Exotic LFV events at the LHC PRD91(2015)015001 – 1508.04623 – 1508.05074

Cédric Weiland

in collaboration with E. Arganda, M.J. Herrero and X. Marcano

Instituto de Física Teórica, Universidad Autónoma de Madrid/CSIC, Spain and Shimane University, Japan

Kavli IPMU-Durham-KIAS workshop September 9, 2015

・ロット (雪) (日) (日)

Motivations

- Different mixing pattern from CKM, ν lightness $\stackrel{?}{\leftarrow}$ Majorana ν
- SM: no
 ν mass term, lepton flavour is conserved
 ⇒ need new Physics
 - Radiative models
 - Extra dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanism $\rightarrow \nu$ mass at tree-level
 - + BAU through leptogenesis
- Low-scale seesaw mechanisms
 - \rightarrow no naturalness problem from heavy neutrinos

(日)

The inverse seesaw mechanism

• Inverse seesaw \Rightarrow Consider fermionic gauge singlets ν_{Ri} (L = +1) and X_i (L = -1) [Mohapatra and Valle, 1986]

$$\mathcal{L}_{inverse} = -Y_{\nu}^{ij}\overline{L_{i}}\tilde{H}\nu_{Rj} - M_{R}^{ij}\overline{\nu_{Ri}^{C}}X_{j} - \frac{1}{2}\mu_{X}^{ij}\overline{X_{i}^{C}}X_{j} + \text{h.c.}$$

with
$$m_D = Y_{\nu} v, M^{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$$

$$m_{\nu} \approx \frac{1}{m_D^2 + M_R^2}$$

 $m_{N_1,N_2} \approx \mp \sqrt{m_D^2 + M_R^2} + \frac{M_R^2 \mu_X}{2(m_D^2 + M_R^2)}$

 $m_D^2 \mu_X$

2 scales: μ_X and M_R

・ロト ・四ト ・ヨト ・ヨト

A rich phenomenology

• Inverse seesaw: $Y_{\nu} \sim \mathcal{O}(1)$ and $M_R \sim 1 \text{ TeV}$ \Rightarrow testable at the LHC and low energy experiments

LHC/LC signatures

- single lepton + dijet + missing energy [Das and Okada, 2013]
- di-lepton + missing p_T [Bhupal Dev et al., 2012, Bandyopadhyay et al., 2013]
- LFV di-lepton + dijet [1508.05074]
- tri-lepton + missing E_T [Mondal et al., 2012, Das et al., 2014]...
- invisible Higgs decays [Banerjee et al., 2013]
- Low energy:
 - deviations from lepton universality [Abada, Teixeira, Vicente and CW, 2014]
 - charged lepton flavour violation (LFV) [Bernabéu et al., 1987]...
 - neutrinoless double beta decay [Awasthi et al., 2013]...
 - charged lepton anomalous magnetic moment [Abada et al., 2014]

An aside on LFV Higgs decays

• $h \rightarrow \tau \mu$: 2.4 σ excess in CMS, Br = 0.84^{+0.39}_{-0.37}% [Khachatryan et al., 2015] 1.3 σ excess in ATLAS, Br = 0.77 ± 0.62% [1508.03372]

• Very stringent constraints from other LFV processes, e.g.

$$BR(\mu \to e\gamma) \leq 5.7 \times 10^{-13} \text{ [MEG, 2013]}$$
$$BR(\tau \to e\gamma) \leq 3.3 \times 10^{-8} \text{ [BaBar, 2010]}$$
$$BR(\tau \to \mu\gamma) \leq 4.4 \times 10^{-8} \text{ [BaBar, 2010]}$$

• Approximate formulas for the ISS with large Y_{ν}

[Arganda, Herrero, Marcano and CW, PRD91(2015)015001]

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

$$\begin{aligned} &\mathsf{BR}_{l_m \to l_k \gamma} \simeq 8 \times 10^{-17} \frac{m_{l_m}^5}{\Gamma_{l_m}} \left| \frac{v^2}{2M_R^2} (Y_\nu Y_\nu^\dagger)_{km} \right|^2 \\ &\mathsf{BR}_{h \to \mu \bar{\tau}} \simeq 10^{-7} \frac{v^4}{M_R^4} \left| (Y_\nu Y_\nu^\dagger)_{23} - 5.7 (Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger)_{23} \right|^2 \end{aligned}$$

э

Producing large $h \rightarrow \tau \mu$ rates

• Textures with
$$(Y_{\nu}Y_{\nu}^{\dagger})_{12}=0$$
 and $\frac{|Y_{\nu}^{ij}|^2}{4\pi}<1.5$

$$Y_{\tau\mu}^{(1)} = f \begin{pmatrix} 0 & 1 & -1 \\ 0.9 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \ Y_{\tau\mu}^{(2)} = f \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix}, \ Y_{\tau\mu}^{(3)} = f \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 0.8 & 0.5 & 0.5 \end{pmatrix}$$

Flavour composition of the heavy neutrinos:

- 3 very different flavour patterns
- Heavy neutrino mixing of $\tau \mu$ type is always present

・ロット (雪) (日) (日)

$h \rightarrow \tau \mu$ in the (SUSY) ISS

• $f = \sqrt{6\pi}$, M_R real, degenerate, ν oscillations reproduced by μ_X

[PRD91(2015)015001]

- Dotted: excluded by $\tau \rightarrow \mu \gamma$ Solid: allowed by LFV, LUV...
- Br^{max} $(h \rightarrow \mu \bar{\tau}) \sim 10^{-5}$
- Same with hierarchical heavy neutrinos

[arXiv:1508.04623]

- \times : excluded by $\tau \rightarrow \mu \gamma$
 - ▲: allowed
- $\operatorname{Br}^{\max}(h \to \mu \overline{\tau}) = \mathcal{O}(1\%)$
- SUSY loops could explain the TE CMS and ATLAS excess

Heavy neutrinos production and decays at the LHC

[1508.05074]

- Main production channel: Drell-Yan
- $\tau \mu$ mixing in N $\Rightarrow \mu^{\pm} \tau^{\mp} j j$ signal with no $\not\!\!\!E_T$
- Wγ fusion relevant at large M_R [Dev et al., 2014, Alva et al., 2015]
- Contribute to μ[±]τ[∓]jj signal if extra-jets are soft or collinear → p_T < p_T^{max}
- Numerics done with MadGraph5 and NNPDFQED, M_R real and degenerate
- Similar results with other PDF sets

Production and decays at LHC14

$pp \rightarrow \mu \tau j j$ events at LHC14 for $Y_{\tau \mu}^{(3)}$

- Lower line: production only from Drell-Yan Shaded regions: $W\gamma$ fusion added with $p_T^{\text{max}} = 10, 20, 40 \text{ GeV}$ (darker to lighter)
- Up to $\mathcal{O}(100)$ events, naively background free

$pp \rightarrow \mu \tau jj$ events at LHC14 for $Y_{\tau \mu}^{(1)}$

- Lower line: production only from Drell-Yan Shaded regions: $W\gamma$ fusion added with $p_T^{\text{max}} = 10, 20, 40 \text{ GeV}$ (darker to lighter)
- Up to $\mathcal{O}(10)$ events, naively background free

$pp \rightarrow \mu \tau j j$ events at LHC14 for $Y_{\tau \mu}^{(2)}$

- Lower line: production only from Drell-Yan Shaded regions: $W\gamma$ fusion added with $p_T^{\text{max}} = 10, 20, 40 \text{ GeV}$ (darker to lighter)
- Up to $\mathcal{O}(200)$ events, naively background free

Conclusions

- (SUSY) Inverse seesaw: specific examples of low-scale seesaw mechanisms
- New physics at the TeV scale with large couplings: rich phenomenology
- SUSY loops could explain the CMS and ATLAS excess in $h \rightarrow \tau \mu$
- 10-200 events would be expected at LHC14
- Next step: Consider $e\tau jj$ and $e\mu jj$ final states
 - Estimate the signal/background ratio via detector level studies

Backup slides

Diagrams for the ISS

(PRD91(2015)015001)

• In the Feynman-'t Hooft gauge, same as [Arganda et al., 2005]:

(5)

(2)

(4)

(7)

(9)

(6)

(10)

(8)

• Formulas adapted from [Arganda et al., 2005]

- Diagrams 1, 8, 10 \rightarrow dominate at large M_R
- Enhancement from: - $\mathcal{O}(1) Y_{\nu}$ couplings -TeV scale n_i

(日)

Most relevant constraints

• Neutrino data \rightarrow Use specific parametrizations (modified Casas-Ibarra [Casas and Ibarra, 2001] or μ_X parametrization)

$$vY_{\nu}^{T} = V^{\dagger} \operatorname{diag}(\sqrt{M_{1}}, \sqrt{M_{2}}, \sqrt{M_{3}}) R \operatorname{diag}(\sqrt{m_{1}}, \sqrt{m_{2}}, \sqrt{m_{3}}) U_{PMNS}^{\dagger}$$
$$M = M_{R} \mu_{X}^{-1} M_{R}^{T}$$
$$OR$$

$$\mu_X = M_R^T m_D^{-1} U_{\text{PMNS}}^* m_\nu U_{\text{PMNS}}^\dagger m_D^{T-1} M_R$$

- Charged lepton flavour violation \rightarrow For example: Br($\mu \rightarrow e\gamma$) < 5.7 × 10⁻¹³ [MEG, 2013]
- Lepton universality violation: less contraining than $\mu \rightarrow e\gamma$
- Electric dipole moment: 0 with real PMNS and mass matrices
- Invisible Higgs decays: $M_R > m_H$, does not apply

cLFV Higgs decays from SUSY loops

(arXiv:1508.04623)

In the Feynman-'t Hooft gauge, same as [Arganda et al., 2005]:

- Formulas adapted from [Arganda et al., 2005]
- Enhancement from: - $\mathcal{O}(1) Y_{\nu}$ couplings -TeV scale $\tilde{\nu}$

(日)

