The Black Hole Microstate Geometry Program

- Past, Present, and Future

Masaki Shigemori

(YITP Kyoto)

June 9, 2015 2nd String Theory in Greater Tokyo @ RIKEN

The Question:

How much of black hole entropy can be accounted for by smooth, horizonless solutions of classical gravity?

Why BH microphysics?

- Now nobody is sure about what's happening in BH
 - Conventional picture in doubt
- Observational consequences?
- Test of string theory as QG
- Related to various areas
 - Quantum information
 - Opening black box of AdS/CFT

Plan

BH microstates

- Microstate geom
- Fuzzball conjecture
 & microstate geom program
- Microstate geom in 5D
- Double bubbling
- Superstratum

Black hole microstates

Black holes

- Solution to Einstein equations
- Boundary of no return: event horizon
- Spacetime breaks down at spacetime singularity

BH entropy puzzle

BH entropy:

$$S_{\rm BH} = \frac{A}{4G_{\rm N}}$$
 (A)

- Where are the microstates?

- Uniqueness theorems
- Need quantum gravity?

AdS/CFT correspondence

 \rightarrow Stat mech interpretation of BH put on firm ground

BH microstates

 Must be a state of quantum gravity / string theory in general

Summary:

We want gravity picture of BH microstates!

Microstate geometries

Example I: LLM geometries

[Lin-Lunin-Maldacena 2004]

LLM geometries (2)

- LLM diagram encodes how S^3 's shrink
- Smooth horizonless geometries
- Non-trivial topology supported by flux _

I-to-I correspondence with coherent states in CFT

Classical limit

How is naive singular geometry (superstar) recovered?

Bubble area quantized

(area) =
$$4\pi^2 l_p^4 N$$
, $h = 4\pi^2 l_p^4$

• Classical limit: $l_p \rightarrow 0, N \rightarrow \infty$

Example 2: LM geometries

[Lunin-Mathur 2001] [Lunin-Maldacena-Maoz 2002]

LM geometries (2)

- LM curve encodes how S^1 shrinks
- Smooth horizonless geometries supported by flux
- ▶ I-to-I correspondence with CFT states: $\vec{F}(\lambda) \leftrightarrow \{n_k\}$
- Entropy reproduced geometrically: $S \sim \sqrt{N_1 N_2}$

Classical limit

How is naive singular geometry recovered?

Summary:

Some BH microstates are represented by microstate geometries.

— Naive BH solutions are replaced by bubbling geometries with *finite spread*.

Fuzzball conjecture & microstate geometry program

Maybe the same is true for genuine black holes?

— BH microstates are some stringy configurations spreading over a wide distance?

 $\mathcal{R} \sim l_{\rm P} N^{\alpha} \sim r_H ??$

Fuzzball conjecture

- BH microstates = QG/stringy "fuzzballs"
- No horizon, no singularity
- Spread over horizon scale

Sugra fuzzballs (1)

Are fuzzballs describable in sugra?

Unlikely in general

□ General fuzzballs must involve all string modes

□ Massive string modes are not in sugra

$\bigcirc \bigtriangleup \diamondsuit$

Hope for BPS states

□ Massive strings break susy

 \rightarrow Only massless (sugra) modes allowed?

□ "Example": MSW (wiggling M5)

[Maldacena+Strominger+Witten 1997]

Sugra fuzzballs (2)

Caveats:

- Generic states have large curvature
 - □ Higher derivative corrections nonnegligible
 - But should not change qualitative picture;
 DoF must be the same

smooth, but curvature large

- Non-geometries
 - □ Non-geometric microstates possible [Park+MS 2015]

Microstate geometry program:

What portion of the BH entropy of supersymmetric BHs is accounted for by smooth, horizonless solutions of classical sugra?

Comment: bottom up approach

[Mathur '09] O(1) deviation from flat space is needed for Hawking radiation to carry information

□ Based on Q info (strong subadditivity)

[AMPS '12] "Firewall"

□ Same result, same Q info (monogamy etc.)

These arguments are "bottom-up"
 Mechanism to support finite size not explained
 Microstate geometry program is "top-down"
 Finite size supported by topology with fluxes

Microstate geometries in 5D

Let's review a class of BH microstate geometries, including their pros & cons. 5D microstate geometries: circa 2004–09 Setup

• $D = 5, \mathcal{N} = 1$ sugra with 2 vector multiplets

gauge fields: A^I_{μ} , I = 1,2,3. $F^I \equiv dA^I$. scalars: X^I , $X^1X^2X^3 = 1$

Action

$$S_{\text{bos}} = \int (*_5 R - Q_{IJ} dX^I \wedge *_5 dX^I - Q_{IJ} F^I \wedge *_5 F^J - \frac{1}{6} C_{IJK} F^I \wedge F^J \wedge A^K)$$

Chern-Simons interaction

 $C_{IJK} = |\epsilon_{IJK}|, \quad Q_{IJ} = \frac{1}{2} \text{diag}(1/X^1, 1/X^2, 1/X^3)$

11D interpretation

• M-theory on T_{56789A}^{6} A = 10

$$ds_{11}^2 = ds_5^2 + X^1 (dx_5^2 + dx_6^2) + X^2 (dx_7^2 + dx_8^2) + X^3 (dx_9^2 + dx_A^2)$$

BPS solutions [Gutowski-Reall '04] [Bena-Warner '04]

Require susy

re susy

$$ds_{5}^{2} = -Z^{-2}(dt + k)^{2} + Z ds_{4}^{2}$$

$$A^{I} = -Z_{I}^{-1}(dt + k) + B^{I}, \quad dB^{I} = \Theta^{I}$$
elec mag

$$Z = (Z_{1}Z_{2}Z_{3})^{1/3}; \quad X^{1} = \left(\frac{Z_{2}Z_{3}}{Z_{1}^{2}}\right)^{1/3} \text{ and cyclic}$$

All depends only on B_4 coordinates

Linear system

$$\Theta^{I} = *_{4} \Theta^{I},$$

$$\nabla^{2} Z_{I} = C_{IJK} *_{4} (\Theta^{J} \wedge \Theta^{K})$$

$$(1 + *_{4}) dk = Z_{I} \Theta^{I}$$

Sol'ns with U(1) sym [Gutowski-Gauntlett '04]

Solving eqs in general is difficult. Assume U(1) symmetry in \mathcal{B}^4

$$\int \int \int \int R^{3} ds_{4}^{2} = V^{-1}(d\psi + A)^{2} + V(dy_{1}^{2} + dy_{2}^{2} + dy_{3}^{2}),$$
(Gibbons-Hawking space)

V is harmonic in \mathbb{R}^3 :

$$V = v_0 + \sum_p \frac{v_p}{|\boldsymbol{r} - \boldsymbol{r}_p|}$$

Multi-center KK monopole / Taub-NUT

Complete solution

All eqs solved in terms of harmonic functions in \mathbb{R}^3 :

$$H = (V, K^{I}, L_{I}, M), \qquad H = h + \sum_{p} \frac{Q_{p}}{|r - r_{p}|}$$
$$\Theta^{I} = d\left(\frac{K^{I}}{V}\right) \wedge (d\psi + A) - V *_{3} d\left(\frac{K^{I}}{V}\right)$$
$$Z_{I} = L_{I} + \frac{1}{2V}C_{IJK}K^{J}K^{K}$$
$$k = \mu(d\psi + A) + \omega$$
$$\mu = M + \frac{1}{2V}K^{I}L_{I} + \frac{1}{6V^{2}}C_{IJK}K^{I}K^{J}K^{K}$$
$$*_{3} d\omega = VdM - MdV + \frac{1}{2}(K^{I}dL_{I} - L_{I}dK^{I})$$

Multi-center solution

- Multi-center config of BHs & BRs in 5D
- Positions r_p satisfy "bubbling eq" (force balance)
- Reducing on ψ gives 4D BHs (same as Bates-Denef 2003)

Microstate geometries (1)

Tune charges:

Smooth horizonless solutions [Bena-Warner 2006] [Berglund-Gimon-Levi 2006]

▶ Microstate geometries for 5D (and 4D) BHs ☺

 \square Same asymptotic charges as BHs

- Topology & fluxes support the soliton
- Mechanism to support horizon-sized structure!

Microstate geometries (2)

► Various nice properties ☺

Scaling solutions [BW et al., 2006, 2007]

The real question:

Are there enough?

- 3-chage sys (+ fluctuating supertube)
 - Entropy enhancement mechanism [BW et al., 2008]

 \rightarrow Much more entropy?

An estimate [BW et al., 2010]

 $S \sim Q^{\frac{5}{4}} \ll Q^{\frac{3}{2}}$ Parametrically smaller \otimes

• 4-chage sys [de Boer et al., 2008-09]

• Quantization of D6- $\overline{\text{D6}}$ -D0 config \rightarrow much less entropy \otimes

- Single-ctr BH exists everywhere and contributes to index (elliptic genus).
- Microstates must also exist everywhere and contribute to index.
- But >2 center solns do not contribute to index!

→ They disappear when generic moduli are turned on?
→ They are irrelevant for microstates?

Cf. Moulting BH [Bena, Chowdhury, de Boer, El-Showk, MS 2011]

Further issues (2)

Pure Higgs branch [Bena, Berkooz, de Boer, El-Showk, Van den Bleeken '12]

Vacua of Quiver QM (scaling regime)

Coulomb branch

- Corresponds to multi-center solutions
- Small entropy
- Generally $J \neq 0$

Pure Higgs branch

- Corresponding sugra solution unclear
- Large entropy

$$J = 0$$

Summary:

We found microstate geometries for genuine BHs, but they are too few.

Possibilities:

- A) Sugra is not enough
- B) Need more general ansatz this talk

Double bubbling 2010–

What are we missing?

— A guiding principle for constructing microstate geometries.

Revisit better understood example: 2-charge system (LM geometries)

Supertube transition [Mateos+Townsend 2001]

- Spontaneous polarization phenomenon
 - (cf. Myers effect)

- Produces new dipole charge
- Represents genuine bound state
- Cross section = arbitrary curve

F1-P frame

- To carry momentum, FI must wiggle in transverse \mathbb{R}^8
- Projection onto transverse \mathbb{R}^8 is an arbitrary curve

D1-D5 frame

$D1(5) + D5(56789) \rightarrow KKM(\lambda 6789,5)$

- This is LM geometry
- Arbitrary curve \rightarrow large entropy $S \sim \sqrt{N_1 N_2}$
- Explains origin of 2-charge microstate geometries

"Double bubbling"

- Multiple transitions can happen in principle
- Arbitrary surface \rightarrow larger entropy?

[de Boer+MS 2010, 2012] [Bena+de Boer +Warner+MS 2011]

Non-geometric in general

A geometric channel

- Dependence on x^5 is crucial
- Must live in 6D
- Possibility to recover $S \sim \sqrt{N_1 N_2 N_3}$

[Bena+de Boer +Warner+MS 2014]

Two routes to superstratum

Summary:

Existence of superstrata depending on functions of two variables is a necessary condition for $S_{\rm BH} \sim S_{\rm geom}$

Microstate geometries in 6D (sugra superstratum) 2011–

<u>Goal:</u>

Explicitly construct "superstrata" or wiggly KKM in 6D

They must depend on functions of two variables: F(v, w)

Susy solutions in 6D

- IIB sugra on T_{6789}^4
- No dependence on T^4 coordinates
- Require same susy as preserved by DI-D5-P
- Expected charges / dipole charges:

DI(v) DI(λ) KKM(λ 6789, v) D5(v6789) D5(λ 6789) P(v) $u = \frac{t-x^5}{\sqrt{2}}, \quad v = \frac{t+x^5}{\sqrt{2}}$ x^5 : compact [Gutowski+Martelli+Reall 2003] [Cariglia+Mac Conamhna 2004] [Bena+Giusto+MS+Warner 2011] [Giusto+Martucci+Petrini+Russo 2013]

The sol'n is characterized by...

scalars

 $Z_{1} \leftrightarrow \mathsf{DI}(v)$ $Z_{2} \leftrightarrow \mathsf{D5}(v6789)$ $\mathcal{F} \leftrightarrow \mathsf{P}(v)$ $Z_{4} \leftrightarrow \mathsf{NS5}(v6789) + \mathsf{FI}(v)$

2-forms

 $\Theta_1 \leftrightarrow \mathsf{DI}(\lambda)$

 $\Theta_2 \leftrightarrow \mathsf{D5}(\lambda 6789)$

 $\Theta_4 \leftrightarrow \mathsf{NS5}(\lambda 6789) + \mathsf{FI}(\lambda)$

I-forms

 $\beta \leftrightarrow \mathsf{KKM}(\lambda 6789, v)$ $\omega \leftrightarrow \mathsf{P}(\lambda)$

Explicit form of solution

$$ds_{10}^{2} = -\frac{2\alpha}{\sqrt{Z_{1}Z_{2}}}(dv + \beta)\left(du + \omega + \frac{1}{2}\mathcal{F}(dv + \beta)\right) - \sqrt{Z_{1}Z_{2}}ds^{2}(\mathcal{B}^{4}) + \sqrt{\frac{Z_{1}}{Z_{2}}}ds^{2}(\mathcal{T}^{4})$$

$$e^{2\Phi} = \frac{\alpha Z_1}{Z_2}$$
 $\alpha \equiv \frac{Z_1 Z_2}{Z_1 Z_2 - Z_4^2}$ $\mathcal{D} \equiv d_4 - \beta \wedge \partial_v$ $\vdots \equiv \partial_v$

$$\begin{split} H_{3} &= -(du+\omega) \wedge (dv+\beta) \wedge \left(\mathcal{D}\left(\frac{\alpha Z_{4}}{Z_{1}Z_{2}}\right) - \frac{\alpha Z_{4}}{Z_{1}Z_{2}}\dot{\beta} \right) \\ &+ (dv+\beta) \wedge \left(\Theta_{4} - \frac{\alpha Z_{4}}{Z_{1}Z_{2}}\mathcal{D}\omega\right) + \frac{\alpha Z_{4}}{Z_{1}Z_{2}}(du+\beta) \wedge \mathcal{D}\beta + *_{4}(\mathcal{D}Z_{4} + Z_{4}\dot{\beta}) \\ F_{1} &= \mathcal{D}\left(\frac{Z_{4}}{Z_{1}}\right) + (dv+\beta) \wedge \partial_{v}\left(\frac{Z_{4}}{Z_{1}}\right) \\ F_{3} &= -(du+\omega) \wedge (dv+\beta) \wedge \left(\mathcal{D}\left(\frac{1}{Z_{1}}\right) - \frac{1}{Z_{1}}\dot{\beta} + \frac{\alpha Z_{4}}{Z_{1}Z_{2}}\mathcal{D}\left(\frac{Z_{4}}{Z_{1}}\right)\right) \\ &+ (dv+\beta) \wedge \left(\Theta_{1} - \frac{Z_{4}}{Z_{1}}\Theta_{4} - \frac{1}{Z_{1}}\mathcal{D}\omega\right) + \frac{1}{Z_{1}}(du+\beta) \wedge \mathcal{D}\beta + *_{4}(\mathcal{D}Z_{2} + Z_{2}\dot{\beta}) - \frac{Z_{4}}{Z_{1}} *_{4}(\mathcal{D}Z_{4} + Z_{4}\dot{\beta}) \end{split}$$

0th layer: 4D base

6D spacetime: (u, v, x^m) x^m : 4D base

▶ 4D base $\mathcal{B}^4(v)$: almost hyper-Kähler $ds^{2}(\mathcal{B}^{4}) = h_{mn}(x, v)dx^{m}dx^{n}, \quad m, n = 1, 2, 3, 4$ $\beta(x, v)$: I-form (\leftrightarrow KKM) $J^{(A)}(x, v), A = 1, 2, 3$: almost HK 2-forms $J^{(A)m}{}_{n} J^{(B)n}{}_{n} = \epsilon^{ABC} J^{(C)m}{}_{n} - \delta^{AB} \delta^{m}_{p}$ $d_4 J^{(A)} = \partial_{\nu} (\beta \wedge J^{(A)}), \qquad D \equiv d_4 - \beta \wedge \partial_{\nu}$

BPS equations

First layer (Z, Θ)

 $\mathcal{D} *_{4} \left(\mathcal{D}Z_{1} + \dot{\beta}Z_{1} \right) = -\mathcal{D}\beta \wedge \Theta_{2}$ $\mathcal{D}\Theta_{2} - \dot{\beta} \wedge \Theta_{2} = \partial_{\nu} \Big[*_{4} \left(\mathcal{D}Z_{1} + \dot{\beta}Z_{1} \right) \Big]$ $\Theta_{2} - Z_{1}\psi = *_{4} \left(\Theta_{2} - Z_{1}\psi \right)$

$$\psi = \frac{1}{8} \epsilon^{ABC} J^{(A)mn} \dot{J}^{(B)}_{mn} J^{(C)}$$

Second layer (ω, F)

 $(1+*_4)\mathcal{D}\omega + \mathcal{F}\mathcal{D}\beta = Z_1 *_4 \Theta_1 + Z_2\Theta_2 - Z_4(1+*_4)\Theta_4$

— Linear if solved in the right order

— Very complicated! Hard to find general superstrata

Strategy:

To prove concept, construct simple superstrata depending on functions of two variables

[Bena-Giusto-Russo-MS-Warner '15]

Background (1)

Starting point: simplest DI-D5 configuration (no P yet):

circular LM geom = pure $AdS_3 \times S^3$

= "round" superstratum with no wiggle (yet)

Background (2)

Circular profile:

 $F_1 + iF_2 = a \exp(2\pi i\lambda/L)$

Explicit solution:

Flat base
$$(\mathcal{B}^4 = \mathbb{R}^4)$$

 $ds^2(\mathbb{R}^4) = \Sigma \left(\frac{dr^2}{r^2 + a^2} + d\theta^2 \right) + (r^2 + a^2) \sin^2\theta \, d\phi^2 + r^2 \cos^2\theta \, d\psi^2$
 $\Sigma \equiv r^2 + a^2 \cos^2\theta \qquad \beta = \frac{R_5 a^2}{\sqrt{2}\Sigma} (\sin^2\theta d\phi - \cos^2\theta d\psi)$

Other data:

$$Z_1 = 1 + \frac{Q_1}{\Sigma} \qquad Z_2 = 1 + \frac{Q_2}{\Sigma} \qquad \omega = \frac{R_5 a^2}{\sqrt{2\Sigma}} (\sin^2\theta d\phi + \cos^2\theta d\psi)$$

 $Z_4 = \mathcal{F} = \Theta_1 = \Theta_2 = \Theta_4 = 0$

Putting momentum

Now we want to add P

Putting momentum deforms the round superstratum = S^3 by putting wiggles on it

Linear fluctuation

 $Z_4 = b \frac{R_5 \Delta_{km}}{\Sigma} \cos \hat{v}_{km}$

Certain *linear* solutions can be found by solution generating technique

[Mathur+Saxena+Srivastava 2003]

 $\Theta_4 = -\sqrt{2}bm\Delta_{km} (r\sin\theta \ \Omega^{(1)}\sin \hat{v}_{km} + \Omega^{(2)}\cos \hat{v}_{km})$

$$\Delta_{km} \equiv \left(\frac{a}{\sqrt{r^2 + a^2}}\right)^k \sin^{k-m}\theta \cos^m\theta \qquad \hat{v}_{km} \equiv \frac{m\sqrt{2}}{R_5}v + (k-m)\phi - m\psi$$
$$ds^2(\mathcal{B}^4), \ Z_{1,2,}, \ \beta, \ \omega, \ \Theta_{1,2}: \text{ unchanged at } \mathcal{O}(b)$$

• Depends on two params (k,m)

CFT dual: descendants of chiral primary

How to get function of two variables

• Regard solution with (k, m) as Fourier modes on S^3

$$f(S^3) = \sum_{k,m} b_{k,m} Y_{k,m}$$

$$S^3: \underbrace{SU(2)_L}_{BPS} \times SU(2)_R$$

 b_{km} independent \iff function of two variables!

Non-linearly complete to get genuine geometric superstratum

Non-linear completion

Use linear structure of BPS eqs to nonlinearly complete

• Assume 0^{th} data \mathcal{B}^4 , β are unchanged

• Regard Z_4 , Θ_4 as non-linear sol'n of Ist layer

 $\mathcal{D} *_4 \mathcal{D} Z_4 = -\mathcal{D} \beta \wedge \Theta_4 \qquad \qquad \mathcal{D} \Theta_4 = \partial_{\mathcal{V}} *_4 \mathcal{D} Z_4$

Find ω , \mathcal{F} as non-linear sol'n of 2nd layer

 $(1+*_4)d\omega + \mathcal{F}d\beta = Z_1\Theta_1 + Z_2\Theta_2 - 2Z_4\Theta_4$

 $*_{4} \mathcal{D} *_{4} \left(\dot{\omega} - \frac{1}{2} d\mathcal{F} \right) = \dot{Z}_{1} \dot{Z}_{2} + \ddot{Z}_{1} Z_{2} + Z_{1} \ddot{Z}_{2} - \dot{Z}_{4}^{2} - 2Z_{4} \ddot{Z}_{4}$

Enough to do it for each pair of modes

- Regularity determines solution
 - \Box It also determines $Z_{1,2}$, $\Theta_{1,2}$

Ex 1: $(k_1, m_1) = (k_2, m_2)$

 \rightarrow NL completed, with coeff fixed by regularity

Ex 2: (k_1, m_1) : any, $(k_2, m_2) = (1, 0)$

$$\begin{aligned} Z_4 &\sim b_1 \frac{\Delta_{k_1 m_1}}{\Sigma} \cos \hat{v}_{k_1 m_1} + b_2 \frac{\Delta_{10}}{\Sigma} \cos \hat{v}_{10} , \quad Z_2: \text{ unchanged} \\ Z_1 &\supset b_1 b_2 \left(\frac{\Delta_{k_1 + 1, m_1}}{\Sigma} \cos \hat{v}_{k_1 + 1, m_1} + c \frac{\Delta_{k_1 - 1, m_1}}{\Sigma} \cos \hat{v}_{k_1 - 1, m_1} \right), \\ \mathcal{F} &= 0 \end{aligned}$$

 $\omega = c\omega^{(1)} + \omega^{(2)}$

$$\omega^{(1)} = \frac{R_5}{\sqrt{2}} \Delta_{k_1 - 1, m_1} \left(-\frac{dr}{r(r^2 + a^2)} \sin \hat{v}_{k_1 - 1, m_1} + \frac{\Psi \sin^2 \theta d\phi + \cos^2 \theta d\psi}{\Sigma} \cos \hat{v}_{k_1 - 1, m_1} \right)$$

$$\omega^{(2)} = -\frac{R_5}{\sqrt{2}} \frac{\Delta_{k_1 - 1, m_1}}{r^2 + a^2} \left[\left(\frac{m_1 - k_1}{k_1} \frac{dr}{r} - \frac{m_1}{k_1} \tan \theta d\theta \right) \sin \hat{v}_{k_1 - 1, m_1} + \left(\frac{r^2 + a^2}{\Sigma} \sin^2 \theta d\phi + \left(\frac{r^2 + a^2}{\Sigma} \cos^2 \theta - \frac{m_1}{k_1} \right) d\psi \right) \cos \hat{v}_{k_1 - 1, m_1} \right]$$
Regularity $\Longrightarrow \omega = 0$ at $r = \theta = 0$ $\Longrightarrow c = \frac{k_1 - m_1}{k_1}$

 \rightarrow NL completed, with coeff fixed by regularity

Summary

∃ Superstratum depending of two variables
 → Having modes with different (k,m)
 → NL completion for pair of modes

Succeeded in NL completion for various pairs of modes

- → Constructive proof of existence of superstrata!
- → Big step toward general 3-charge microstate geometries
- Correspond to non-chiral primaries in CFT

 \rightarrow Most general microstate geom with known CFT dual

Toward more general superstrata

• Does this class of superstrata reproduce S_{BH} ?

- → No. These correspond to coherent states of graviton gas. Entropy is parametrically smaller.
- Need more general superstrata
 - → In CFT language, we only considered rigid generators of $SU(1,1|2)_L \times SU(1,1|2)_R$ e.g. L_0, L_1, L_{-1}, J_0^-
 - \rightarrow Need higher and fractional modes e.g. $J_{\underline{1}}$
 - \rightarrow They probably correspond to multiple superstrata

Multiple superstrata

• More generally, one has multiple S^3 's

• Can fluctuate each S^3 — multi-superstratum

- Can use $AdS_3 \times S^3$ as local model
- Large redshift in scaling geometries \rightarrow entropy enhancement? $\rightarrow S \sim Q^{3/2}$?

Comment on "issues"

Lifting

□ Not directly applicable to 6D configuration

Pure Higgs branch

Superstratum reminiscent of Higgs branch

Maybe only states that have J = 0survive when moduli are turned on?

Conclusions
Conclusions

Microstate geometry program

Interesting enterprise elucidating micro nature of BHs, whether answer turns out to be yes or no

Microstate geometries in 5D sugra

□ Have properties expected from CFT, but too few

Superstratum

- □ A new class of microstate geometries
- □ CFT duals precisely understood
- \Box More general superstrata are crucial to reproduce $S_{\rm BH}$

Future directions

Superstratum

- □ More general solution, multi-strata
- □ Clarify issues (lifting, pure Higgs)
- □ Count states, reproduce entropy (or not)

Non-geometric microstates

- □ Exotic branes, DFT
- □ Novel ways to store information

More

- Non-extremal BHs
- □ Information paradox
- □ Observational consequences?
- □ Early universe

Thanks!