Kavli-IPMU-Durham-KIAS workshop: New particle searches confronting the first LHC run-2 data

7-11 September 2015 Asia/Tokyo timezone

Composite Resonances at the run-2 of the LHC

Seung J. Lee KAIST

September 10, 2015

Backovic, Flacke, SL, Perez, arXiv: 1409.0409 Backovic, Flacke, Kim, SL, arXiv: 1410.8131 Backovic, Flacke, Kim, SL, arXiv: 1501.07456 Cacciapaglia, Cai, Deandrea, Flacke, SL, Parolini arXiv: 1507.02283 Backovic, Flacke, Kim, SL, arXiv: 1507.06568

Outline

- Introduction (Composite Higgs Model)
- Main part: Top partner Searches (Status, and perspective at Run II)
- Vector resonance searches
- Composite Scalars (meson states)
- Summary

Outline

- Introduction (Composite Higgs Model)
- Main part: Top partner Searches (Status, and perspective at Run II)
- Vector resonance searches
- Composite Scalars (meson states)
- Summary

For the recent ATLAS anomaly and it's connection with composite spin-1 resonances, see LianTao's talk tommorow!

Motivation

Naturalness => new colored partners, potentially within the LHC reach.

Motivation

Composite Higgs

Georgi, Kaplan '84; Kaplan '91; Agashe, Contino, Pomarol '05; Agashe et al '06; Giudice et al '07; Contino et al '07; Csaki, Falkowski, Weiler '08; Contno, Servant '08; Mrazek, Wulzer '10; Panico, Wulzer '11; De Curtis, Redi, Tesi '11, Marzocca, Serone, Shu '12; Pomarol, Riva '12; Bellazini et al '12; De Simone et al '12, Grojean, Matsedonskyi, Panico ''13,...

Higgs Couplings

EWPT

$$\Delta \hat{S} = \frac{g^2}{96\pi^2} \xi \log\left(\frac{8\pi m_W}{gm_h\sqrt{\xi}}\right)$$
$$\Delta \hat{T} = -\frac{3g'^2}{32\pi^2} \xi \log\left(\frac{8\pi m_W}{gm_h\sqrt{\xi}}\right)$$

Modified Higgs couplings go in bad direction.

Barbieri, Bellazzini, Rychkov, Varagnolo, `07

EWPT

$$\begin{split} \Delta \hat{S} &= \frac{g^2}{96\pi^2} \xi \log\left(\frac{8\pi m_W}{gm_h\sqrt{\xi}}\right) + \frac{m_W^2}{m_\rho^2} \\ \Delta \hat{T} &= -\frac{3g'^2}{32\pi^2} \xi \log\left(\frac{8\pi m_W}{gm_h\sqrt{\xi}}\right) \end{split}$$

Modified Higgs couplings go in bad direction. Resonance exchange as well

EWPT

$$\begin{split} \Delta \hat{S} &= \frac{g^2}{96\pi^2} \xi \log \left(\frac{8\pi m_W}{g m_h \sqrt{\xi}} \right) + \frac{m_W^2}{m_\rho^2} + \alpha \frac{g^2}{16\pi^2} \xi \,, \\ \Delta \hat{T} &= -\frac{3g'^2}{32\pi^2} \xi \log \left(\frac{8\pi m_W}{g m_h \sqrt{\xi}} \right) + \beta \frac{3y_t}{16\pi^2} \xi \,, \end{split}$$

Modified Higgs couplings go in bad direction. Resonance exchange as well Light Top Partners come to rescue.

Barbieri, Bellazzini, Rychkov, Varagnolo, `07

General Set-up

As a setup we choose the minimal composite Higgs model based on SO(5)/SO(4). We use the CCWZ construction in order to write down \mathcal{L}_{eff} in a nonlinearly invariant way under SO(5) Coleman, Wess, Zumino '69, Callan, Coleman '69

The lightest composite top quark partner resonances are assumed to be in the 5 of SO(5)

$$\psi = \begin{pmatrix} Q \\ \tilde{U} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} ID - IX_{5/3} \\ D + X_{5/3} \\ IU + IX_{2/3} \\ -U + X_{2/3} \\ \sqrt{2}\tilde{U} \end{pmatrix} = \begin{bmatrix} \tilde{\psi}_4 \\ \tilde{\psi}_1 \end{bmatrix}_{\frac{2}{3}}$$

elementary quarks: $q_L^5 \equiv \frac{1}{\sqrt{2}} (id_L, d_L, iu_L, -u_L, 0)^T$ $u_R^5 \equiv (0, 0, 0, 0, u_R)^T$

BSM particle content: 5 = 4 + 1

$$Y = T_R^3 + X$$

the strong sector
resonances are classified
in terms of irreducible
representations of the
unbroken global <i>SO</i> (4)

	U	X _{2/3}	D	<i>X</i> _{5/3}	Ũ
<i>SO</i> (4)	4	4	4	4	1
<i>SU</i> (3) _c	3	3	3	3	3
EM charge	2/3	2/3	-1/3	5/3	2/3

General Set-up

	U	<i>X</i> _{2/3}	D	<i>X</i> _{5/3}	Ũ
<i>SO</i> (4)	4	4	4	4	1
<i>SU</i> (3) _c	3	3	3	3	3
EM charge	2/3	2/3	-1/3	5/3	2/3

Two principal ways to embed the right-handed up-type quarks:

- In the elementary sector, which mix with their partners, (→ "partially composite quarks") Matsedonski, Panico, Wulzer `14 Backovic, Flacke, SL, Perez `14
- or as chiral composite states.

 $(\rightarrow$ "fully composite quarks")

Simone, Matsedonski, Rattazzi, Wulzer `12

General Set-up

- In the elementary sector, which mix with their partners, (→ "partially composite quarks") Matsedonski, Panico, Wulzer `14 Backovic, Flacke, SL, Perez `14
- or as chiral composite states.

 $(\rightarrow$ "fully composite quarks")

Simone, Matsedonski, Rattazzi, Wulzer `12

Top partners @ Run 2 of the LHC

Azatov, Son, Spannowsky `I3 (for boosted analysis for run I)

W g_{eff}

 $X_{5/3}$

Top partners @ Run 2 of the LHC

Game changer for run II: boosted analysis for single production Backovic, Flacke, SL, Perez `14

$$\begin{split} g_{XWt}^L &= G_{Li}^X \left(U_L^t \right)_{i1}^{\dagger} = \mathcal{O}(\epsilon^2) \,, \\ g_{XWt}^R &= G_{Ri}^X \left(U_R^t \right)_{i1}^{\dagger} = \frac{g}{\sqrt{2}} \left(U_{R13}^{*t} + c_R \epsilon U_{R14}^{*t} \right) + \mathcal{O}(\epsilon^2) \,, \\ &= -\frac{g e^{-i\tilde{\phi}}}{\sqrt{2}} \frac{\epsilon}{\sqrt{2}} \left(\frac{y_R f M_1}{M_4 M_{Ts}} - \sqrt{2} c_R \frac{e^{-i\phi} y_R f}{M_{Ts}} \right) + \mathcal{O}(\epsilon^2) \,. \end{split}$$

$$\begin{array}{ll} \text{Backovic. Flacke. SL. Perez `I4} \\ m_t &= \frac{v}{\sqrt{2}} \frac{|M_1 - e^{-i\phi}M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3), \\ M_B &= \sqrt{M_4^2 + y_L^2 f^2}, \\ M_{X_{5/3}} &= M_4, \\ M_{Tf1} &= M_4 + \mathcal{O}(\epsilon^2), \\ M_{Tf2} &= \sqrt{M_4^2 + y_L^2 f^2} + \mathcal{O}(\epsilon^2), \\ M_{Ts} &= \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2), \end{array}$$

$$\begin{aligned} \text{Backovic, Flacke, SL, Perez} & 14 \\ m_t &= \frac{v}{\sqrt{2}} \frac{|M_1 - e^{-i\phi}M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3), \\ M_B &= \sqrt{M_4^2 + y_L^2 f^2}, \\ M_{T_{5/3}} &= M_4, \\ M_{Tf1} &= M_4 + \mathcal{O}(\epsilon^2), \\ M_{Tf2} &= \sqrt{M_4^2 + y_L^2 f^2} + \mathcal{O}(\epsilon^2), \\ M_{Ts} &= \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2), \end{aligned}$$

Dealers to Electre CL Dense 14

$$\begin{array}{ll} \text{Backovic. Flacke. SL. Perez `I4} \\ m_t &= \frac{v}{\sqrt{2}} \frac{|M_1 - e^{-i\phi}M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3), \\ M_B &= \sqrt{M_4^2 + y_L^2 f^2}, \\ M_{X_{5/3}} &= M_4, \\ M_{Tf1} &= M_4 + \mathcal{O}(\epsilon^2), \\ M_{Tf2} &= \sqrt{M_4^2 + y_L^2 f^2} + \mathcal{O}(\epsilon^2), \\ M_{Ts} &= \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2), \end{array}$$

Backovic, Flacke, SL, Perez `14

Top Partner Searches Beyond the 2 TeV Mass Region

Boosted t / W

Backovic, Flacke, SL, Perez `14

Top Partner Searches Beyond the 2 TeV Mass Region

Boosted t / W

Backovic, Flacke, SL, Perez `14

Top Partner Searches Beyond the 2 TeV Mass Region

Boosted t / W

Two b-tags

Boosted top tagging: Jet substructure

Very active research field

Lesson from Run I: it works!

Lesson from Run I: it works!

Lesson from Run I: it works!

How do we know it's top jet? Boosted top tagging (jet substructure)

apologies for omitted ones...

I) Algorithm: Filtering, pruning, trimming, mass drop, soft drop, etc

Seymour (93); Butterworth, Cox, Forshaw (02); Butterworth, Davison, Rubin & Salam (08); Kaplan, Rehermann, Schwartz, Tweedie (08); Krohn, Thaler & Wang (10); Ellis, Vermilion & Walsh (09); T. Plehn, G. P. Salam, & M. Spannowsky (09),Larkoski, Marzani,Soyez,Thaler (14),etc 2) JetShape: Moments. (easy to get LO PQCD, weak jet finder dependence, etc) Almeida, SL, Perez, Sterman, Sung & Virzi; Thaler & Wang (08); Thaler & Tilburg (10), Gallichio & Schwartz (10), Hook, Jankowiak & Wacker (11), etc

3) Matrix element method shower deconstruction method Soper & Spannowsky (11,12) (easy to get LO PQCD, weak jet finder dep'& beyond, fits the spiky nature of signals)
Almeida, SL, Perez, Sterman & Sung (10); Almeida, Erdogan, Juknevich, SL, Perez, Sterman (11);Backovic, Juknevich, Perez (13); Backovic, Gabizon, Juknevich, Perez, Soreq (14)
5) ANN: new method

Almeida, Clich, SL, Perelstien (15)

Need to understand the energy flow inside jet jet shapes or jet substructure

Need to understand the energy flow inside jet jet shapes or jet substructure

Template Overlap Method

* We use the Template Overlap Method (TOM)

- Low susceptibility to pileup.
- Good rejection power for light jets.
- Flexible Jet Substructure framework (can tag tops, Higgses, Ws ...)

For a gruesome amount of detail on TOM see:

Almeida, SL, Perez, Sterman, Sung '10 Almeida, Erdogan, Juknevich, SL, Perez, Sterman '12 Agashe, et al (SL), Snowmass studies (top & RS benchmark) '13 Backovic, Juknevich, Perez '13 Backovic, Gabizon, Juknevich, Perez, Soreq '14

Template Overlap Method

*Template overlaps: functional measures that quantify how well the energy flow of a physical jet matches the flow of a boosted partonic decay

|j>=set of particles or calorimeter towers that make up a jet. e.g. |j>=|t>,|g>,etc, where:

|t > = top distribution|g > = massless QCD distribution

Lunch table discussion with Juan Maldacena

We need a probe distribution, |f >, such that "template" $R = \left(\frac{\langle f|t \rangle}{\langle f|a \rangle}\right)$ is maximized.

***** Template Overlap Method

- Good rejection power for light jets.
- Flexible Jet Substructure framework

(can tag t, h, W ...)

Forward Jets as useful tags of top partner production also proposed in: De Simone, Matsedonskyi, Rattazzi Wulzer JHEP 1304 (2013) 004

Detector in ''eta phi'' plane

Seems easy, but actually quite difficult!

Detector in ''eta phi'' plane

Complicated at high pileup (fake jets appear)

(Simple) Solution:

Define forward jets as (say) r = 0.2 jets with $p_T^{\text{fwd}} > 25 \text{ GeV}, \quad 2.5 < \eta^{\text{fwd}} < 4.5,$

Ability to reco. the jet energy/p⊤ is diminished, but we are interested in tagging the forward jet, not measuring it

r = 0.2 - good compromise between pileup insensitivity and signal efficiency

Standard ATLAS *r* = 0.4 **forward jet will not work** without some aggressive pileup subtraction technique (**open problem!**)

b-tagging Strategy

b-tagging Strategy

Full simulation of b-tagging requires consideration of complex detector effects (e.g. tracking info).

We use a **simplified approach**:

Assign a "*b*-tag" to every r = 0.4 jet which has a truth level b or c jet within dr = 0.4 from the jet axis.

For each "b-tag" we use the benchmark efficiencies: $\epsilon_b = 0.75, \ \epsilon_c = 0.18, \ \epsilon_l = 0.01$

We can reconstruct the **resonance mass**

Note: very difficult to reconstruct the resonance mass with same sign di-leptons!

Can we break on through to 2 TeV?

*Possible additional handle:

$$M_B = \sqrt{M_4^2 + y_L^2 f^2}$$

 $M_{X_{5/3}} = M_4$

For large *M*₄, 5/3 and *B* partners are becoming mass degenerate

Clear advantage over same sign di-lepton channels!

Production cross section nearly doubles, but only if the event selections are sensitive to both 5/3 and B partner

				Λ	$M_{X_{5/3}/B} = 2.0 \text{ TeV}, \sigma_{X_{5/3}+B} = 15 \text{fb}, L = 35 \text{fb}^{-1}$								Backovic, Flacke, SL, Perez `14					
$X_{5/3} + B$	+ B σ_s [fb] $\sigma_{t\bar{t}}$		[fb]	[fb] $\sigma_{W+\mathrm{jet}}$		ts [fb] ϵ_s		ϵ	$t\bar{t}$	ϵ_{W} -	$\epsilon_{W+\mathrm{jets}}$		S/B		\overline{B}			
Fat jet candidate	t	W	t	W	t	W	t	W	t	W	t	W	t	W	t	W		
Basic Cuts	1.7	1.9	144.0	487.0	3807.0	2301.0	0.38	0.42	0.12	0.41	0.12	0.08	4×10^{-4}	6×10^{-4}	0.2	0.2		
$p_T > 600 \text{ GeV}$	1.4	1.6	117.0	430.0	1045.0	747.0	0.31	0.37	0.10	0.36	0.035	0.02	0.001	0.001	0.2	$\left 0.2 \right $		
$p_T^l > 100 \text{ GeV}$	1.3	1.5	61.0	300.0	715.0	502.0	0.30	0.35	0.05	0.25	0.02	0.02	0.002	0.002	0.3	0.3		
Ov > 0.5	1.0	1.1	25.0	150.0	131.0	172.0	0.22	0.22	0.02	0.13	0.004	0.006	0.006	0.003	0.5	0.3		
$m_{X_{5/3}/B} > 1.5 \text{ TeV}$	0.9	1.0	2.4	91.0	55.0	118.0	0.19	0.22	0.002	0.08	0.002	0.004	0.01	0.004	0.7	$\left 0.4 \right $		
$m_{j'l} > 200 \text{ GeV}$	0.8	0.3	0.9	11.0	45.0	37.0	0.18	0.07	8×10^{-4}	0.009	0.001	0.001	0.02	0.02	0.7	$\left 0.7 \right $		
b-tag & no fwd. tag	0.3	0.1	0.04	2.0	0.08	0.6	0.07	0.03	4×10^{-5}	0.002	2×10^{-6}	2×10^{-5}	2.5	0.1	5.2	1.0		
fwd. tag & no b-tag	0.5	0.2	0.2	2.5	8.0	5.0	0.11	0.05	2×10^{-4}	0.002	3×10^{-4}	2×10^{-4}	0.06	0.07	1.0	1.0		
<i>b</i> -tag and fwd. tag	0.2	0.1	0.01	0.5	< 0.01	0.07	0.04	0.02	1×10^{-5}	4×10^{-4}	$< 10^{-6}$	2×10^{-6}	15.7	0.3	10.2	1.5		

Table II: Example cutflow for signal and background events for $M_{X_{5/3}/B} = 2.0$ TeV and inclusive cross sections $\sigma_{X_{5/3}+B}$. $\sigma_{s,t\bar{t},W+\text{jets}}$ are the signal/background cross sections including all branching ratios, whereas ϵ are the efficiencies of the cuts relative to the generator level cross sections. The results assume no pileup contamination. The signal cross section assumes both $X_{5/3}$ and B production.

$$f = 800 \text{ GeV}, M_1 = 1.5 \text{ TeV}, \phi = \pi, c_R = 3, y_L = 1, \text{ and } M_4 = 2 \text{ TeV}, |g_{XWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.66 \text{ and } |g_{BWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.63,$$

	hadronic c	anc	dida	ate									Packovi				<u>` I A</u>
					Л	$M_{X_{5/3}/B} = 2.0 \text{ TeV}, \sigma_{X_{5/3}+B} = 15 \text{fb}, L = 35 \text{fb}^{-1}$										erez	14
	$X_{5/3} + B$	σ_s	[fb]	$\sigma_{tar{t}}$	[fb]	$\sigma_{W+\text{jets}}$ [fb]		ϵ_s		$\epsilon_{tar{t}}$		$\epsilon_{W+ m jets}$		S/	'B	S/\sqrt{B}	
(Fat jet candidate	t	W	t	W	t	W	t	W	t	W	t	W	t	W	t	W
	Basic Cuts	1.7	1.9	144.0	487.0	3807.0	2301.0	0.38	0.42	0.12	0.41	0.12	0.08	4×10^{-4}	6×10^{-4}	0.2	$\left 0.2 \right $
	$p_T > 600 \text{ GeV}$	1.4	1.6	117.0	430.0	1045.0	747.0	0.31	0.37	0.10	0.36	0.035	0.02	0.001	0.001	0.2	$\left 0.2 \right $
	$p_T^l > 100 \text{ GeV}$	1.3	$\left 1.5 \right $	61.0	300.0	715.0	502.0	0.30	0.35	0.05	0.25	0.02	0.02	0.002	0.002	0.3	$\left 0.3 \right $
	Ov > 0.5	1.0	1.1	25.0	150.0	131.0	172.0	0.22	0.22	0.02	0.13	0.004	0.006	0.006	0.003	0.5	$\left 0.3 \right $
	$m_{X_{5/3}/B} > 1.5 \text{ TeV}$	0.9	$\left 1.0 \right $	2.4	91.0	55.0	118.0	0.19	0.22	0.002	0.08	0.002	0.004	0.01	0.004	0.7	$\left 0.4 \right $
	$m_{j'l} > 200 \text{ GeV}$	0.8	0.3	0.9	11.0	45.0	37.0	0.18	0.07	8×10^{-4}	0.009	0.001	0.001	0.02	0.02	0.7	0.7
	b-tag & no fwd. tag	0.3	0.1	0.04	2.0	0.08	0.6	0.07	0.03	4×10^{-5}	0.002	2×10^{-6}	2×10^{-5}	2.5	0.1	5.2	1.0
	fwd. tag & no <i>b</i> -tag	0.5	0.2	0.2	2.5	8.0	5.0	0.11	0.05	2×10^{-4}	0.002	3×10^{-4}	2×10^{-4}	0.06	0.07	1.0	1.0
	<i>b</i> -tag and fwd. tag	0.2	0.1	0.01	0.5	< 0.01	0.07	0.04	0.02	1×10^{-5}	4×10^{-4}	< 10 ⁻⁶	2×10^{-6}	15.7	0.3	10.2	1.5

Table II: Example cutflow for signal and background events for $M_{X_{5/3}/B} = 2.0$ TeV and inclusive cross sections $\sigma_{X_{5/3}+B}$. $\sigma_{s,t\bar{t},W+\text{jets}}$ are the signal/background cross sections including all branching ratios, whereas ϵ are the efficiencies of the cuts relative to the generator level cross sections. The results assume no pileup contamination. The signal cross section assumes both $X_{5/3}$ and B production.

$$f = 800 \text{ GeV}, M_1 = 1.5 \text{ TeV}, \phi = \pi, c_R = 3, y_L = 1, \text{ and } M_4 = 2 \text{ TeV}, |g_{XWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.66 \text{ and } |g_{BWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.63,$$

	hadronic candidate													- Elack		۱ ۸				
					Л	$M_{X_{5/3}/B} = 2.0 \text{ TeV}, \sigma_{X_{5/3}+B} = 15 \text{fb}, L = 35 \text{fb}^{-1}$								Dackovic, Hacke, SE, FCFCZ FF						
	$X_{5/3} + B$	σ_s	[fb]	$\sigma_{tar{t}}$	[fb]	$\sigma_{W+\text{jets}} \text{ [fb]}$		ϵ_s		$\epsilon_{tar{t}}$		$\epsilon_{W+ m jets}$		S/B		S/\sqrt{B}				
(Fat jet candidate	t	W	t	W	t	W	t	W	t	W	t	W	t	W	t	W			
	Basic Cuts	1.7	1.9	144.0	487.0	3807.0	2301.0	0.38	0.42	0.12	0.41	0.12	0.08	4×10^{-4}	6×10^{-4}	0.2	$\left 0.2 \right $			
	$p_T > 600 \text{ GeV}$	1.4	1.6	117.0	430.0	1045.0	747.0	0.31	0.37	0.10	0.36	0.035	0.02	0.001	0.001	0.2	$\left 0.2 \right $			
	$p_T^l > 100 \text{ GeV}$	1.3	1.5	61.0	300.0	715.0	502.0	0.30	0.35	0.05	0.25	0.02	0.02	0.002	0.002	0.3	0.3			
	Ov > 0.5	1.0	1.1	25.0	150.0	131.0	172.0	0.22	0.22	0.02	0.13	0.004	0.006	0.006	0.003	0.5	0.3			
	$m_{X_{5/3}/B} > 1.5 \text{ TeV}$	0.9	1.0	2.4	91.0	55.0	118.0	0.19	0.22	0.002	0.08	0.002	0.004	0.01	0.004	0.7	$\left 0.4 \right $			
	$m_{j'l} > 200 \text{ GeV}$	0.8	03	0.9	11.0	45.0	37.0	0.18	0.07	8×10^{-4}	0.009	0.001	0.001	0.02	0.02	0.7	0.7			
	b-tag & no fwd. tag	0.3	01	0.04	2.0	0.08	0.6	0.07	0.03	4×10^{-5}	0.002	2×10^{-6}	2×10^{-5}	2.5	0.1	5.2	1.0			
	fwd. tag & no b -tag	0.5	02	0.2	2.5	8.0	5.0	0.11	0.05	2×10^{-4}	0.002	3×10^{-4}	2×10^{-4}	0.06	0.07	1.0	1.0			
	b-tag and fwd. tag	0.2	0 1	0.01	0.5	< 0.01	0.07	0.04	0.02	1×10^{-5}	4×10^{-4}	$ < 10^{-6}$	2×10^{-6}	15.7	0.3	10.2	$\left 1.5 \right $			

Table II: Example cutflow for signal and background events for $M_{X_{5/3}/B} = 2.0$ TeV and inclusive cross sections $\sigma_{X_{5/3}+B}$. $\sigma_{s,t\bar{t},W+jets}$ are the signal/background cross sections including all branching ratios, whereas ϵ are the efficiencies of the cuts relative to the generator level cross sections. The results assume no pileup contamination. The signal cross section assumes both $X_{5/3}$ and B production.

$$f = 800 \text{ GeV}, M_1 = 1.5 \text{ TeV}, \phi = \pi, c_R = 3, y_L = 1, \text{ and } M_4 = 2 \text{ TeV}, |g_{XWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.66 \text{ and } |g_{BWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.63$$

	hadronic c	hadronic candidate															
					Λ	$\Lambda_{X_{5/3}/B}$	= 2.0]	ΓeV, α	$\sigma_{X_{5/3}}$	$_{+B} = 15 \text{f}$	b, $L = 35$	fb^{-1}		., I Iaux	2, 3L, 1 t		тт
	$X_{5/3} + B$	σ_s [fb] $\sigma_{t\bar{t}}$		[fb]	$\sigma_{W+\mathrm{je}}$	$_{\rm ts}$ [fb]	ϵ	s	ϵ_{1}	$t\bar{t}$	ϵ_{W}	⊢jets	S/B		S/v	\overline{B}	
(Fat jet candidate	t	W		W	t	W	t	W	t	W	t	W	t	W	t	W
	Basic Cuts	1.7	1.9	144.0	487.0	3807.0	2301.0	0.38	0.42	0.12	0.41	0.12	0.08	4×10^{-4}	6×10^{-4}	0.2	$\left 0.2 \right $
	$p_T > 600 \text{ GeV}$	1.4	1.6	117.0	430.0	1045.0	747.0	0.31	0.37	0.10	0.36	0.035	0.02	0.001	0.001	0.2	$\left 0.2 \right $
	$p_T^l > 100 \text{ GeV}$	1.3	1.5	61.0	300.0	715.0	502.0	0.30	0.35	0.05	0.25	0.02	0.02	0.002	0.002	0.3	$\left 0.3 \right $
	Ov > 0.5	1.0	1.1	25.0	150.0	131.0	172.0	0.22	0.22	0.02	0.13	0.004	0.006	0.006	0.003	0.5	$\left 0.3 \right $
	$m_{X_{5/3}/B} > 1.5 \text{ TeV}$	0.9	1.0	2.4	91.0	55.0	118.0	0.19	0.22	0.002	0.08	0.002	0.004	0.01	0.004	0.7	$\left 0.4\right $
	$m_{j'l} > 200 \text{ GeV}$	0.8	03	0.9	11.0	45.0	37.0	0.18	0.07	8×10^{-4}	0.009	0.001	0.001	0.02	0.02	0.7	0.7
	b-tag & no fwd. tag	0.3	01	0.04	2.0	0.08	0.6	0.07	0.03	4×10^{-5}	0.002	2×10^{-6}	2×10^{-5}	2.5	0.1	5.2	1.0
	fwd. tag & no b -tag	0.5	0.2	0.2	2.5	8.0	5.0	0.11	0.05	2×10^{-4}	0.002	3×10^{-4}	2×10^{-4}	0.06	0.07	1.0	1.0
	<i>b</i> -tag and fwd. tag	0.2	01	0.01	0.5	< 0.01	0.07	0.04	0.02	1×10^{-5}	4×10^{-4}	$< 10^{-6}$	2×10^{-6}	15.7	0.3	10.2	1.5

Table II: Example cutflow for signal and background events for $M_{X_{5/3}/B} = 2.0$ TeV and inclusive cross sections $\sigma_{X_{5/3}+B}$. $\sigma_{s,t\bar{t},W+jets}$ are the signal/background cross sections including all branching ratios, whereas ϵ are the efficiencies of the cuts relative to the generator level cross sections. The results assume no pileup contamination. The signal cross section assumes both $X_{5/3}$ and B production.

*****Better sensitivity in the hadronic top channel for high masses It is possible to achieve $S/\sqrt{B} > 5$ even without a forward jet tag

 $f = 800 \text{ GeV}, M_1 = 1.5 \text{ TeV}, \phi = \pi, c_R = 3, y_L = 1, \text{ and } M_4 = 2 \text{ TeV}, |g_{XWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.66 \text{ and } |g_{BWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.63,$

 hadronic c	anc	dida	ate	Ι	$M_{X_{5/3}/B}$ =	= 2.0 TeV, $\sigma_{X_{5/3}+B} = 15$ fb, $L = 35$ fb ⁻¹ Backovic, Flacke, SL, F	erez	` 4
$X_{5/3} + B$	σ_s	[fb]	$\sigma_{tar{t}}$	[fb]	$\sigma_{W+ ext{jets}}$	Cutflow officionov for same SSDL ~ 50%	S/	\overline{B}
Fat jet candidate	t	W	t	W	t	implying that the final signal SSDL \sim 50%,	t	\overline{W}
Basic Cuts	1.7	1.9	144.0	487.0	3807.0	2.3% (including the RP)	0.2	0.2
$p_T > 600 \text{ GeV}$	1.4	1.6	117.0	430.0	1045.0	2-3% (including the BR). 0.001	0.2	0.2
$p_T^l > 100 \text{ GeV}$	1.3	1.5	61.0	300.0	715.0	0.002	0.3	0.3
Ov > 0.5	1.0	1.1	25.0	150.0	131 5	For $\sigma_{X_{5/3}} = 8$ fb you then get 0.003	0.5	0.3
$m_{X_{5/3}/B} > 1.5 \text{ TeV}$	0.9	1.0	2.4	91.0	55 0	$\sigma_{21} = 0.15 - 0.25 \text{fb}$ ^{0.004}	0.7	0.4
$m_{j'l} > 200 \text{ GeV}$	0.8	03	0.9	11.0	45.0	0.02	0.7	0.7
b-tag & no fwd. tag	0.3	01	0.04	2.0	0.08	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.2	1.0
fwd. tag & no b-tag	0.5	02	0.2	2.5	8.0	$5.0 0.11 0.05 2 \times 10^{-4} 0.002 3 \times 10^{-4} 2 \times 10^{-4} 0.06 0.07$	1.0	1.0
<i>b</i> -tag and fwd. tag	0.2	0 1	0.01	0.5	< 0.01	$0.07 0.04 0.02 1 \times 10^{-5} 4 \times 10^{-4} < 10^{-6} 2 \times 10^{-6} 15.7 0.3$	10.2	1.5
Table II. Example o	tflo	w fo	n sion	al and	l backgro	und events for $M_{\rm Y}$ $_{\rm CD}$ – 2.0 TeV and inclusive cross sections $\sigma_{\rm Y}$		
$\sigma_{s t\bar{t} W \perp \text{int} s}$ are the	signa	l/ba	ckgroi	and cro	oss sectio	on including all branching ratios, whereas ϵ are the efficiencies of the	$^{3+4}$	
relative to the gener	ator	leve	l cross	s sectio	ons. The	e results assume no pileup contamination. The signal cross section assume	ımes	
both $X_{5/3}$ and B pro-	oduc	tic						
						a ational a company di la stara		
			— SI	gnal	Cross s	section > same sign di-leptons		
A Beller P	en	15	40			g_{1112}	se	S
			- 10) sigi	nai eve	ents $L = 20 - 3310$		
			_ S	B	> 1		+ + ~	
it is possi	QIE				- 1		8118	lg
			S	5/1/	$\overline{B} > 5$			
			~	/ • -				

 $f = 800 \text{ GeV}, M_1 = 1.5 \text{ TeV}, \phi = \pi, c_R = 3, y_L = 1, \text{ and } M_4 = 2 \text{ TeV}$ $|g_{XWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.66 \text{ and } |g_{BWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.63,$

Top partner models tend to have **many parameters**.

Backovic, Flacke, SL, Perez `14 Template Overlap Method w/ forward jet

tagging & b-tagging

 $f = 800 \text{ GeV}, M_1 = 1.5 \text{ TeV}, \phi = \pi, c_R = 3, y_L = 1, \text{ and } M_4 = 2 \text{ TeV}, |g_{XWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.66 \text{ and } |g_{BWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.63,$

*Template Overlap Method w/ forward jet tagging & b-tagging

- We showed that Run 2 of the LHC at 14 TeV can detect and measure 2 TeV top partners in a lepton-jet final state, with almost 5 sigma signal significance and S/B > 1 at 35 fb⁻¹
- A sizeable part of the model parameter space parts which result in a 2 TeV top partner can be ruled at 2 sigma with as little as 10 fb⁻¹

 $f = 800 \text{ GeV}, M_1 = 1.5 \text{ TeV}, \phi = \pi, c_R = 3, y_L = 1, \text{ and } M_4 = 2 \text{ TeV}, |g_{XWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.66 \text{ and } |g_{BWt}^R| = \frac{g}{\sqrt{2}} \cdot 0.63,$

Almeida, Backovic, Cliche, SL, Perelstein `I5

* Jet Substructure with Artificial Neural Network (ANN)

Almeida, Backovic, Cliche, SL, Perelstein `15

Jet Substructure with Artificial Neural Network (ANN)

Almeida, Backovic, Cliche, SL, Perelstein `15

Jet Substructure with Artificial Neural Network (ANN)

Single production of top partners

Backovic, Flacke, Kim, SL (x2), `15

$$\mathcal{L} \supset \bar{T} \left(i \not{\!\!D} - M_1 \right) T + \bar{q}_L i \not{\!\!D} q_L + \bar{t}_R i \not{\!\!D} t_R - \left(\lambda_R f \cos(\bar{h}/f) \bar{t}_R T_L - \frac{\lambda_L f \sin(\bar{h}/f)}{\sqrt{2}} \bar{t}_L T_R + \text{h.c.} \right)$$

$$m_{t,\text{phys}} \equiv m_{t'} = -\frac{v}{\sqrt{2}} \frac{\lambda_L \lambda_R f}{\sqrt{M_1^2 + \lambda_R^2 f^2}} + \mathcal{O}\left(\frac{v^3}{f^3}\right) \quad \text{and} \quad M_{T'} = \sqrt{M_1^2 + \lambda_R^2 f^2} + \mathcal{O}\left(\frac{v^2}{f^2}\right)$$

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{SM,t,b} - c_{L}^{ttZ} \frac{g \cos(\theta_{w})}{\sqrt{2}} \bar{t}'_{L} \notZ t_{L} - \left(c_{L}^{tbW} \frac{g}{2} \bar{t}'_{L} \notW b_{L} + \text{h.c.} \right) + c^{tth} \frac{m'_{t}}{v} h \bar{t}' t' \\ &+ \bar{T}' \left(i \not\partial - m_{T'} + g_{3} \notG + \frac{2}{3} e \notA + c_{L}^{T'T'Z} \frac{g \cos(\theta_{w})}{\sqrt{2}} \notZ P_{L} + c^{T'T'h} h \right) T' \\ &+ \left(c_{L}^{T'bW} \frac{g}{2} \bar{T}'_{L} \notW b_{L} + c_{L}^{T'tZ} \frac{g \cos(\theta_{w})}{\sqrt{2}} \bar{T}'_{L} \notZ t_{L} - c_{L,R}^{T'th} h \bar{T}'_{L,R} t'_{R,L} + \text{h.c.} \right) \end{aligned}$$

★ For Run I, (Z → MET)+hadronic channel was not utilized due to large SM background (e.g. t+MET):
 (Z → dilepton)+hadronic channel has been the Backovic, Flacke, Kim,SL `15 Backovic, Flacke, Kim,SL to appear today

★ For Run I, (Z → MET)+hadronic channel was not utilized due to large SM background (e.g. t+MET):
 (Z → dilepton)+hadronic channel has been the Backovic, Flacke, Kim, SL `15 Backovic, Flacke, Kim, SL to appear today

★ For Run I, (Z → MET)+hadronic channel was not utilized due to large SM background (e.g. t+MET):
 (Z → dilepton)+hadronic channel has been the Backovic, Flacke, Kim,SL `15 Backovic, Flacke, Kim,SL to appear today

Backovic, Flacke, Kim, SL to appear today

★ For Run I, (Z → MET)+hadronic channel was not utilized due to large SM background (e.g. t+MET):
 (Z → dilepton)+hadronic channel has been the Backovic, Flacke, Kim,SL `15 Backovic, Flacke, Kim,SL to appear today

*	For	simple	study	We	chose	SU(2)L	singlet	top
	part	tners (w	ith cha	rge	2/3)			

			$M_{T'}$	= 1.0	TeV sea	rch				$M_{T'}$	= 1.5 T	eV search	ı
$Z \to \nu \bar{\nu}$	Signal	tī	Z + X	Z + t	S/B	S/	$\sqrt{B}(100 \text{ fb}^{-1})$	Sign	al <i>tī</i>	Z + X	Z + t	S/B	$S/\sqrt{B}(100 \text{ fb}^{-1})$
Basic cuts	3.5	900	6100	11	0.0005	0	0.42	1.0	140	1200	2.4	0.00074	0.27
$Ov_{3}^{t} > 0.6$	2.7	510	840	6.5	0.0020		0.75	0.87	7 81	230	1.6	0.0028	0.49
b-tag	2.0	320	16	4.3	0.0057		1.1	0.54	4 45	3.2	0.94	0.011	0.77
E_T -cut	1.3	13	5.3	0.89	0.065		2.9	0.41	1 1.00	0.78	0.14	0.21	3.0
$N_{\rm fwd} \ge 1$	0.79	2.6	0.74	0.27	0.22		4.1	0.28	3 0.20	0.11	0.041	0.80	4.7
$\Delta\phi_{\not E_T,j} > 1.0$	0.66	0.94	0.58	0.22	0.38		5.0	0.22	2 0.076	6 0.083	0.033	1.2	5.1
	$M_{T'} = 1.0 \text{ TeV}$ search $M_{T'} = 1.5 \text{ TeV}$ search												rch
$Z \to l^+ l^-$		Sig	nal Z -	+X 2	Z + t	S/B	$S/\sqrt{B}(100 \text{ ft})$	p ⁻¹)	Signal	Z + X	Z + t	S/B	$S/\sqrt{B}(100 \text{ fb}^{-1})$
Basic cuts		1.1	7	50	1.3 0.	0014	0.39		0.30	170	0.36	0.0018	0.23
$Ov_{3}^{t} > 0.6$		0.7	1 7	1	0.61 0.	010	0.85		0.24	19	0.14	0.012	0.54
b-tag		0.5	2 1	.6	0.42 0.	25	3.6		0.15	0.36	0.086	0.33	2.2
$\Delta R_{ll} < 1.0$		0.5	2 1	.6	0.41 0.	26	3.6		0.15	0.36	0.086	0.33	2.2
$ m_{ll} - m_Z <$	10 GeV	0.4	7 1	.5	0.37	0.26	3.5		0.13	0.33	0.078	0.32	2.1
$N_{\rm fwd} \ge 1$		0.2	9 0.	23	0.11).88	5.1		0.088	0.051	0.019	1.3	3.3

TABLE I. Example-cutflow for signal- and background events in the $Z_{inv} + t + j$ search (top) and in the $Z_{ll} + t + j$ channel (bottom) for $\sqrt{s} = 14$ TeV. Cross sections after the respective cuts for signal and backgrounds are given in fb. The S/\sqrt{B} values are given for a luminosity of 100 fb⁻¹. The example signal $\sigma_{T'} \equiv \sigma(pp \rightarrow T'/\bar{T}' + X) \times BR(T' \rightarrow tZ)$ displayed here are 80 fb for $M'_T = 1.0$ TeV searches and 24 fb for $M'_T = 1.5$ TeV searches. The corresponding parameter points of our sample model are given in the text.

Backovic, Flacke, Kim, SL `15
2/3 charged Top Partner Searches Beyond the I TeV Mass Region

2/3 charged Top Partner Searches Beyond the I TeV Mass Region

Combined results (using likelihood ratio)

$$\mathcal{LR}_{\rm dis} \equiv \sqrt{-2\ln\left(\frac{L(B|\mu S + B)}{L(\mu S + B|\mu S + B)}\right)} \qquad \qquad \mathcal{LR}_{\rm dis} \ge 5$$

Figure 10: Signal cross section $\sigma_{T'} + \sigma_{\bar{T}'}$ required to obtain 5σ using 100 fb⁻¹ of data with a fixed $M_{T'} = 1$ TeV (left) 100 fb⁻¹ of data with a fixed $M_{T'} = 1.5$ TeV (right). The yellow stars mark the branching fractions at the sample points in our simulations ($c_L^{T'bW} = 0.3$ with $M_{T'} = 1.0$ TeV and $M_{T'} = 1.5$ TeV).

2/3 charged Top Partner Searches Beyond the I TeV Mass Region

$$\mathcal{LR}_{\text{exc}} \equiv \sqrt{-2\ln\left(\frac{L(\mu S + B|B)}{L(B|B)}\right)}$$

 $\mathcal{LR}_{exc} \geq 2$

Figure 11: Signal cross section $\sigma_{T'} + \sigma_{T'}$ which can be excluded with 100 fb⁻¹ of data with a fixed $M_{T'} = 1$ TeV (left) and 100 fb⁻¹ of data with a fixed $M_{T'} = 1.5$ TeV (right). The yellow stars mark the branching fractions at the sample points used in our simulations.

Top partners @ Run II

Boosted jet-substructure is a must tool for RUN II physics!

Composite Top Partners will be probed beyond 2 TeV!

Top partners @ Run II

We Might be this Close!

