
Mass Function Minimization Mass Variables based on Generalized Means Endpoint Saturation and Resolving Power Conclusion

Mass Minimization
without Prejudice

Lim, Sung Hak

Korea Advanced Institute of Science and Technology

September 7, 2015 @ IPMU, Kashiwa

to be appeared on arXiv soon



Mass Function Minimization Mass Variables based on Generalized Means Endpoint Saturation and Resolving Power Conclusion

Pair Production of Semi-invisibly Decaying Particles and Cambridge-MT2
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MT2 is a mass variable designed for detect masses of identical pair of particles
decaying semi-invisibly.

MT2 ≡ min
q1,T ,q2,T

q1,T +q2,T =/ET

max[MT (p1, q1),MT (p2, q2)]

MT2 distribution is bounded above by mother particle’s true mass, like MT ’s case.

MT2 ≤ parent mass

However, when we do an analysis at the beginning, we don’t need to assume the
parents are identical.
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MT2 in Non-identical Pair Production

If we consider non-identical pair production, MT2 falls into several difficulties:

The endpoint is only sensitive to the heavy one.

MT2 ≤ max(M1,M2)

MT2 does not saturate to the expected endpoint.

These weakness of MT2 is originated from the fact that significant portion of the MT2

solutions are balanced in two transverse mass.
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In the case of balanced configuration of transverse momenta, MT2 has an intrinsic
constraint

MT (p1, q1) = MT (p2, q2)

Since the balancedness is encoded in the maximum function, we can try alternative
objective functions to get away from symmetric intrinsic constraint.
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Minimization of Generalized Mean: Power Mean

As a continuous and smooth
generalization of maximum, we
considered a power mean µp .

µ̂p(f1, · · · , fn) =

(
1

n

n∑
i=1

f pi

) 1
p

p function

∞ Maximum
2 Root mean square
1 Mean
0 Geometric Mean
-1 Harmonic Mean
−∞ Minimum

One can define a minimized power mean, to construct mass-bounding variables.

µp [f ] = min µ̂p(f (1), · · · f (n))

As p →∞, they converges to their maximum variant such as

lim
p→∞

µp [MT ] = MT2 ≡ min
q1,T ,q2,T

q1,T +q2,T =/ET

max[MT (p1, q1),MT (p2, q2)]

lim
p→∞

µp [M] = M2 ≡ min
q1,q2

q1,T +q2,T =/ET

max[M(p1, q1),M(p2, q2)]
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Endpoint of µp and the Intersection

µp also has upper bound originated from its functional form.

µp [MT ] ≤ µ̂p(M1,M2), µp [M] ≤ µ̂p(M1,M2)

Each endpoints of power means µp
distribution constrains distinct region
of mass spectrum.

µ̂p(M1,M2) = µp [MT ]max

The constrained regions eventually
intersect around the true parents
masses.

We can pin down the mass spectrum
by the endpoint analysis of µp ’s.
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Distribution of µp : Two-body Decay

Identical pair production Non-identical pair production
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Sample events are generated from Monte Carlo simulation assuming constant
cross section. ISR is not considered.

Balanced configurations are dominates.
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Distribution of µ∗p : Three-body Decay

Identical pair production Non-identical pair production
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Sample events are generated from Monte Carlo simulation assuming constant
cross section. ISR is not considered.

Unbalanced configurations contributes to endpoint region becase of rich invariant
mass spectrum of net visible momenta in one decay chain.
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Endpoint Saturation of µp

The fingerprint for distinguishing true mass spectrum is the endpoint region of
Histogram.
The saturation depends on type of configuration:

Balanced configuration sensitive to compatibility between intrinsic constraint and true
mass spectrum
Unbalanced configuration sensitive to the invariant mass of net visible momenta on
each decay chain

Two-body decay Three-body decay
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Event Reconstruction of µp

Identical pair production Non-identical pair production
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Difference of reconstructed transverse momentum q∗T and exact transverse momentum

q0
T of missing particles. Events having the top 0.1% MT2 or µp are selected.
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Likelihood Analysis of µp

To estimate resolving power of each mass variable, we calculated Poisson
log-likelihood between a reference sample and a template

Identical pair production Non-identical pair production
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Red point is reference mass spectrum used as a sample.

From 90% of MT2 or µp value to endpoint region on template is considered.

µp with p = 1, 2, 5, 10, 100, 1000 and MT2 is used for combined analysis
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Conclusion

We developed a class of mass functions. which is based on power means, in
multiple resonace decay system, which to be minimized over invisible missing
momenta with minimal kinematic constraints.

We show and emphasize that mass variables in the general class can provide
significantly enhanced resolving power of measuring generally asymmetric
resonance masses, which should be complementary to the MT2 where its
expected endpoint becomes mass-sensitive only when symmetric and identical
mother particle masses are assumed.
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