A Model of Visible Axion

arXiv:1504.06084, Phys. Rev. D 92, 015021

Hajime Fukuda (Kavli IPMU)

with: Keisuke Harigaya, Masahiro Ibe and Tsutomu T. Yanagida

CP conservation in QCD

• CP should be broken in QCD

$$|\theta\rangle = \sum e^{in\theta}|n\rangle$$

det(Yukawa matrices)

but measured CPV is quite small

QCD Axion

- An axion is usually introduced $\theta \rightarrow \theta + a/f, \langle a \rangle/f = -\theta$
- The condensation gives potential

Better models are needed!

- Experimentally, PQ scale f should be grater than about 10⁹ GeV
- Fine-tuning for fine-tuning?

$$\Delta \theta \sim f/M_{\rm Pl}$$

• Smaller f is preferred

Requirement

- The smaller f is, the easier it is to detect axions, basically
- Axions must not be created!
 They must be heavy enough
- How can we make it heavy?

$$m_a \simeq m_q \Lambda_{
m QCD}{}^3/f^2$$

Heavy axion

 Another gauge theory can make an axion heavier

From another YM theory!

From QCD

We must align the effective theta
 Use a Z₂ symmetry (mirror sector)

[Rubakov 1997]

[Berezhiani, Gianfagna and Giannotti 2000, Hook 2014, HF, Harigaya, Ibe and Yanagida 2015]

Set up

q and Φ are color-charged

Set up

Corrections to \theta

- From the higher dim. operators $\circ \Delta \theta \sim \sigma/M_{PL}$
 - Once *B*-*L* is gauged, only M_N^2 s appear
- From radiative corrections
 - Weak and Yukawa couplings and CKM angles are involved
 small enough

Parameter space

• Now ma and f become independent.

How is our model verified?

- We have two ways.
 Finding axion
 Finding other particles (m ~ f, Λ')
- Beam dump exp. for the former
- LHC may be useful for the both!
 What if Λ' ~ 1 TeV theory exists?
 - e.g. the diboson anomaly

[1507.02483 Chiang, HF, Harigaya, Ibe, Yanagida]

Summary

- We can introduce a very heavy QCD axion, once we assume mirror Z₂
- Not only experimental constraints, but also cosmological constraints are important
- We may see some hints of mirrored sector at LHC soon!

Typical values

- ma > O(100) MeV
- fa > 1 TeV
- If we don't want η' like axion,
 m' ~ O(100) MeV
- Then, Λ' ~ 0.1 1 TeV