion exchange of the same form in the case of vec-
tor DM produces Ov

7 as well as Ov
8 in the chiral limit,

which again mediates a v2 suppressed SI coupling. In all
of these cases, there is a SI scattering cross section no
more than O(106) smaller than the SD one, independent
of any other field content of a model. This means that
such interactions would be seen in SI experiments simul-
taneously or in the next generation of experiements after
they appear in SD ones. Only the pseudoscalar exchanges
evade this, as they lead to no v2 suppressed subleading
contributions to DM-nucleon scattering at all.
All the aforementioned interactions should also be

computed at the one-loop level. While these will be sup-
pressed by loop factors and extra couplings, they may
also generate SI interactions. For large enough couplings,
these loops might even give rise to interactions larger
than the kinematically-suppressed ones discussed above,
and so might be even more readily detectable.
Without making any further assumptions about the

underlying model, we can already identify diagrams
which will produce SI interactions at loop-level. For SD
interactions involving a t-channel exchange, at a mini-
mum, exchanging two mediators in a box diagram will
give rise to a SI interaction. For an s or u-channel pro-
cesses, a SI loop level contribution can come from a loop
with W or Z bosons exchanged between the quarks.

(a) Tree level (b) Loop processes

FIG. 2: The tree and loop level contributions to scattering of
Majorana fermions through a s-channel scalar.

Consider the exchange of a Z with axial couplings to
quarks. (We will discuss the case of a Z ′ shortly.) In
that case, the quark level operator for tree-level scatter-
ing (Fig. 1a) is

g22
2 cos2 θW

T q
3

Q

2

1

m2
Z

χ̄γµγ5χ q̄γµγ
5q , (1)

where Q is the coupling of the DM to the Z. Then the
DM-proton SD cross section generated is (see Apps. A
and B for details)

σχp
SD ≈ (1.5× 10−39 cm2)

(

Q

0.1

)2

, (2)

with the DM-neutron cross sections about 20% smaller.
In this case, two one-loop processes lead to SI effective
interactions: one with two Z exchanges, and a Higgs cou-
pling through a Z loop to the DM (Fig. 1b). We work in
the limit mq # mZ # mDM. (This limit is generally the
one in which the DM has the correct relic abundance in
models where the only coupling of the DM to the quarks
is through electroweak bosons, while foregoing the last
inequality only yields O(1) changes, see Ref. [30].) The
SI contribution to the effective coupling is then [30, 31]1

1

4π

g42 Q
2

cos4 θW mZ

[

(T q
3 )

2

2m2
Z

+
1

4m2
h

]

mq χ̄χ q̄q . (3)

Taking a reference value of mh = 120 GeV, this interac-
tions will induce a SI cross section of

σχN
SI = (4× 10−47 cm2)

(

Q2

0.1

)2

. (4)

Asking that the SD signal be just beyond current SD
experimental bounds implies Q ∼ 0.3, giving a SI cross

1 In deriving this result, along with those following, we have set
several quark operators, such as

mq χ̄χq̄q, χ̄χq̄i/∂q,

4

3mDM

χ̄i∂µγνχ q̄i

(

i∂µγν + ∂νγµ
−

1

2
gµν /∂

)

q,

which all simplify to mq χ̄χ q̄q on shell, but can have different
nuclear matrix elements, to their on-shell value. In fact this
seems to yield a conservative estimate, as out of the nuclear
matrix elements known, the first one has the smallest value (for
a detailed discussion of these issues see Ref. [32]).

SD SI



An example was obtained for the Higgs portal interaction
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radiation would lead to a mono-jet plus missing energy signal. Given the sizable SM model

backgrounds, we expect the reach in both of these channels to be fairly limited. Of course,

the Higgs can be on-shell if 2M < mh, but this scenario is already strongly constrained by

limits to Higgs invisible decay signals. In the future, we expect the Higgs invisible decay

limits to continue to provide stronger limits in this regime than the collider direct search.

The rest of the paper is organized as following. In section 2, we carry out the chiral

rotation and present our parameterization of the model parameters. In section 3, we

present our analytic calculation of the annihilation cross section, and examine the validity

of our truncation of the EFT expansion. Our calculation of the limits from Higgs decay,

relic abundance, and direct detection are presented in section 4, section 5, and section 6,

respectively. Finally, we combine all the constraints and present the remaining parameter

space in section 7, before concluding in section 8. Appendix A contains discussion of some

selected results presented in a fashion complementary to the main text.

2 The Effective Field Theory

We consider a convenient parametrization of the effective pre-EWSB mass-eigenstate La-

grangian coupling mixing scalar and pseudoscalar SM-singlet fermionic DM operators to

the SM via the Higgs portal H†H:1,2

L = LSM + χ̄
(
i/∂ −M0

)
χ+ Λ−1

(
cos θ χ̄χ+ sin θ χ̄iγ5χ

)
H†H . (2.1)

As the couplings break chiral symmetry independently of the mass term, one would

expect M0 to be at least of order Λ, and since we are assuming that the non-SM operators

in (2.1) do not participate in EWSB, one also expects M0 and Λ are greater than the weak

scale, although we will allow M0 < 〈v〉 in this work.

After EWSB the Higgs field develops a vacuum expectation value 〈v〉 and the Higgs-

field content becomes (in the unitary gauge with 〈v〉 = 246 GeV)

H†H −→ 〈v〉2

2
+ 〈v〉h+

h2

2
. (2.2)

The Lagrangian then becomes

L = LSM + χ̄i/∂χ−
[
M0χ̄χ− 〈v〉2

2Λ

(
cos θ χ̄χ+ sin θ χ̄iγ5χ

)]

+ Λ−1

(
cos θ χ̄χ+ sin θ χ̄iγ5χ

)(
〈v〉h+

1

2
h2

)
. (2.3)

1Unless explicitly stated, we will consider the DM field χ to be a Dirac fermion and point out differences

for the Majorana fermion case.
2The parametrization in terms of θ and Λ is convenient for a numerical scan of the parameter space,

but we should caution the reader that the “EFT suppression” scale Λ in this parametrization is only

approximately the scale of new physics: the scalar (CP-conserving) and pseudoscalar (CP-violating) oper-

ators can logically have different new physics scales associated with them and this gets mixed up in our

parametrization. This issue should be borne in mind when judging issues of perturbative unitarity.
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If we were to assume instead that the DM is Majorana, we would insert the conventional

factor of 1/2 in front of every fermionic bilinear; the subsequent analysis of the Lagrangian

is then unchanged from the Dirac case, modulo possible initial or final state symmetry

factors in computing amplitudes.

If sin θ != 0, after EWSB it is necessary to perform a chiral rotation and field redefinition

to have a properly defined field with a real mass

χ → exp (iγ5 α/2)χ ⇒ χ̄ → χ̄ exp (iγ5 α/2) . (2.4)

Note that a chiral rotation by α = π would change the sign of the mass term in (2.3) and

also change the sign of the interaction terms. We can thus without loss of generality take

M0 > 0, so long as we preserve the relative signs between the mass term and the interaction

terms.3

After chiral rotation and field redefinition, we demand that the coefficient of χ̄iγ5χ

vanish in order to go to the real mass basis; this determines the proper chiral rotation and

gives the mass of the field after EWSB in terms of the Lagrangian parameters (we define

the mass after EWSB, M , as the coefficient of −χ̄χ in the rotated field variables). The

requisite rotation is:

tanα =

[
〈v〉2

2Λ
sin θ

] [
M0 −

〈v〉2

2Λ
cos θ

]−1

. (2.5)

This of course determines sin2 α and cos2 α, but not the (common) sign of cosα and sinα:

cos2 α =

(
M0 −

〈v〉2

2Λ
cos θ

)2

(
M0 −

〈v〉2

2Λ
cos θ

)2

+

(
〈v〉2

2Λ

)2

sin2 θ

and (2.6)

sin2 α =

(
〈v〉2

2Λ

)2

sin2 θ

(
M0 −

〈v〉2

2Λ
cos θ

)2

+

(
〈v〉2

2Λ

)2

sin2 θ

. (2.7)

Using this rotation angle, the mass becomes

M = ±

√(
M0 −

〈v〉2

2Λ
cos θ

)2

+

(
〈v〉2

2Λ

)2

sin2 θ . (2.8)

The signs of M , cosα, and sinα are common; we choose the common sign to be “+” for

M , cosα = +
√
cos2 α, and sinα = +

√
sin2 α. With this choice the Lagrangian becomes4

L = LSM + χ̄i/∂χ− χ̄Mχ+ Λ−1

(
〈v〉h+

1

2
h2

)[
cos ξ χ̄χ+ sin ξ χ̄iγ5χ

]
, (2.9)

3In our parametrization this sign can be absorbed by a redefinition θ → θ+ π leading back to the same

form. Thus, by suitable choice of the quadrant in which θ lies, the form (2.3) is completely general with

M0 > 0.
4If we had chosen the opposite signs for M , cosα, and sinα, we could perform a further chiral rotation

by π and field definition to recover the sign conventions in (2.9).
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After EWSB:

A chiral rotation and field redefinition is needed for a real mass

1. sin θ = 0, cos θ = ±1: This would be a pure scalar interaction before EWSB. Af-

ter EWSB the interaction term is ± Λ−1 χ̄χ
(
〈v〉h+ h2/2

)
and the mass is M =∣∣∣M0 ∓ 〈v〉2/2Λ

∣∣∣. Thus, a pure scalar interaction before EWSB will remain a pure

scalar interaction with no admixture of pseudoscalar interactions. However, note

that the mass M is in general different from M0.

2. cos θ = 0, sin θ = ±1: This would be a pure pseudoscalar interaction before EWSB.

After EWSB the interaction term is

Λ−1



−
〈v〉2

2ΛM
χ̄χ±

√√√√1−
(

〈v〉2

2ΛM

)2

χ̄iγ5χ




(
〈v〉h+ h2/2

)
,

and in both cases M =

√

M2
0 +

(
〈v〉2

2Λ

)2

> 〈v〉2/2Λ. Even if the Higgs portal

coupling is purely pseudoscalar in the EW-symmetric Lagrangian, after EWSB a

scalar term proportional to 〈v〉2/2ΛM is generated.

3. M0 = 0 (or more generally, M0 % 〈v〉2/2Λ): In this case M = 〈v〉2/2Λ. If

M0 = 0, then cos ξ = −1 and sin ξ = 0, and the interaction term is purely scalar:

L ⊃ −Λ−1
(
vh+ h2/2

)
χ̄χ. The chiral rotation that resulted in a real mass term

transforms the interaction into a purely scalar interaction irrespective of the value of

θ. The only two parameters in this limit are M and Λ; one of the parameters may

be set by the requirement that freeze out results in the correct relic abundance.

Whether scalar, pseudoscalar, or a combination of both, the nature of the interactions

is of great importance: annihilation through a pure scalar interaction (sin ξ = 0) is velocity

suppressed, while elastic scattering of WIMPs with nucleons through a pure pseudoscalar

interaction (cos ξ = 0) is velocity suppressed.9 If both interactions are present, then the

(non-velocity-suppressed) interaction most important for direct detection (scalar) may not

be the same as the (non-velocity-suppressed) interaction most important for determining

the relic abundance (pseudoscalar).

We note finally that the form of the Lagrangian in terms of the chirally rotated field

variables is only appropriate to use ‘below’ the electroweak phase transition. We restrict

ourselves to considering DM lighter than 3 TeV where direct detection constraints from

LUX [29] are available, so this condition is always satisfied since such DM decouples at

T ! O(200) GeV (the freeze-out temperature TF ∼ M/xF with xF ∼ 20−25 [36]). ‘Above’

the phase transition, the unrotated form should be used in the freeze-out computation,

while the rotated form would be relevant to compute all present-day low-energy observables:

we do not explore this regime further in this paper.

9Strictly speaking, the interaction is momentum-transfer suppressed, but for elastic scattering this leads

to velocity suppression.
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If we were to assume instead that the DM is Majorana, we would insert the conventional

factor of 1/2 in front of every fermionic bilinear; the subsequent analysis of the Lagrangian

is then unchanged from the Dirac case, modulo possible initial or final state symmetry

factors in computing amplitudes.
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)2
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〈v〉2

2Λ
cos θ

)2

+

(
〈v〉2

2Λ

)2

sin2 θ
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sin2 α =

(
〈v〉2

2Λ

)2

sin2 θ

(
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)2

+

(
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)2
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where we have defined ξ = θ + α:

cos ξ =
M0

M

[
cos θ − 〈v〉2

2ΛM0

]
and sin ξ =

M0

M
sin θ . (2.10)

For a fixed value of Λ, we note that the mapping between (M0, θ) and (M, ξ) is,

given our sign conventions, bijective. However, as will be explained more fully below, our

analysis scans over (M, ξ) and fixes Λ by requiring the correct DM relic density. In this

way, Λ = Λ(M, ξ), and the mapping back to (M0, θ) from (M, ξ) with Λ = Λ(M, ξ) may

not be 1-to-1 in some regions of parameter space. Put another way, if one scans over

(M0, θ) and asks for the value of Λ required to give the correct relic density, there are

regions of parameter space where two or more solutions may be possible, corresponding

necessarily to physically distinct scenarios (different values of M and ξ) in the Lagrangian

relevant below the electroweak phase transition. As we are never interested in the regime

where we must work with (M0, θ) (see below), this subtlety does not enter our work further

(although, see appendix A), but it should be borne in mind in when relating parameters

of some UV completion to our results; of course, if Λ is fixed a priori, then this concern is

not applicable.

Comparing eqs. (2.9) and (2.1), it appears that the discussion about chiral rota-

tions to have a proper mass term could have been avoided by just substituting5 H†H →
H†H − 1

2〈v〉
2 = 〈v〉h + 1

2h
2 in (2.1). In the spirit of effective field theories, as we do not

know the origin of the mass M0 in the UV theory, one would näıvely expect we should not

care whether or not M in (2.9) has a contribution from EWSB. However, we have learned

something important because, due to the pseudoscalar interaction term, making the sub-

stitution H†H → H†H − 1
2〈v〉

2 in (2.1) — thereby avoiding the above discussion — is

equivalent to requiring a carefully chosen phase6 of the χ mass term in the effective theory

above the EWSB scale, which in turn would require some conspiracy in the UV complete

theory to arrange. The opposite side of the same coin is that if we do work with the form of

the Lagrangian at (2.1), it is unnatural to have a pure pseudoscalar coupling after EWSB7

(cos ξ = 0) because this requires ΛM0 cos θ = 〈v〉2/2, which is an ill-motivated coincidental

relationship between parameters in the effective high-energy theory (and thereby, its UV

completion) and the electroweak vacuum expectation value.8

Although we perform a general parameter scan, there are a few limiting cases that are

interesting to consider:

5This substitution preserves manifest SU(2)L × U(1)Y gauge invariance.
6The presence of both normal (∝ χ̄χ) and axial (∝ χ̄iγ5χ) mass terms is equivalent a complex mass

term (L ⊃− M ′χ̄LχR + h.c.) with a non-zero phase for M ′.
7Note that it is already clear at the level of the original Lagrangian that a vanishing scalar coupling

is a not naturally stabilized situation as it is not protected by any symmetry (cf. the case of vanishing

pseudoscalar coupling, which is protected by the overall CP-symmetry of the Lagrangian). What we have

really learned additionally is that EWSB itself causes changes to the pure-pseudoscalar nature of the original

coupling, already at tree-level.
8We would like to thank the authors of ref. [35] for sharing an early version of their work, wherein a

careful matching between our (2.1) and (2.9) is discussed.
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Figure 6. These colormaps represent interpolated values of σχN
SI /σLUX

95% CL UL, with the solid black
line showing the equality of the computed cross section and the LUX limit [29] (note that 95% CL
UL from LUX are only available up to 2 TeV from DMTools [57]; we have extrapolated the limit
linearly up to 3 TeV — this is justified since the limit ∼ 1/nDM ∼ M and since in the data the
limit is already scaling approximately linearly in this region). Redder points “above” the black line
are excluded, bluer points “below” the black line are allowed. For reference, the dashed black line
is the cognate of the solid black line, except for the 90% CL UL from LUX: it shows the equality
of the computed cross-section and this limit; no other 90% CL UL contours are shown (90% CL
UL are available up to 3 TeV). Note that the mass region near M ≈ mh/2 is allowed for any value
of ξ: this is the resonant Higgs portal scenario [18]. The singly hatched region is where Λ < 〈v〉.
The doubly hatched region at low mass is where no Λ value can be found to obtain the correct relic
density.

νχ ∼ 220 km/s in the earth rest-frame; a proper treatment would require an averaging over

the DM velocity distribution already in the extraction of the cross-section exclusion bound

from LUX data, and not a posteriori once a bound is extracted, as there are additional

velocity-dependent factors which enter the conversion from the differential recoil rate in

the detector to a cross-section bound (see e.g. ref. [56]).
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We will compare this to the latest LUX upper limits [29] on the spin-independent

WIMP-nucleon cross-section as supplied in numerical form by DMTools [57]. Results are

shown in figure 6 for both Dirac and Majorana DM.

7 Combined Limits

The combined limits are shown in figure 7 for Dirac and Majorana DM. The inserts are

regions where cos2 ξ is very close to zero and the EFT DM–Higgs coupling is nearly com-
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Figure 1. Effective Field Theories used in this work. The fields mediating DM interactions with
the SM are integrated out at the scale Λ. The operators of the SMχ EFT are evolved down to
the EWSB scale, where electroweak states are integrated out. There a matching onto the EMSMχ

EFT is performed. Finally, the operators are evolved down to the nuclear scale probed by direct
searches.

models where loop effects are the dominant contribution.
The only DM interactions at the nuclear scale relevant for direct detection involve

the u, d, s quarks, gluons and photons. However, many motivated models have mediator
fields coupling the DM particle to heavy SM states and/or leptons. In these cases the
main contribution to direct detection rates comes from loop effects. Furthermore, different
light quarks couplings yield direct detection cross sections which could differ by orders of
magnitude, as Goodman and Witten showed in their seminal paper [72]. If the mediator
fields induce suppressed couplings to light quarks (e.g. DM velocity-suppressed and/or spin-
dependent interactions), loop-induced couplings to non-suppressed operators are again the
dominant contribution. The best current experimental limits come from XENON100 [73]
and LUX [74], and will be significantly improved soon by SCDMS, XENON1T, DARKSIDE
G2 and LZ (see for example Ref. [75]). They rule out electroweak processes with Z boson
exchange by orders of magnitude, and are therefore powerful enough to put constraints even
on loop-induced processes.

The paper is structured as follows. The bases of independent operators for both the
EFTs in Fig. 1 as well as matching conditions at the EWSB scale are discussed in Sec. 2.
The RGE equations in both EFTs are presented in Sec. 3, with details on loop calculations
contained in App. B. The reader only interested in our results, not in their derivation,
can safely jump from Sec. 2 to Sec. 4, where we present the applications of our results to
spin-independent searches. Consistently with the spirit of this work, we focus on examples
where the DM has either suppressed couplings to light quarks or couplings only to heavy
SM states. In these cases our loop effects are the main contribution to spin-independent
direct detection rates. In App. D we give a straightforward recipe that allows one to apply
our results and constrain UV complete fermion WIMP models that give rise to dimension
6 effective operators. Sec. 5 contains our conclusions.

2 The Effective Theories for Singlet Fermion Dark Matter

Our conceptual starting point is a renormalizable model for a fermion DM field χ that is a
SM gauge singlet. Interactions between χ and the SM degrees of freedom ψSM are due to
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In order to fully exploit complementarity between direct detection and collider searches, one 
needs to properly connect the scale of the mediator mass to the nuclear scale
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the exchange of mediator fields Φ. The typical mass of the Φ’s is assumed to be greater than
the Fermi scale, and at such scales the full SM gauge symmetry SU(3)c ×SU(2)L ×U(1)Y
is unbroken. The Lagrangian of the UV complete model schematically reads

LUV = LSM + χ(i/∂ −mχ)χ+ Lmed(ψSM,χ,Φ) . (2.1)

Integrating out the mediators at the scale Λ generates what we call SMχ EFT, containing
only χ and the whole SM field content as its degrees of freedom. Many explicit realizations
for LUV exist in the literature, and they can all be matched onto the SMχ EFT at the
cutoff scale Λ. The regime of validity of this EFT extends all the way down to the EWSB
scale, where the heavy EW states (W , Z, h and t-quark) have to be integrated out and
the residual gauge symmetry is SU(3)c × U(1)em. For this reason we employ a different
EFT below the EWSB scale, with only a SU(3)c × U(1)em gauge symmetry and 5 quark
flavors, which we call EMSMχ EFT (where EMSM stands for SM with only electromagnetic
interactions). In the remaining part of this Section we give a basis of independent operators
for both EFTs up to mass dimension 6, as well as a prescription for how to match SMχ

EFT onto EMSMχ EFT at the EWSB scale.

2.1 SMχ Effective Theory

Right below the mediator scale Λ all the SM degrees of freedom are in the spectrum, and
the SU(3)c ×SU(2)L ×U(1)Y SM gauge group is unbroken. Integrating out the mediators
Φ in Eq. (2.1) generates an infinite tower of higher dimensional operators

LSMχ = LSM + χ
(
i/∂ −mχ

)
χ+

∑

d>4

∑

α

c(d)α

Λd−4
O(d)

α . (2.2)

Our conventions for the SM Lagrangian LSM are summarized in App. A. In particular, since
SM fermions are in a chiral representation of the gauge group, we use the matter fields

FSM =
{
q(i)L , u(i)R , d(i)R , l(i)L , e(i)R , H

}
. (2.3)

The index i runs over the three different SM fermion generations, and the gauge quantum
numbers are assigned as in Table 1. The index α runs over all gauge invariant operators
of a given dimension d, with the dimensionless Wilson coefficients c(d)α encoding unresolved
dynamics. These coefficients are renormalization-scale dependent, and we will quantify this
dependence in the next Section.

Without the need of specifying the responsible symmetry, we make sure the DM field
is stable by requiring that every operator contains at least two χ fields. As an example,
if DM is stabilized by a Z2 symmetry, only operators with an even number of χ fields are
allowed. Furthermore, our focus is on DM elastic scattering off target nuclei, thus we only
need to consider operators with two DM fields. In our study we adopt the following basis
of DM bilinears Oαχ

1

Oαχ =
{
χχ , χγ5χ , χγµχ , χγµγ5χ , χσµνχ

}
. (2.4)

1For effective operators up to dimension 6 and neglecting velocity suppressed effects this is a complete
basis.
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Symbol Operator Symbol Operator Symbol Operator

O(i)
Γq χΓµχ qiLγµq

i
L O(i)

Γl χΓµχ liLγµl
i
L O(i)

ΓH χΓµχH†i
←→
D µH

O(i)
Γu χΓµχuiRγµu

i
R O(i)

Γe χΓµχ eiRγµe
i
R

O(i)
Γd χΓµχ diRγµd

i
R

Table 3. Basis of dimension 6 operators for the SMχ EFT. The first two columns have three
different replicas, corresponding to the SM generations. We consider a generic χΓµχ, which can be
either a vector (Γµ = γµ) or an axial (Γµ = γµγ5) DM current or any linear combination of them.

where we do not assume any flavor violation The index i runs over the three different
fermion generations, thus the above vector has 5 × 3 + 1 = 16 components. The double-
arrow derivative entering the Higgs current reads

H†←→D µH ≡ H†(DµH)− (DµH
†)H , (2.8)

with the covariant derivative defined as in Eq. (A.3) of App. A.

Lorentz invariant operators can be obtained by contracting the currents in Eq. (2.7)
with a DM current χΓµχ, where both vector Γµ = γµ and axial Γµ = γµγ5 currents are
possible. This gives a total of 16 × 2 = 32 independent operators. However, since χ is
a singlet, the DM current χΓµχ is invariant under RG evolution, thus we can study two
16-dimensional sectors separately. The basis for dimension 6 operators with a specific DM
current χΓµχ is shown in Table 3. For future convenience, we introduce a 16-dimensional
vector of Wilson coefficients

CT
SMχ

≡
(
c(1)Γq c(1)Γu c(1)Γd c(1)Γl c(1)Γe c(2)Γq c(2)Γu c(2)Γd c(2)Γl c(2)Γe c(3)Γq c(3)Γu c(3)Γd c(3)Γl c(3)Γe cΓH

)
, (2.9)

where cα is associated with the operator Oα in Table 3. The solid double line divides DM
interactions with the Higgs from the ones with SM fermions. The solid single lines divide
different SM generations and within each generation quarks and leptons are divided by a
dashed line.

We stress that the dimension 6 operator

OΓB = g′
cB
Λ2

χΓµχ ∂νBνµ (2.10)

does not need to be included in our list since it can be expressed as a linear combination
of the ones listed in Table 3 by using classical equation of motion [94] for the hypercharge
field strength (see Eq. (A.10)). More specifically, the effect of this operator can be absorbed
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Figure 2. External legs corrections for SM fermions.
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Figure 3. External legs for SM Higgs.

3 Renormalization Group Evolution

We present the complete one-loop RG equations in both EFTs. Here, we only show Feynman
diagrams and quote final results. Regularization and renormalization at one loop in both
EFTs are detailedly discussed in App.B. As explained in the previous Section, no interesting
loop effect takes place among the dimension 5 operators, besides the well known heavy quark
threshold contribution from the Higgs portal [81]. Thus we focus on dimension 6 operators.

3.1 From the messenger scale to the EWSB scale

The evolution of the Wilson coefficients in Eq. (2.9) is described by the differential equation

d CSMχ

d lnµ
= γSMχCSMχ , (3.1)

where µ is the renormalization scale and γSMχ is the anomalous dimension matrix. Our
goal here is to fill out the 16× 16 = 256 entries of the matrix γSMχ .

We start our one-loop analysis in this theory by considering external legs corrections.
Since the DM field is a gauge singlet, these contributions only involve SM fields and inter-
actions. We perform the field renormalizations

ψi → Z1/2
ψi

ψi , H → Z1/2
H H , (3.2)

where ψi is any SM fermion, and we do it in such a way to subtract the infinite part from
the residue of each one-loop propagator. There are only two possible sources for this effect,
which are gauge and Yukawa interactions. As is well know, the Higgs quartic coupling does
not induce a one-loop contribution to the wave-function renormalization. The relevant
Feynman diagrams are shown in Figs. 2 and 3 for fermion and Higgs fields, respectively.

When considering vertex corrections, one still has to deal only with these two inter-
actions. We organize the presentation by fixing the external legs of a specific amplitude,
and then identifying all the possible one-loop contributions. In other words, we fix a given
effective operator from the ones in Table 6 and then look for operators mixing into it.
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Wilson coefficients are matched at the EWSB scale including effects from integrating out weak 
scale particles

Symbol Operator

OMF χσµνχFµν

OEF χσµνχ εµνρσF ρσ

Table 5. Basis of dimension 5 operators for the EMSMχ Effective Theory.

Symbol Operator Symbol Operator Symbol Operator

O(i)
ΓV u χΓµχuiγµui O(i)

ΓV d χΓµχ diγµdi O(i)
ΓV e χΓµχ eiγµei

O(i)
ΓAu χΓµχuiγµγ5ui O(i)

ΓAd χΓµχ diγµγ5di O(i)
ΓAe χΓµχ eiγµγ5ei

Table 6. Basis of dimension 6 operators for the EMSMχ Effective Theory. Each operator has
three different replicas, corresponding to the three SM generations. The DM bilinear can have both
vector or axial currents, namely Γ = {V,A}, where V µ = γµ and Aµ = γµγ5.

The top quark is not in the spectrum, thus we count 6× 3− 2 = 16 independent currents.
Also in this case they can be contracted with either a vector or an axial DM current, giving
a total of 32 independent operators. Each 16 dimensional sector shown in Table 6 can be
studied separately. In analogy to Eq. (2.9), we define the vector

CT
EMSMχ

=
(
c(1)ΓV u c(1)ΓV d c(2)ΓV u c(2)ΓV d c(3)ΓV d c(1)ΓV e c(2)ΓV e c(3)ΓV e c(1)ΓAu c(1)ΓAd c(2)ΓAu c(2)ΓAd c(3)ΓAd c(1)ΓAe c(2)ΓAe c(3)ΓAe

)
.

(2.22)
Here, the solid double line is used to divide DM couplings to a vector or an axial SM current,
whereas single solid lines divide quarks from leptons.

The redundant dimension 6 operator in this case is

OΓF = e
cF
Λ2

χΓµχ ∂νFνµ . (2.23)

Equations of motion for the electromagnetic field strength (see Eq. (A.12)) translates this
operator into a linear combination of the ones listed in Table 6, which equivalently amounts
to this shift of the Wilson coefficients for the operators with SM vector currents

c(i)ΓV u → c(i)ΓV u − e2QucF , (2.24)

c(i)ΓV d → c(i)ΓV d − e2QdcF , (2.25)

c(i)ΓV e → c(i)ΓV e − e2QecF . (2.26)

The operators with SM axial currents are not affected, since the photon only couples to
vector currents.

2.3 Matching the two EFTs at the EWSB scale

We conclude this Section by giving matching conditions between the two theories, namely
the relations between the Wilson coefficients in Eq. (2.22) and those in Eq. (2.9), both
evaluated at the EWSB scale, which is smaller than Λ in this setup. As we will see shortly,
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e 6yeyq 3yeyu 3yeyd 2yeyl y2

e 6yeyq 3yeyu 3yeyd 2yeyl y2
e yeyH

6yHyq 3yHyu 3yHyd 2yHyl yHye 6yHyq 3yHyu 3yHyd 2yHyl yHye 6yHyq 3yHyu 3yHyd 2yHyl yHye y2
H





,

(3.5)
with the hypercharges as in Eq. (B.7).

3.2 From the EWSB scale to the nuclear scale

The Wilson coefficients given in Eq. (2.22) for the EFT below the EWSB scale evolve
according to

d CEMSMχ

d lnµ
= γEMSMχCEMSMχ . (3.6)

We now discuss how to obtain the 16 × 16 anomalous dimension matrix γEMSMχ . The
external leg corrections only come from the gauge sector. For strong interactions they are
identical to the ones in the SMχ EFT, and for electromagnetic interactions they can be
easily obtained from the analogous hypercharge diagrams. Their effect is again to cancel
out against the associated vertex corrections.

Also in this case there are two classes of vertex corrections. The first ones are due
to the SM four-fermion interactions, in the way we show in Fig. 7. This diagram in the
EMSMχ EFT is the analogous of the correction to cH discussed in the SMχ EFT, but the Z

boson is integrated out in this phase of the theory. Despite the fact that these diagrams are
suppressed by the Fermi constant, we keep them to be consistent with the analysis above
the EWSB scale, since their contribution is proportional to GF m2

ψ ∝ λ2
ψ.

The second effect is the radiative correction to the Wilson coefficient cF of the redun-
dant operator in Eq. (2.23). The diagrams are analogous to the fermion loop in Fig. 6, but
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4 Applications to Spin-Independent Searches

In Sec. 3 we presented the full 16×16 anomalous dimension matrices describing the one-loop
RG evolution for dimension 6 operators above and below the EWSB scale. As promised
in the introduction, these details can be skipped by a reader only interested in our final
results. For the benefit of such a reader, we now briefly summarize the RG procedure.

The boundary conditions for the RG system are the SMχ EFT Wilson coefficients at
the cutoff Λ. In a generic UV complete model with mediators heavier than the weak scale,
they are obtained by integrating out the mediator fields. Then we evolve them down to the
EWSB scale, which we take equal to the Z boson mass. It is convenient to introduce the
following dimensionless variable related to the renormalization scale µ,

t ≡ ln

[
µ

mZ

]
. (4.1)

In this notation the matching is performed at t = 0, whereas the Wilson coefficient cΛ are
specified at the cutoff scale, tΛ = ln [Λ/mZ ]. The RG evolution in the SMχ EFT is obtained
by solving the system of differential equations

d CSMχ

dt
= γSMχCSMχ , 0 ≤ t ≤ tΛ , (4.2)

CSMχ(tΛ) = cΛ , (4.3)

with the Wilson coefficients vector CSMχ defined in Eq. (2.9), and the explicitly expression
for the anomalous dimension matrix γSMχ given in Sec. 3.1. Once at t = 0, we perform the
matching between the two theories as described in Sec. 2.3. The subsequent RG evolution
for the Wilson coefficients CEMSMχ defined in Eq. (2.22) is described by

d CEMSMχ

dt
= γEMSMχCEMSMχ , tN ≤ t ≤ 0 , (4.4)

with the explicit γEMSMχ given in Sec. 3.2 and tN = ln [1GeV/mZ ] $ −4.51. The outcome
of this three-step procedure is the array of Wilson coefficients at the nuclear scale cN . We
only perform linear operations on the Wilson coefficients, therefore we have

cN = UΛcΛ . (4.5)

The Λ-dependent evolution matrix UΛ is derived in App. C and for a user-friendly recipe
we refer to App. D.

The rest of this Section is devoted to applying Eq. (4.5) to limits from direct detection
experiments. We focus on spin-independent searches, since they have much stronger bounds,
and this has two implications. First, we need to consider effective operators with DM vector
currents χγµχ. For pure elastic scattering this operator is non vanishing only for Dirac
fermions, but our results are also valid for inelastic scattering of two splitted Majorana
states [95]. Second, matrix elements of SM fermion currents have only contributions from
valence quarks in the target nuclei, therefore the direct detection cross section at zero
momentum transfer and low DM velocities reads

σSI
N =

m2
χm

2
N

(mχ +mN )2 πΛ4

∣∣∣c(1)V V u(A+ Z) + c(1)V V d(2A− Z)
∣∣∣
2
. (4.6)
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Figure 8. Experimental limits from direct detection for the D5 and D7 operators. In the top-left
(right) panel we consider only D5 (D7) switched on at the scale Λ, and plot the lower bounds
on Λ from XENON100 (solid, red) [73] and LUX (solid, blue) [74], as well as projected limits
from SCDMS (dot-dashed, green), XENON1T (dot-dashed, purple), DARKSIDE G2 (dot-dashed,
magenta), LZ (dot-dashed, brown) [75]. The dotted orange line gives the correct thermal relic
density. In the bottom panel we fix mχ and plot the region allowed by LUX in the (cD5, cD7) plane
for three different values of Λ. The faded bands, which only constrain the vector coupling cD5,
show the limits which would be obtained ignoring our analysis. We also plot the thermal relic lines
whenever they are in the parameter space region under consideration.

The top-right panel of Fig. 8 shows the analogous case where only D7 is switched on
at the scale Λ, with cD7 = 1. The limits on Λ are weaker than the case of D5, but still in
the multi-TeV region [68]. For both D5 and D7 we also plot the line that gives a correct
thermal relic density, obtained using the annihilation cross section in Ref. [98]. Current
limits exclude thermal relics with mass mχ ! 3TeV for D5, with a potential of excluding
DM masses of the order of 10TeV by forthcoming experiments. The weaker limits for D7
are still in the range mχ ! 200GeV, which can be improved to reach TeV masses in the
future.

Both upper panels are for either c5 or c7 equal to 1. To relax this assumption one cannot
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Here, c(1)V V u and c(1)V V d are the first two component of the vector defined in Eq. (2.22),
whereas A, Z and mN are the mass number, atomic number and mass of the target nucleus
N , respectively.

In what follows, we consider specific choices of Wilson coefficients cΛ at the cutoff scale
and we evolve them down to the nuclear scale as in Eq. (4.5). The running of the Yukawa
couplings above the EWSB scale is performed according to Ref. [96] and of the quark masses
below mZ using the results in Ref. [97]. We compare the predicted rate as in Eq. (4.6) to
the experimental limits, and extract bounds on the Wilson coefficients. Our results are
model independent, in the sense that every UV complete model generating that specific set
cΛ when matched on the SMχ is subject to our constraints.

4.1 D5 and D7 operators

The connection between different DM negative searches is often expressed in terms of limits
on the coefficients for the effective operators introduced in Ref. [25]. For a vector current
of a fermion WIMP, the relevant operators involving quarks are

LD5 =
cD5

Λ2
χγµχ

[
∑

i

uiγµu
i +

∑

i

diγµd
i

]
, (4.7)

LD7 =
cD7

Λ2
χγµχ

[
∑

i

uiγµγ5u
i +

∑

i

diγµγ5d
i

]
. (4.8)

We now connect this description to the notation used in this paper, and explore the conse-
quences of connecting EFT scales.

Keeping the complementarity among different searches in mind (e.g. between collider
and direct searches as in Ref. [25]), we take the operators in Eqs. (4.7) and (4.8) as defined
at the EFT cutoff Λ. In other words these are operators in the SMχ EFT. Considering
flavor universal coupling to SM quarks, D5 and D7 are reproduced by this set of Wilson
coefficients

cTΛ
∣∣
D5,D7

=
(
cL cR cR 0 0 cL cR cR 0 0 cL cR cR 0 0 0

)
, (4.9)

where

cD5 =
cL + cR

2
, (4.10)

cD7 =
−cL + cR

2
. (4.11)

Our results are shown in the four panels of Fig. 8. In the top-left panel we consider
the case where only D5 is switched on, and plot current and projected experimental limits
in the (mχ,Λ) plane for cD5 = 1. As is well known, quite high scales for the mediator
masses are necessary to be consistent with experimental exclusion bounds. We gain valuable
information from this plot: given the extremely strong constraints on this operator, we are
still likely to get useful limits on the scale Λ in other cases where the dominant contribution
to direct detection rates is via D5 generated by SM loop effects. We deal with these cases
in the next subsections, but we first complete the discussion of the (D5, D7) set.
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Figure 9. Same as Fig. 8 but for DM vector current interactions with heavy quarks.

to vector currents. In the bottom-right panel we consider isospin violation by coupling the
DM only to right handed quarks (i.e. cQ = 0) and identifying the allowed region in the
(cU , cD) plane. The bands are close to the vertical line going through cU = 0, since the
effect is driven by the top Yukawa.

4.3 Leptophilic Dark Matter

Another interesting possibility are leptophilic DM models

cTΛ
∣∣
Leptoph.

=
(
0 0 0 cl ce 0 0 0 cl ce 0 0 0 cl ce 0

)
, (4.13)

where for simplicity we consider flavor universal coupling to leptons. In such models there
are many sources of couplings to light quarks currents. The Yukawa coupling of the τ

induces a mixing into the Higgs current, which in turn leads to a coupling to light quarks
when the Z is integrated out. Hypercharge (electromagnetic) interactions above (below)
the EWSB scale also induce mixing onto light quark currents.
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Leading order QCD loop effects on the Wilson coefficients for colored mediator exchanges have been 
calculated for Majorana, scalar, and real vector boson dark matter

J. Hisano, R. Nagai, and N. Nagata, JHEP 1505 (2015), arXiv:1502.02244
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Figure 8: (a) Each contribution to the WIMP-proton effective coupling fp as functions
of the mediator mass Mq̃. DM model adopted here is the same as Fig. 7. Upper red
(lower blue) line shows the contribution of the scalar-type (twist-2-type) operators. For
the twist-2 contribution, solid and dashed lines show the results with and without the
renormalization effects, respectively. (b) WIMP-proton scattering cross section σp as a
function of Mq̃. Solid and dashed lines show the results with and without the renormal-
ization effects, respectively. In both plots, WIMP mass is set to be M = 200 GeV.

6 Conclusion and discussion

So far we have discussed a way of evaluating the WIMP-nucleon scattering cross section
at the leading order in αs based on the effective theoretical approach. We have considered
a Majorana fermion, real scalar and vector bosons, and presented formulation for each
case. Further, using a particular example with a Majorana fermion, we have shown
that the renormalization effects may change the twist-2 contribution by more than 50%
when the colored mediators are much heavier than the electroweak scale, which results in
modification to the WIMP-nucleon scattering cross section by O(10)%.

As shown in Fig. 7, the calculation of the twist-2 contribution suffers from O(10)%
uncertainty due to the perturbation in αs. It is possible to reduce the uncertainty by
going beyond the leading-order calculation. In fact, we have already had the higher-order
results for the RGEs and the matching conditions at each quark threshold, as commented
in Sec. 2.4. To complete the next-to-leading order computation, however, we further need
the higher-order matching conditions between the full and effective theories at the input
scale. We defer the calculation as future work. In addition, we expect that future lattice
QCD simulations will much improve the determination of the quark content in nucleon.
These two developments will enable us to evaluate the WIMP-nucleon scattering cross
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An NLO calculation for WINO dark matter (and a 
generic SU(2)L dark matter) was carried out
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Figure 6: Wino-proton SI scattering cross section. Blue dashed and red solid lines rep-
resent LO and NLO results, respectively, with corresponding bands show perturbative
uncertainties. Gray band shows uncertainty resulting from the input error. Yellow shaded
area corresponds to the region in which neutrino background overcomes DM signal [32].

than 1%, and thus well controlled compared to the scalar contribution.

3.3 Scattering cross section

Finally, we evaluate the wino-nucleon SI scattering cross section, which is given by

σN
SI =

4

π

(
MmN

M +mN

)2

|fN
scalar + fN

twist2|2 . (3.54)

We plot σp
SI as function of the wino mass in Fig. 6. Additionally we indicate the parameter

region where the neutrino background dominates the the DM-nucleon scattering [32] and
then it becomes hard to detect the DM signal in the DM direct detection experiments (yel-
low shaded). Here we estimate each error by varying the scalar and twist-2 contributions
within their uncertainties evaluated above. The result shows that the large uncertainty in
the LO computation is significantly reduced once the NLO QCD corrections are included,
which is now smaller than that from the input error. In the large DM mass limit, the SI
scattering cross section converges to a constant value,

σp
SI = 2.3 +0.2

−0.3
+0.5
−0.4 × 10−47 cm2 , (3.55)

where the first and second terms represent the perturbative and input uncertainties, re-
spectively. As seen from Fig. 6, σp

SI has little dependence on the DM mass; its variation
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The theoretical uncertainty is much smaller and the central 
cross-section value is about 70% larger than for LO 
corrections alone.

J. Hisano, K. Ishiwata, and N. Nagata, JHEP 1506 (2015), arXiv:1504.00915
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One must also account for hadronic matrix element evaluation 

q F (p,q)
1 (0) F (p,q)

2 (0) F (p,q)
2 (0)

u 2 1.62(2) 1.65(7)

d 1 −2.08(2) −2.05(7)

s 0 −0.046(19) −0.017(74)

Table 7: Scale independent vector form factors for the proton at q2 = 0 for light quark flavors

u, d, s. For F (p,q)
2 (0) we present values in the second and third column employing µs from Refs. [53]

and [54], respectively. The uncertainties are combined in quadrature and symmetrized. The vector
form factors for the neutron follow from approximate isospin symmetry expressed in (42).

4 Hadronic matrix elements

Having determined the structure of the effective theory in terms of quark and gluon degrees of
freedom in nf = 3 (or nf = 4) flavor QCD, we may evaluate the resulting nuclear matrix elements at
a renormalization scale µ ∼ 1−2GeV. As a natural handoff point to nuclear modeling, the subsequent
section identifies these matrix elements with matching coefficients of a nucleon-level effective theory.

In this section, we use nonrelativistic normalization ū(k)u(k) = mN/Ek for nucleon spinors. For
the matrix elements of the vector, axial-vector, C-even spin-two and C-odd spin-two operators, we
employ approximate isospin symmetry, neglecting small corrections proportional to mu −md and α,
to relate proton and neutron matrix elements as

〈p|Ou|p〉 = 〈n|Od|n〉 , 〈p|Od|p〉 = 〈n|Ou|n〉 , 〈p|Os|p〉 = 〈n|Os|n〉 . (42)

The proton and neutron tensor charges tq,N defined in Eqs. (52) and (53) are also related by (42),
while the matrix element of the tensor current Tq itself requires the appropriate quark mass factor. For
the scalar and pseudoscalar matrix elements, we tabulate both the proton and neutron form factors.
The corrections to zero momentum transfer (q2 → 0) are suppressed in the nonrelativistic regime of
typical WIMP-nucleon scattering processes. We discuss the these corrections in Appendix B.

4.1 Vector current matrix elements

For vector currents we parametrize matrix elements as

〈N(k′)|V (q)
µ |N(k)〉 ≡ ū(k′)

[
F (N,q)
1 (q2)γµ +

i

2mN
F (N,q)
2 (q2)σµνq

ν

]
u(k) , (43)

where q ≡ k′ − k and N denotes a proton (p) or neutron (n). The Dirac F (N,q)
1 form factors are

normalized according to quark content. The Pauli form factors F (N,q)
2 (0) give the contribution of

quark flavor q to the nucleon anomalous magnetic moment aN ,

ap ≡ F (p)
2 (0) =

2

3
F (p,u)
2 (0)− 1

3
F (p,d)
2 (0)− 1

3
F (p,s)
2 (0) ,

an ≡ F (n)
2 (0) =

2

3
F (n,u)
2 (0)− 1

3
F (n,d)
2 (0)− 1

3
F (n,s)
2 (0) , (44)

where ap ≈ 1.79 and an ≈ −1.91. A phenomenological analysis employing lattice data [53] and a
direct lattice simulation with nf = 2+1 dynamical quarks [54] support a small value for the strange
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which can include important uncertainties, for example in quark mass ratios or nucleon 
form factors due to quark currents, renormalization scale choice
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Figure 1: The ratio fn/fp of the effective WIMP-neutron (fn) and WIMP-proton (fp) couplings in
terms of the parameters bi in Eq. (91). For bg = 0 (left panel), fn/fp is independent of Λ and depends
on only the ratio bu/bd. The uncertainty bands are from variation of the matrix element Σ− (gray)
and the ratio Rud = mu/md (red), with ranges given in (58) and (60). We illustrate the effect of
non-zero bg in the right panel, with bd = −bu = 0.01 and Λ = 400GeV. The solid (dashed) line is the
prediction assuming that the coefficients bi are defined at a high (low) scale µ ∼ mt (µ ∼ mc). The
inset shows the curves over the same vertical range, including uncertainty bands for the solid line
from variation of Σ− (gray) and Rud (red). In both cases the variation from ΣπN is subdominant.

6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M # mW ) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare effective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by

Lχv , SM = χ̄vχv

{ ∑

q=u,d,s,c,b

[
c(0)q O(0)

q + c(2)q vµvνO
(2)µν
q

]
+ c(0)g O(0)

g + c(2)g vµvνO
(2)µν
g

}
+ . . . , (92)

where the scalar and C-even spin-two operators, O(0)
q,g and O(2)

q,g , are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W . The bare matching coefficients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
completeness:19

c(0)U =
πΓ(1 + ε)g42
(4π)2−ε

{
−

m−3−2ε
W

2x2h

[
CW +

CZ
c3W

]
+

m−3−2ε
Z CZ
8c4W

[
c(U)2
V − c(U)2

A

]
+O(ε)

}
,

c(0)D =
πΓ(1 + ε)g42
(4π)2−ε

{
−

m−3−2ε
W

2x2h

[
CW +

CZ
c3W

]
+

m−3−2ε
Z CZ
8c4W

[
c(D)2
V − c(D)2

A

]

19 Spin-0 results were also obtained in [80].
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The functions δq(x, µ) are not yet well constrained experimentally. Table 9 lists values for the proton
tensor charges tq,p from a nonrelativistic quark model with SU(6) spin flavor symmetry and from a
lattice measurement [60]. Other estimates of tu,p, td,p or tu,p − td,p have been obtained using lattice
QCD methods [61, 62, 63], QCD sum rules [64], modeling [65, 66] and semi-inclusive deep inelastic
scattering data [67].

The tensor charges at µ = 1, 2 GeV in Table 9 are obtained by scale evolution of the tensor
charges at µ = 1.4 GeV using the anomalous dimension γT −γm with γT given in Table 4 and γm the
quark mass anomalous dimension given in Appendix A. Together with mq(µ), e.g., taken from the
PDG [68] or Ref. [69], the tensor charges in Table 9 specify the matrix element of the antisymmetric
tensor current Tµν

q . Following from (42), the neutron tensor charges are

td,n = tu,p , tu,n = td,p , ts,n = ts,p . (54)

4.4 Scalar matrix elements

For the dimension four scalar operators, we restrict attention to forward nucleon matrix elements.
Let us define

Ek

mN
〈N(k)|O(0)

q |N(k)〉 ≡ mNf (0)
q,N ,

−9αs(µ)

8π

Ek

mN
〈N(k)|O(0)

g (µ)|N(k)〉 ≡ mNf (0)
g,N (µ) , (55)

where the appearance of the numerical factor involving αs(µ) is purely conventional. The operator
matrix elements are not independent, being linked by the sum rule in Eq. (30) as

mN ū(k)u(k) = (1− γm)
∑

q

〈N(k)|mq q̄q|N(k)〉+ β̃

2
〈N(k)|(Ga

µν)
2|N(k)〉 , (56)

ignoring O(1/mN ) power corrections. Combining (55) and (56) we have

f (0)
g,N = −αs

4π

9

β̃

{
1−

(
1− γm

)
λ
}
= 1− λ+O(αs) , (57)

where λ =
∑

q=u,d,s f
(0)
q,N , the scale dependence is implicit, and the second equality is obtained by

neglecting γm and O(α2
s) contributions to β̃. In Sec. 6, we will see that corrections to the leading

order relation are numerically important in the case of electroweak-charged WIMPs.
We may extract the up and down quark scalar nucleon matrix elements from the scale-invariant

combinations,

ΣπN =
mu +md

2
〈N |(ūu+ d̄d)|N〉 = 44(13)MeV ,

Σ− = (md −mu)〈N |(ūu− d̄d)|N〉 = ±2(2)MeV , (58)

where the upper (lower) sign in Σ− is for the proton (neutron) [70]. The numerical value for the
pion-nucleon sigma term ΣπN is the lattice result from Ref. [71] with errors symmetrized. For the

strange scalar nucleon matrix element, we use the updated lattice result mNf (0)
s,N = 40±20MeV from

Ref. [72], where we assume a conservative 50% uncertainty compared to their estimate of 25%.
For models with identical couplings to up and down quarks, it is sufficient to take as input

mN
(
f (0)
u,N + f (0)

d,N

)
= ΣπN − Σ−/2 ≈ ΣπN , neglecting the small contribution from Σ−. For general

applications requiring separately the up and down quark scalar matrix elements let us write

f (0)
u,N =

Rud

1 +Rud

ΣπN

mN
(1 + ξ) , f (0)

d,N =
1

1 +Rud

ΣπN

mN
(1− ξ) , ξ =

1 +Rud

1−Rud

Σ−
2ΣπN

, (59)
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q f (0)
q,p f (0)

q,n

u 0.016(5)(3)(1) 0.014(5)(+2
−3)(1)

d 0.029(9)(3)(2) 0.034(9)(+3
−2)(2)

s 0.043(21) 0.043(21)

Table 10: Scale independent scalar form factors for the proton and neutron for light quark flavors
u, d, s. The first, second and third uncertainties are from ΣπN , mu/md and Σ−, respectively. As
discussed below Eq. (60), the parameterization in Eq. (59) leads to highly correlated uncertainties in

f (0)
u,N and f (0)

d,N .

where we employ the quark mass ratios adopted from PDG values [68] (symmetrizing errors),

Rud ≡ mu

md
= 0.49± 0.13 , Rsd ≡ ms

md
= 19.5± 2.5 . (60)

The resulting numerical values for the light quark scalar matrix elements are collected in Table 10.

The uncertainties in f (0)
u,N and f (0)

d,N are highly correlated, and for applications we use Eq. (59), varying
the inputs ΣπN , Rud and Σ− whose uncertainties are taken as uncorrelated. For both proton and

neutron, the gluon matrix element f (0)
g,N is obtained from the quark matrix elements via the sum rule

in Eq. (56).
From the analysis of heavy quark matching conditions in Sec. 3.5, we may determine the scalar

matrix elements of heavy quark flavors. For definiteness, let us consider 4-flavor QCD with a heavy
charm quark. Denoting quantities in the 4-flavor (3-flavor) theory with (without) a prime, the results
in Eqs. (39) and (40) yield

f (0)′
c,N = 0.083− 0.103λ+O(α4

s, 1/mc) = 0.073(3) +O(α4
s, 1/mc) ,

f (0)′
q,N = f (0)

q,N +O(1/mc) , (61)

where we use λ ≈ ΣπN/mN + f (0)
s,N = 0.089(26)MeV, neglecting the small contribution from Σ−. An

expression for f (0)′
c,N in terms of α′

s(µc) is given in Appendix B; in particular, the O(α3
s) term in f (0)′

c,N

employs 〈O′(0)
Q 〉4 derived in Sec. 3.5. The uncertainty in f (0)′

c,N is presently dominated by hadronic
inputs, and in (61) we neglect the small uncertainty (< 1%) from scale variation of µc. Recent lattice
measurements of the charm matrix element in Refs. [73] and [74] have determined

f (0)′
c,N =

{
0.10(3) [73]

0.07(3) [74]
, (62)

which are consistent within large errors with (61). As discussed below (39), we find discrepancies
with previous determinations of the heavy quark scalar matrix elements [51, 52].14 Nonetheless, due
to a large O(30%) uncertainty in λ, the resulting numerical values are consistent. A nonperturbative
determination of the charm and light quark matrix elements in 4-flavor lattice QCD would avoid
uncertainties associated with the charm scale µc ∼ mc, such as O(1/mc) power corrections and
O(αs) perturbative corrections. In Sec. 6, we investigate the evaluation of the spin-independent
cross section for heavy electroweak-charged WIMPs in the 4-flavor theory.

14In Ref. [72], the result of Ref. [52] was presented with updated inputs.

22

we would obtain constraints on dimension eight operators different from (81).16 These constraints
would imply that all Hermitian operators are constructed from the combinations of derivatives cor-
responding to

vrel ≡
1

2

[
p+ p′

mN
− k + k′

mχ

]
, q ≡ p′ − p = k − k′ , (89)

where p and k (p′ and k′) are the incoming (outgoing) momenta ofN and χ respectively. In particular,
the violation of Lorentz symmetry obtained by using (88) in place of (80) would manifest itself as
the absence of operators coupling to total momentum P ,

P ≡ p+ k = p′ + k′ . (90)

Note that Lorentz symmetry links a leading order nucleon spin-dependent operator (d1) to subleading
nucleon spin-independent operators. The phenomenological impact of such terms remains to be
investigated. Note that Lorentz symmetry cannot be obtained by enforcing additional constraints on
operators present in the Galilean invariant theory.

6 Phenomenological illustrations

The forgoing analysis provides a framework to systematically evolve coefficients defined at the weak
scale, to obtain the effective low-energy theory where nuclear matrix elements are evaluated. As
illustration we focus attention on two cases: firstly the specification of contact interactions at or
above the weak scale, and secondly, the specification of the complete basis of coefficients at the weak
scale by the leading order of the heavy WIMP expansion.

6.1 Contact interactions

Consider the contact interactions between a Majorana fermion WIMP and SM fields given in Eq. (6).
As a simple illustration, let us focus on the set of operators

Lχ,SM =
1

Λ2
χ̄χ

[
buūu+ bdd̄d+

bg
Λ
(Ga

µν)
2

]
, (91)

where coefficients bu,d,g may be constrained by collider production bounds [15] or engineered to
produce a desired WIMP-nucleus scattering phenomenology [79]. An observable of interest for the
latter is the ratio fn/fp of the effective spin-independent WIMP-neutron (fn) and WIMP-proton (fp)
couplings.17

We show in Fig. 1 predictions for fn/fp from the model in Eq. (91), highlighting large effects
from hadronic matrix element uncertainties and the choice of QCD renormalization scale. The left
panel illustrates uncertainties from varying the SM quantities Σ− and Rud = mu/md given in (58)
and (60).18 The right panel illustrates the uncertainty from not specifying the renormalization scale
at which the coefficients bi are defined. Meaningful predictions for fn/fp require both a precise knowl-
edge of hadronic inputs and a careful treatment of renormalization effects. Similar considerations
apply to other applications that relate constraints on contact interactions at the electroweak scale
to low energy observables such as direct detection cross sections or annihilation rates for low mass
WIMPs.

16Galilean constraints would be given by the formal limit d1 = d2 = 0 in (81).
17 In terms of the couplings in (79), fp and fn are proportional to d(p)2 and d(n)

2 , respectively.
18The point −bu/bd = 1.08 was highlighted in [79]. Hadronic uncertainties are severe at this point.
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Figure 16. Examples of the posteriors for a joint analysis of Ge+Xe+F simulations; the right
scattering operator was used for the fits. The simulations were created using (left to right): the
standard SI model, the standard SD model, and the Millicharge model (fn/fp values used for these
simulations are listed in Table 1). The red X denotes the input values. When performing posterior
analysis, the fn/fp was left as a free parameter with a wide prior (from -10 to 10), in addition to
mχ, and σp (set to the current upper limits in the simulations). In the SI case, fn/fp is completely
unconstrained, in SD case, the posterior is bimodal and there is a degeneracy with the sign of this
parameter, and in the Millicharge case, the right sign is picked out, but the posterior is still broad.

simulated data. For simulations created with the SI model, fn/fp is completely unconstrained;
for the SD simulations, the posterior is bimodal and there is a degeneracy of the sign of this
parameter; and for the Millicharge simulations, the right sign is picked out, but the posterior
is fairly broad.13 However, in spite of introducing this additional degree of freedom, there
does not seem to be a significant impact on the measurement of the DM mass; fn/fp and
mχ thus do not appear to be degenerate with each other, if the right scattering hypothesis is
chosen.

Second, we examine how freedom in fn/fp might affect model selection. For this purpose,
we take a small subset of our baseline simulations described in §6.2.1—simulations created
under the standard SI model, and under the Anapole model—and analyze them in a new
way. For this analysis, we pick the following 10 models from Table 1 as competing hypotheses
to fit to the simulations: SI, SD, the four dipole models, Anapole, SIq2 , SDq2 , and SDq4 .
However, unlike in previous analyses where we held fn/fp fixed to the correct value when
performing model fits, this time, we allow fn/fp to be an additional free parameter in the
range between -100 and 100 (note that this is an even wider prior range than that used
above to investigate impact on mass determination), for all models where the choice of this
parameter is not fixed.14 The presentation of the results in Figure 17 is as before. We jointly
analyze data from Xe, Ge, and F experiments for a 50 GeV DM particle and a signal at
the current upper limit, a combination that has close to 100% success rate in our baseline
analysis. From Figure 17 and by examining the associated model probabilities, we see the
following. First, model selection is significantly degraded for simulations under SI. However,
most of the probability in this case is actually only distributed between SI and SD models.
For Anapole, the situation is almost unchanged from the baseline analysis: this model is
confidently identified even allowing such a large modeling uncertainty.

The results presented in this Section only cover a small subset of possible underlying
models and DM masses. However, their implications are very optimistic for future data
analysis—they indicate that selection of the right underlying model may be robust to the

13Note that, for hypothesis fitting to simulations created using the Millicharge model (where fn/fp = 0),
we use SI DM with a light mediator (i.e. OSI/!q

2), where fn/fp is a free parameter.
14Note that for Anapole and dipole models (i.e. for the photon–mediated models), the choice of fn/fp is

not free, so these 5 models still only have 2 free parameters.
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Figure 17. Model selection results analogous to those of Figure 8, but with 10 models of Table 1
(SI, SD, four dipole models, Anapole, SIq2 , SDq2 , and SDq4) treated as competing hypotheses, with
fn/fp fit as a free parameter, for all but the photon–mediated models. As compared to our baseline
results, model selection still seems robust to allowing this additional degree of freedom, at least for
SI and Anapole shown here.

uncertainty on the ratio of nucleon couplings. We emphasize that this conclusion holds true
even if there are values (or localized portions of the parameter space) for fn/fp for which
data can be well fit by a “wrong” model. The evidence calculation takes into account the
entire prior space, and the existence of such “special islands” of fn/fp values does not affect
the results of Bayesian model selection.

6.5 Experimental designs

So far, our analysis has demonstrated the importance of combining a variety of nuclear targets
(including germanium, xenon, fluorine, and iodine) to correctly identify the type of DM–
nucleon scattering interaction using direct detection. In this Section, we examine how the
statistical sample (i.e. the number of observed recoil events) and the quality of model selection
depend on the recoil–energy window available for data analysis, for different targets.

Figures 18 and 19 show how the number of expected events changes as a function of the
lower and upper energy threshold, respectively, for selected models and DM masses. Firstly,
because the number of events flattens out at high energy (even for 500 GeV DM particles, and
for models with a long higher–recoil–energy tail presented in Figure 19), little is gained by
looking for recoils in the range > 200 keVnr, regardless of the scattering model. Secondly, for
most targets there are a variety of models whose strongest signature is at low recoil energies,
and especially for models where the mediator is lighter than the momentum transfer; this
feature is also more pronounced for low DM masses (as illustrated in Figure 18). Thus, we
conclude that a wide energy coverage (up to ∼200 keVnr) and especially low–energy thresholds
(below ∼1 keVnr) are generally beneficial for recovering particle–physics content from direct
detection data.

While these two Figures provide us with a sense of how the event counts change as
a function of the energy windows, they do not directly translate into implications for the
success of model selection; as we have seen in 6.2, success of model selection is not just a
function of the number counts of events, but depends on the interplay of several factors. For
this reason, in order to provide guidance for future experimental designs, we investigate the
impact that changes to the energy window have on the results for model selection for two
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Figure 1: The two modules of ANAIS-25 being introduced inside the shielding.

Table 1: Light collection for two ANAIS-25 modules

Detector PMT model phe-/keV
D0 Hamamatsu R12669SEL2 16.13 ± 0.66
D1 Hamamatsu R11065SEL 12.56 ± 0.13

Table 2: Internal contamination measured in ANAIS-25 prototype

40K (mBq/kg) 238U (mBq/kg) 210Pb (mBq/kg) 232Th (mBq/kg)
1.25 ± 0.11 (41 ppb K) 0.010 ± 0.002 ∼3.15 0.002± 0.001

modules are cylindrical, 4.75” diameter and 11.75” length, with quartz windows for PMTs coupling.
A Mylar window in the lateral face allows low energy calibration. Two types of photomultiplier have
been tested: one module coupled to two Hamamatsu R12669SEL2 and the other coupled to Hama-
matsu R11065SEL. The modules have been surrounded by 10 cm of archaeological lead plus 20 cm
of low activity lead shielding at the Canfranc Underground Laboratory (see in Figure 1).

This prototype has been taking data since December 2012. The first feature to be remarked is the
excellent light collection as it can be seen in Table 1. This light collection has a good impact in both
resolution and energy threshold. A preliminary study has been done with the coincident events in both
prototype modules showing two low energy populations that have been attributed to internal 40K and
cosmogenic 22Na as it is shown in Figure 2a. The K-shell electron binding energy following electron
capture in 40K (3.2 keV) and 22Na (0.9 keV) can be tagged by the coincidence with a high energy γ
ray (1461 keV and 1274 keV respectively). Hence, a threshold of the order of 1 keVee seems to be
achievable. The trigger and filtering efficiencies at the threshold level are currently under study.

On the other hand, background contributions have been thoroughly analyzed. Figure 2b shows
the low energy spectrum at the beginning of the data taking and fifteen months later, showing a high
suppression of most of the lines except the corresponding to 210Pb, highlighting their cosmogenic
origin; a more detailed study of radionuclide production in NaI(Tl) derived from this data can be
found at reference [4]. Table 2 shows the results of the activities determined for the main crystal
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CS2 , O2 and CF4 gas
future 8 m3 experiment

a high significance discovery of galactic Dark Matter even with a small amount of background
contamination. This holds true even when astrophysical and experimental uncertainties are
taking into account. For very low exposures, competitive exclusion limits may also be imposed
[5].

There are many projects around the world [18], [19], [20], trying to show the ability to get
the directionality at low nuclear recoil energies summarized in [21]. The MIMAC (MIcro-tpc
MAtrix of Chambers) detector project [17] tries to get these elusive events by a double detection:
recoil ionization and track, at low gas pressure with low mass target nuclei (H, 19F or 3He). In
order to have a significant cross section we explore the axial, spin dependent, interaction on odd
nuclei. The very weak correlation between the neutralino-nucleon scalar cross section and the
axial one, as it was shown in [6], [7] makes this research, at the same time, complementary to
the massive target experiments.

2. The MIMAC bi-chamber prototype
The MIMAC bi-chamber prototype consists of two chambers of (10 cm x 10 cm x 25 cm) with
a common cathode, which is an elementary module of the future matrix. The purpose of this
prototype is to show the ionization and track measurement performances needed to achieve the
directional detection strategy. The primary electron-ion pairs produced by a nuclear recoil in
one chamber of the matrix are detected by driving the electrons to the grid of a bulk micromegas
[8] and producing the avalanche in a very thin gap (256µm).

Figure 2. The anode is read every 20 ns and knowing the drift velocity of primary electrons,
the 3D track can be reconstructed from the consecutive number of images defining the event.

As pictured on figure 2, the electrons are collected towards the grid in the drift space and
are multiplied by avalanche to the pixellized anode thus allowing to get information on X and
Y coordinates. To have access to the X and Y coordinates a bulk micromegas with a 10 by 10
cm active area, segmented in pixels with a pitch of 424 µm was used as 2D readout [9]. In order
to reconstruct the third coordinate Z of the points of the recoil track, the LPSC developed a
self-triggered electronics able to perform the anode sampling at a frequency of 50 MHz. This
includes a dedicated 64 channels ASIC [15] associated to a DAQ [16].

In order to get the total recoil energy we need to know the ionization quenching factor (IQF)
of the nuclear recoil in the gas used. We have developed at the LPSC a dedicated experimental
facility to measure such IQF. A precise assessment of the available ionization energy has been
performed in 4He + 5%C4H10 mixture within the dark matter energy range (between 1 and 50
keV) by a measurement of the IQF [10]. For a given energy, an electron track in a low pressure
micro-TPC is an order of magnitude longer and showing more straggling than a recoil one. It
opens the possibility to discriminate electrons from nuclei recoils by using both energy and track
information, as it was shown in [11] and [12].
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As direct detection experiments becoming increasingly sensitive, a discovery 
requires accurate modeling to discern particle properties

Nuclear-WIMP interactions which include responses beyond the standard ones 
could avoid misinterpretations of the particle nature of dark matter

Complementarity from colliders and astrophysical probes is also vital, and these 
should include proper handling of the scale differences and uncertainties

A general array of single WIMP, single mediators interactions has been studied
and non-standard responses arise at leading order for some interaction types

Precise model constraints will need to be carried out

The use of a variety of detector materials can be significant for discovery and 
model discrimination

The neutrino background may have less of an effect on some non-standard 
operators

Thanks


