Mass Minimization without Prejudice

Lim, Sung Hak

Korea Advanced Institute of Science and Technology

September 7, 2015 @ IPMU, Kashiwa

to be appeared on arXiv soon

Mass Function Minimization	Mass Variables based on Generalized Means	Endpoint Saturation and Resolving Power	Conclusion
0	0000	000	0

Pair Production of Semi-invisibly Decaying Particles and Cambridge- M_{T2}

 M_{T2} is a mass variable designed for detect masses of identical pair of particles decaying semi-invisibly.

$$M_{T2} \equiv \min_{\substack{q_{1,T}, q_{2,T} \\ q_{1,T}+q_{2,T}=\not \in_{T}}} \max[M_{T}(p_{1}, q_{1}), M_{T}(p_{2}, q_{2})]$$

 M_{T2} distribution is bounded above by mother particle's true mass, like M_T 's case.

$$M_{T2} \leq \text{parent mass}$$

However, when we do an analysis at the beginning, we don't need to assume the parents are identical.

Mass Function Minimization	Mass Variables based on Generalized Means	Endpoint Saturation and Resolving Power	Conclusion
00	0000	000	0
M_{T2} in Non-ident	ical Pair Production		

If we consider non-identical pair production, M_{T2} falls into several difficulties:

• The endpoint is only sensitive to the heavy one.

$$M_{T2} \leq \max(M_1, M_2)$$

• M_{T2} does not saturate to the expected endpoint.

These weakness of M_{T2} is originated from the fact that significant portion of the M_{T2} solutions are balanced in two transverse mass.

In the case of balanced configuration of transverse momenta, $M_{\mathcal{T}2}$ has an intrinsic constraint

$$M_T(p_1, q_1) = M_T(p_2, q_2)$$

Since the balancedness is encoded in the maximum function, we can try alternative objective functions to get away from symmetric intrinsic constraint.

Mass Function Minimization	Mass Variables based on Generalized Means	Endpoint Saturation and Resolving Power	Conclusion
00	000	000	

Minimization of Generalized Mean: Power Mean

As a continuous and smooth generalization of maximum, we		function
		Maximum
considered a power mean μ_p .	2	Root mean square
	1	Mean
$\left(1 \stackrel{n}{\longrightarrow} 1\right)^{\frac{1}{p}}$	0	Geometric Mean
$\hat{\mu}_{p}(f_{1},\cdots,f_{n}) = \left(\frac{1}{n}\sum_{j}f_{j}^{p}\right)$	-1	Harmonic Mean
$\left(\frac{n}{i=1} \right)$	$-\infty$	Minimum

• One can define a *minimized power mean*, to construct mass-bounding variables.

$$\mu_p[f] = \min \hat{\mu}_p(f(1), \cdots f(n))$$

• As $p \to \infty$, they converges to their maximum variant such as

$$\lim_{p \to \infty} \mu_p[M_T] = M_{T2} \equiv \min_{\substack{q_1, \tau, q_2, \tau \\ q_1, \tau + q_2, \tau = \not{\notin}_T}} \max[M_T(p_1, q_1), M_T(p_2, q_2)]$$
$$\lim_{p \to \infty} \mu_p[M] = M_2 \equiv \min_{\substack{q_1, q_2 \\ q_1, \tau + q_2, \tau = \not{\notin}_T}} \max[M(p_1, q_1), M(p_2, q_2)]$$

Mass Function Minimization	Mass Variables based on Generalized Means	Endpoint Saturation and Resolving Power	Conclusion
00	0000	000	
Endpoint of μ_p a	nd the Intersection		

• μ_p also has upper bound originated from its functional form.

$$\mu_{P}[M_{T}] \leq \hat{\mu}_{P}(M_{1}, M_{2}), \quad \mu_{P}[M] \leq \hat{\mu}_{P}(M_{1}, M_{2})$$

 Each endpoints of power means μ_p distribution constrains distinct region of mass spectrum.

$$\hat{\mu}_{p}(M_{1},M_{2})=\mu_{p}[M_{T}]^{\max}$$

- The constrained regions eventually intersect around the true parents masses.
- We can pin down the mass spectrum by the endpoint analysis of μ_p's.

• Sample events are generated from Monte Carlo simulation assuming constant cross section. ISR is not considered.

• Balanced configurations are dominates.

- Sample events are generated from Monte Carlo simulation assuming constant cross section. ISR is not considered.
- Unbalanced configurations contributes to endpoint region becase of rich invariant mass spectrum of net visible momenta in one decay chain.

Mass Function Minimization	Mass Variables based on Generalized Means	Endpoint Saturation and Resolving Power	Conclusion
00	0000	000	
Endpoint Saturation of μ_p			

- The fingerprint for distinguishing true mass spectrum is the endpoint region of Histogram.
- The saturation depends on type of configuration:
 - Balanced configuration sensitive to compatibility between intrinsic constraint and true mass spectrum
 - Unbalanced configuration sensitive to the invariant mass of net visible momenta on each decay chain

 Ratio of selected events having mass value at least 95% of expected endpoint mass

э

Difference of reconstructed transverse momentum q_T^* and exact transverse momentum q_T^0 of missing particles. Events having the top 0.1% M_{T2} or μ_P are selected.

• To estimate resolving power of each mass variable, we calculated Poisson log-likelihood between a reference sample and a template

- Red point is reference mass spectrum used as a sample.
- From 90% of M_{T2} or μ_p value to endpoint region on template is considered.
- μ_p with p = 1, 2, 5, 10, 100, 1000 and M_{T2} is used for combined analysis

Mass Function Minimization	Mass Variables based on Generalized Means	Endpoint Saturation and Resolving Power	Conclusion
00	0000	000	•
Conclusion			

- We developed a class of mass functions. which is based on power means, in multiple resonace decay system, which to be minimized over invisible missing momenta with minimal kinematic constraints.
- We show and emphasize that mass variables in the general class can provide significantly enhanced resolving power of measuring generally asymmetric resonance masses, which should be complementary to the M_{T2} where its expected endpoint becomes mass-sensitive only when symmetric and identical mother particle masses are assumed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@