Composite Spin-1 resonance at the LHC (and beyond)

LianTao Wang University of Chicago

IPMU Sept. 11, 2015

Naturalness in nature?

- Example: low energy QCD resonances: pion
- $m_{\pi} \sim 100$ MeV.
- Naturalness requires $\Lambda \approx \text{GeV}$.
 - Indeed, at GeV, QCD \Rightarrow theory of quark and gluon
 - Pion is not elementary.

"Learning" from QCD

"Learning" from QCD

- Construct a new strong dynamics in which the low lying states will be the SM Higgs.
- Composite Higgs models. Still a natural theory.
- Nature may be more interesting, but it could also just repeat itself.

Composite Higgs

Many models in this class.

- Similar scenarios: Randall-Sundrum...

Composite Higgs

Higgs (and W/Z goldstones) are part of the strong sector

The external fields are the SM quarks and (transverse) gauge bosons

- Higgs boson (and $W_L Z_L$) NGB of symmetry breaking G/H.
- Small explicit symmetry breaking (involving external fields) generates Higgs potential. (NGB → pNGB).

Minimal composite

Agashe, Contino, Pomarol

$$SO(5)/SO(4) \to 4 \text{ GBs}$$
$$U = \exp\left(i\sqrt{2}\frac{\pi^a}{f}T^a\right) \quad T^a = \begin{pmatrix} 0 & X_a \\ -X_a & 0 \end{pmatrix} \quad \Sigma_i = U_{i5}$$

$$\frac{1}{2}(D_{\mu}\Sigma)^{2} \supset \frac{1}{2}(\partial h)^{2} + \frac{1}{2}m_{V}^{2}V_{\mu}^{2}\left(1 + 2\sqrt{1 - \frac{v^{2}}{f^{2}}}\frac{h}{v} + \cdots\right)$$

First prediction: deviation in Higgs coupling

Spin-1 resonances

G/H = SO(5)/SO(4)Spin-l resonance in 6 of SO(4) $m_{\rho} \sim g_{\rho} f$

 $SO(4) \times U(1)_X = SU(2)_L \times SU(2)_R \times U(1)_X$ $Y = T_R^3 + X$ Under this, spin-I res. decompose as

 ρ coupling to h, W $_L$, Z $_L$

$$\mathcal{L} \supset ig_{\rho}c_{H}\rho_{\mu}^{a}(H^{\dagger}\tau^{a}D^{\mu}H - (D^{\mu}H)^{\dagger}\tau^{a}H)$$

 $\sim g_{\rho}$

- h, $W_L Z_L$ composite, large coupling to ρ .

Partial compositeness

$$\mathcal{L}_{\rm pc} = -m_{\Psi}\bar{\Psi}\Psi - y_L f(\bar{q}_L\Psi + h.c.) - y_R f(\bar{u}_R\Psi + h.c.)$$

- Mixing angles not completely fixed.
- For example, for top quark, the mixing should be large, O(1).
 - ▶ Top quark heavy because it is composite.

Partial compositeness

composite fermion with the same gauge quantum numbers as SM fermion.

$$\mathcal{L}_{\rm pc} = -m_{\Psi} \bar{\Psi} \Psi + y_L f(\bar{q}_L \Psi + h.c.) - y_R f(\bar{u}_R \Psi + h.c.)$$

$$\sin\phi_{L,R} \equiv \frac{y_{L,R}}{\sqrt{(m_{\Psi}/f)^2 + y_{L,R}^2}}.$$

- Mixing angles not completely fixed.
- For example, for top quark, the mixing should be large, O(1).
 - ▶ Top quark heavy because it is composite.

ρ coupling to SM fermion

ρ coupling to SM fermion

	VV, Vh	$ar{q}_L \gamma^\mu q_L$	$\bar{u}_R \gamma^\mu u_R$	$ar{d}_R \gamma^\mu d_R$	$ig ar{\ell}_L \gamma^\mu \ell_L$	$ar{e}_R \gamma^\mu e_R$
$\rho^{0,\pm}$	$g_{ ho}$	$-\frac{g^2}{g_{\rho}}(1-a_L\frac{g_{\rho}^2}{g^2}s_{L,q}^2)\tau^a$	_	_	$-\frac{g^2}{g_ ho} au^a$	_
$ ho_B^0$	$g_ ho$	$-\frac{1}{6}\frac{g^{\prime 2}}{g_{\rho}}(1+3a_{L}\frac{g_{\rho}^{2}}{g^{\prime 2}}s_{L,q}^{2})$	$-\frac{2}{3}\frac{g'^2}{g_\rho}$	$\frac{1}{3}\frac{g'^2}{g_\rho}$	$\frac{1}{2}\frac{g'^2}{g_{\rho}}$	$\frac{g'^2}{g_\rho}$
ρ_C^{\pm}	$g_{ ho}$	_	_	_	_	_

Some features of the "excess"

- Data is confusing, no clear picture.
- Large-ish rate. 5–10 fb.
- Not seen else where. Diboson is the leading channel.
- "Usual" gauge boson.
 - Di-lepton and single lepton limits < 1 fb.
 - ▶ L-R models.
- Scalar?
 - Rate small. BR to WZ small.

Decay of composite spin-1 res.

- BR to diboson is large. Suppressed fermion coupling. Could have large rate.

c.f., usual gauge boson, small BR to diboson.

 Suppressed fermion coupling
 suppress di-lepton mode.

$$\frac{\mathrm{BR}(\rho^0 \to \ell^+ \ell^-)}{\mathrm{BR}(\rho^0 \to W^+ W^-)} = \frac{8}{c_H^2} \frac{g^4}{g_\rho^4}$$

Constraints other than di-boson

Indirect constraints

Higgs coupling.

- Higgs couplings.
 - f > 500-600 GeV > v. Some fine tuning seems unavoidable.

EW precision.

Tree level S-parameter

$$S \sim \frac{4\pi v^2}{m_\rho^2}$$

One loop to S and T

$$\frac{1}{16\pi^2} \frac{v^2}{f^2} \log(m_\rho/m_h)$$

Additional UV contribution parameterized by general CCWZ

Contino, Salvarezza, 2015

In addition, constraints from Z decay. Relevant for partially composite u_{L}

$$\mathbf{R}_{\mathbf{h}}: \quad \delta g_{u_L} = \frac{1}{4} \frac{v^2}{f^2} s_{L,u}^2 < 0.5 \times 10^{-3}$$

Parameter space for 2 TeV resonance

(over)simplified muuei.

Lepton

final state	ATLAS		CMS		
$\ell^+\ell^-$	0.2 fb	[3]	$0.25~{\rm fb}$	[4]	
$\ell^{\pm} \not\!\!\! E_T$	0.9 fb	[66]	0.4 fb	[67]	
$t\bar{b}$	120 fb	[68]	100 fb	[69]	
$t\bar{t}$	50 fb	[70]	20 fb	[71]	
jj	130 fb	[72]	100 fb	[73]	

Higgs

5

4

3

 $g_{
ho}$

Lepton

3

 $g_{
ho}$

Higgs

5

$$\mathcal{L} \supset ig_{\rho}c_{H}\rho_{\mu}^{a}(H^{\dagger}\tau^{a}D^{\mu}H - (D^{\mu}H)^{\dagger}\tau^{a}H)$$
$$m_{\rho} = \sqrt{c_{H}}g_{\rho}f$$

- Elementary fermion. Toy model.

Composite top.

m_{ρ} fixes to be 2 TeV

- Vary top compositeness.

- 1st and 2nd generations elementary.

- Vary compositeness of light quarks.

- Vary compositeness of light quarks.

Bottom line

Composite spin I resonance can fit the excess and satisfy all constraints without too much effort.

Compositeness and top partner

- Light top partner (ψ which mixes with top) could be less than TeV.
- Plays a crucial role in EWSB.

LHC 14 should cover (most of) it.

ρ decaying into top partners

- BR($\rho \rightarrow \psi \psi$) O(1). Would dominate if allowed.

- Diboson would not be the leading channel.
- Can assume ψ heavy, more fine-tuning.

Top partner

Integrating out top partner -> Higgs potential

$$V \simeq \frac{N_c}{16\pi^2} m_{\Psi}^4 \left[a \frac{y_t f}{m_{\Psi}} F_a + b \left(\frac{y_t f}{m_{\Psi}} \right)^2 F_b \right]$$

 $F_{a,b}$: function of $\frac{h}{f}$ m_{Ψ} : mass of top partner

$$m_h^2 \simeq b \, \frac{N_c y_t^2 v^2}{2\pi^2} \frac{m_\Psi^2}{f^2}$$

Light Higgs → light top partner

Top partner colored.

LHC searches already constrains top partner mass.

Run 2 will completely cover the simplest cases.

There is an exception: twin Higgs. Singlet top partner.

Burdman, Chacko, Harnik

Twin Higgs.

Twin composite Higgs

The gauging of the EW part of SM and SM' is given by

$$\begin{pmatrix} g \cdot SO(4) & 0 \\ 0 & g' \cdot SO(4)' \end{pmatrix}$$

If Z_2 is exact, then SM and SM' has the same scale, $v \simeq f$. Must introduce Z_2 breaking.

Freedom in choosing how to do it: Difference in gauge or Yuk interaction between SM and SM'

Z₂ breaking and spectrum

Z₂ breaking and spectrum

 $\delta \rho$

 $\sin \phi_L^t = 0.1$

$$y_f = \frac{m_\Psi}{f} \sin \phi_L^f \sin \phi_R^f$$

- For a twin composite scenarion, composite top can be very heavy.
 - Mixing can be smaller.

 $\delta \rho$

Run 2 projection

- Can confirm or rule out with modest luminosity.

Reach of Run 2, di-boson and di-lepton

- At most 4 TeV.

Additional channels

- If it is there, should be able to see it in

- ▶ Wh, Zh
- ▶ tt, tb

Composite Higgs

Composite Higgs

Need to go beyond!

Beyond the LHC, future facilities

Beyond the LHC, future facilities

Future circular colliders

CERN Higgs factory: FCC-ee pp Collider: FCC-hh

China. Higgs factory: CEPC pp Collider: SppC

Higgs coupling at lepton colliders

Highlights:

HZ coupling to sub-percent level. Many couplings to percent level. Model independent measurement of total width. Sensitive to the triple Higgs coupling: 20-30%

Electroweak precision at CEPC

- A big step beyond the current precision.

Composite Higgs at lepton collider

Higgs is not (quite) elementary, will have deviations in Higgs couplings.

$$\delta W_h \sim \delta Z_h \sim \frac{v^2}{f^2}$$

Composite resonances couples to W and Z.Will give rise to deviation in EW precision observables.

$$S \simeq \frac{N}{4\pi} \frac{v^2}{f^2}$$

Experiment	S~(68%)	f (GeV)	
ILC	0.012	$1.1 { m TeV}$	
CEPC (opt.)	0.02	$880 {\rm GeV}$	
CEPC (imp.)	0.014	$1.0 { m TeV}$	
TLEP- Z	0.013	$1.1 { m TeV}$	
TLEP-t	0.009	$1.3 { m TeV}$	

A clear big step above the LHC.

Composite Higgs at lepton collider

Higgs is not (quite) elementary, will have deviations in Higgs couplings.

$$\delta W_h \sim \delta Z_h \sim \frac{v^2}{f^2}$$

Composite resonances couples to W and Z.Will give rise to deviation in EW precision observables.

$$S\simeq \frac{N}{4\pi}\frac{v^2}{f^2}$$

				Experiment	S (68%)	f (GeV)
Experiment κ_Z (68%)		f (GeV)	_	ILC	0.012	1.1 TeV
HL-LHC	3%	1.0 TeV		CEPC (opt.)	0.02	880 GeV
ILC500	0.3%	3.1 TeV			0.014	$1 0 T_{\rm a} V$
ILC500-up	0.2%	3.9 TeV		CEPC (imp.)	0.014	1.0 Iev
CEPC	0.2%	3.9 TeV		TLEP- Z	0.013	1.1 TeV
TLEP	0.1%	5.5 TeV		TLEP-t	0.009	1.3 TeV

A clear big step above the LHC.

Neutral naturalness

Twin Higgs. Chacko et al. Talk by Craig

Top partner only couple to Higgs. Wavefunction renormalization Induce shift in Higgs coupling.

- LHC reach poor. Theory can be completely natural.
- Higgs factory can test this.

At 100 TeV collider

- tune proportional to $(m_{NP})^2$.
 - Much better test than LHC, by orders of magnitude!
 - Potential for discovery (would be a victory for naturalness).

Conclusions.

- Composite Higgs is a plausible solution to the naturalness problem.
- Could give rise to the excess near 2 TeV.
 - ▶ Will confirm or rule out soon at Run 2.
- Twin version can have large mass of colored top partner.
 - Di-boson will be the leading discovery channel.
- Whether the excess is there or not, spin-1 resonance should be a main target for LHC. searches.

Conclusions.

LHC would not be able to cover full composite
 Higgs spectrum, since we have not seen anything yet.

At most a couple of lower lying states.

- Need to go beyond.
 - Higgs factory + 100 TeV pp collider can do a good job.

A lot to look forward to!

Composite Higgs

Maybe one of these?

Compositeness and top partner

Wulzer's talk

Contino, Da Rold, Pomarol, 2006

- Plays a crucial role in EWSB.

For a comprehensive discussion, see De Simone, Matsedonskyi, Rattazzi, Wulzer, 1211.5663

Current status

None observation of other new physics

Found Higgs

A big step forward in the energy frontier

cross the board: x 5(more) improvement, into (10)TeV regime