Anomaly polynomial of general 6d SCFTs

Hiroyuki Shimizu

University of Tokyo
Based on arXiv:1408.5572 with Ohmori, Tachikawa, Yonekura
June 9, 2015

Review: What are 't Hooft anomalies?

- 't Hooft anomaly: obstruction to gauging global symmetries.

Couple the theory to background gauge fields $A_{\mu}, g_{\mu \nu}$
\rightarrow effective action fails to be gauge invariant:

$$
\delta W_{d}\left[g_{\mu \nu}, A_{\mu}\right]=\int I_{d}^{(1)}\left[g_{\mu \nu}, A_{\mu}\right]
$$

Review: What are 't Hooft anomalies?

- 't Hooft anomaly: obstruction to gauging global symmetries.

Couple the theory to background gauge fields $A_{\mu}, g_{\mu \nu}$
\rightarrow effective action fails to be gauge invariant:

$$
\delta W_{d}\left[g_{\mu \nu}, A_{\mu}\right]=\int I_{d}^{(1)}\left[g_{\mu \nu}, A_{\mu}\right]
$$

- Descent equation and anomaly polynomial:

$$
I_{d+2}=d I_{d+1}^{(0)}, \delta I_{d+1}^{(0)}=d I_{d}^{(1)}
$$

Anomaly polynomial I_{d+2} : polynomial of characteristic classes $p_{1}(T)=-\frac{1}{8 \pi^{2}} \operatorname{tr} R^{2}, p_{2}(T)=\frac{1}{128 \pi^{2}}\left(\left(\operatorname{tr} R^{2}\right)^{2}-2 \operatorname{tr} R^{4}\right)$ etc \ldots

Anomalies and 6d SCFTs

- 6d SCFT: self-dual 2-form gauge fields and tensionless strings.

Anomalies: powerful tool to investigate 6d SCFTs.

Anomalies and 6d SCFTs

- 6d SCFT: self-dual 2-form gauge fields and tensionless strings.

Anomalies: powerful tool to investigate 6d SCFTs.

- Cancelation of gauge anomalies: strong constraint for 6d SCFTs.
"Atomic classification" [Bhardwaj '15] [Heckman, Morrison, Rudelius, Vafa '15]

Anomalies and 6d SCFTs

- 6d SCFT: self-dual 2-form gauge fields and tensionless strings.

Anomalies: powerful tool to investigate 6d SCFTs.

- Cancelation of gauge anomalies: strong constraint for 6d SCFTs.
"Atomic classification" [Bhardwaj '15] [Heckman, Morrison, Rudelius, Vafa '15]
- 't Hooft anomalies for global symmetries:
- N^{3} scaling law of d.o.fs
- Central charges of compactified theory [Benini, Tachikawa, Wecht '09]
- RG flow between 6d SCFTs [Heckman Morrison Rudelius Vafa '15]
etc...

How to calculate 't Hooft anomalies of 6d SCFTs?

- Gravitational calculcation:
embed 6d SCFT into M-theory and use anomaly inflow.
[(Freed,) Harvey, Minasian, Moore '98] [Yi '01] [Ohmori, HS, Tachikawa '14]

How to calculate 't Hooft anomalies of 6d SCFTs?

- Gravitational calculcation: embed 6d SCFT into M-theory and use anomaly inflow. [(Freed,) Harvey, Minasian, Moore '98] [Yi '01] [Ohmori, HS, Tachikawa '14]
- Field theory caluculation:
deform 6d SCFT to free field theory and use anomaly matching.
[Ohmori, HS, Tachikawa, Yonekura '14] [Intriligator '14]

How to calculate 't Hooft anomalies of 6d SCFTs?

- Gravitational calculcation: embed 6d SCFT into M-theory and use anomaly inflow. [(Freed,) Harvey, Minasian, Moore '98] [Yi '01] [Ohmori, HS, Tachikawa '14]
- Field theory caluculation:
deform 6d SCFT to free field theory and use anomaly matching.
[Ohmori, HS, Tachikawa, Yonekura '14] [Intriligator '14]

In this short talk, I will explain the field theoretical calculation of anomaly polynomial of $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory.

Anomaly polynomial of $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory

- G-type $\mathcal{N}=(2,0)$ theory: IIB on ADE orbifold $\mathbb{C}^{2} / \Gamma_{G}$.

Anomaly polynomial conjecture: [Intriligator '00]

$$
\begin{gathered}
I_{G}^{\mathcal{N}=(2,0)}=\frac{h_{G}^{\vee} d_{G}}{24} p_{2}(N)+r_{G} I^{\mathcal{N}=(2,0) \text { tensor }}, \\
I^{\mathcal{N}=(2,0) \text { tensor }}=\frac{1}{48}\left(p_{2}(N)-p_{2}(T)+\frac{1}{4}\left(p_{1}(T)-p_{1}(N)\right)^{2}\right) . \\
h_{\mathrm{SU}(k)}^{\vee} d_{\mathrm{SU}(k)}=k^{3}-k \quad N: \mathrm{SO}(5) \text { R-symmetry }
\end{gathered}
$$

Anomaly polynomial of $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory

- G-type $\mathcal{N}=(2,0)$ theory: IIB on ADE orbifold $\mathbb{C}^{2} / \Gamma_{G}$.

Anomaly polynomial conjecture: [Intriligator ${ }^{\circ} 00$]

$$
\begin{gathered}
I_{G}^{\mathcal{N}=(2,0)}=\frac{h_{G}^{\vee} d_{G}}{24} p_{2}(N)+r_{G} I^{\mathcal{N}=(2,0) \text { tensor }}, \\
I^{\mathcal{N}=(2,0) \text { tensor }}=\frac{1}{48}\left(p_{2}(N)-p_{2}(T)+\frac{1}{4}\left(p_{1}(T)-p_{1}(N)\right)^{2}\right) . \\
h_{\mathrm{SU}(k)}^{\vee} d_{\mathrm{SU}(k)}=k^{3}-k \quad N: \mathrm{SO}(5) \text { R-symmetry }
\end{gathered}
$$

- When $G=A_{k-1}, D_{k}$, gravitational calculation is available:
$G=A_{n-1} \rightarrow$ coincident k M5-branes, [(Freed,) Harvey, Minasian, Moore '98]
$G=D_{n} \rightarrow$ coincident k M5-branes + orientifold. [Yi $\left.{ }^{\prime} 01\right]$

Anomaly polynomial of $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory

- G-type $\mathcal{N}=(2,0)$ theory: IIB on ADE orbifold $\mathbb{C}^{2} / \Gamma_{G}$.

Anomaly polynomial conjecture: [Intriligator ${ }^{0} 0$]

$$
\begin{gathered}
I_{G}^{\mathcal{N}=(2,0)}=\frac{h_{G}^{\vee} d_{G}}{24} p_{2}(N)+r_{G} I^{\mathcal{N}=(2,0) \text { tensor }}, \\
I^{\mathcal{N}=(2,0) \text { tensor }}=\frac{1}{48}\left(p_{2}(N)-p_{2}(T)+\frac{1}{4}\left(p_{1}(T)-p_{1}(N)\right)^{2}\right) . \\
h_{\mathrm{SU}(k)}^{\vee} d_{\mathrm{SU}(k)}=k^{3}-k \quad N: \mathrm{SO}(5) \text { R-symmetry }
\end{gathered}
$$

- When $G=A_{k-1}, D_{k}$, gravitational calculation is available:
$G=A_{n-1} \rightarrow$ coincident k M5-branes, [(Freed,) Harvey, Minasian, Moore '98] $G=D_{n} \rightarrow$ coincident k M5-branes + orientifold. [Yi $\left.{ }^{\prime} 01\right]$
- Field theory calculation is valid for any G. [Ohmori, HS, Tachikawa, Yonekura]

Tensor branch RG flow

- Tensor branch RG flow: giving tension to self-dual strings.
G-type $\mathcal{N}=(2,0)$ theory $\rightarrow r_{G}$ free $\mathcal{N}=(2,0)$ tensor multiplets.

$$
\text { UV } \quad \text { IR } \quad\left(B_{2}, \phi^{i=1 \cdots 5}, \text { fermions }\right)
$$

We choose to preserve R-symmetry $\mathrm{SO}(4)_{R} \subset \mathrm{SO}(5)_{R}$.

Tensor branch RG flow

- Tensor branch RG flow: giving tension to self-dual strings.
G-type $\mathcal{N}=(2,0)$ theory $\rightarrow r_{G}$ free $\mathcal{N}=(2,0)$ tensor multiplets.

$$
\text { UV } \quad \mathrm{R} \quad\left(B_{2}, \phi^{i=1 \cdots 5}, \text { fermions }\right)
$$

We choose to preserve R-symmetry $\mathrm{SO}(4)_{R} \subset \mathrm{SO}(5)_{R}$.

- Anomaly matching on tensor branch:

$$
I_{G}^{\mathcal{N}=(2,0)}=(\text { anomaly matching term })+r_{G} I^{\mathcal{N}=(2,0) \text { tensor }} .
$$

Origin of anomaly matching term?

Green-Schwarz mechanism for anomaly matching

- Integrate out massive strings: induce electric/magnetic coupling for B_{2}

$$
\Delta L=\int_{X_{6}} \Omega^{i j} B_{i} I_{j} \quad \text { and } \quad \underbrace{d H_{i}=I_{i}}_{\text {Bianchi identity }} \quad i=1 \cdots r_{G} .
$$

Green-Schwarz mechanism for anomaly matching

- Integrate out massive strings: induce electric/magnetic coupling for B_{2}

$$
\Delta L=\int_{X_{6}} \Omega^{i j} B_{i} I_{j} \quad \text { and } \quad \underbrace{d H_{i}=I_{i}}_{\text {Bianchi identity }} \quad i=1 \cdots r_{G} .
$$

- Additional contribution from Green-Schwarz mechanism:

$$
\begin{gathered}
I^{\mathrm{GS}}=\frac{1}{2} \Omega^{i j} I_{i} I_{j} \\
I_{G}^{\mathcal{N}=(2,0)}=I^{\mathrm{GS}}+r_{G} I^{\mathcal{N}=(2,0) \text { tensor }} .
\end{gathered}
$$

How to determine I_{i} ?

S^{1} compactification of $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory

- G-type $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory on $S^{1} \rightarrow 5 \mathrm{~d} G \mathcal{N}=2 \mathrm{SYM}$. 6d tensor branch \rightarrow 5d Coulomb branch: $G \rightarrow \mathrm{U}(1)^{r_{G}}$. $\left\langle\phi_{i=1 \cdots 4}^{a}{ }^{\prime}\right\rangle=0$ and $\left\langle\phi_{5}^{a}\right\rangle=v^{a}$, then $\mathrm{SO}(5)_{R} \rightarrow \mathrm{SO}(4)_{R}$.

S^{1} compactification of $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory

- G-type $6 \mathrm{~d} \mathcal{N}=(2,0)$ theory on $S^{1} \rightarrow 5 \mathrm{~d} G \mathcal{N}=2 \mathrm{SYM}$. 6d tensor branch \rightarrow 5d Coulomb branch: $G \rightarrow \mathrm{U}(1)^{r_{G}}$. $\left\langle\phi_{i=1 \cdots 4}^{a}{ }^{\prime}\right\rangle=0$ and $\left\langle\phi_{5}^{a}\right\rangle=v^{a}$, then $\mathrm{SO}(5)_{R} \rightarrow \mathrm{SO}(4)_{R}$.
- Massive strings \rightarrow massive $\mathcal{N}=2$ vectors $\Phi_{\alpha}(\alpha$: roots of $G) \mathrm{w} /$ mass $v \cdot \alpha$.

Integrating out Φ_{α} : induced Chern-Simons terms

$$
S^{C S}=\Omega^{i j} A_{i} I_{j}, \quad A_{i}: \mathrm{U}(1)_{i} \text { gauge field. }
$$

Reduce to ordinary 1-loop caluculation!

Caluculation

- Induced Chern-Simons term for $A_{i} i=1 \cdots r_{G}$:

$$
\begin{aligned}
\frac{1}{2} & \sum_{\alpha>0}(\alpha \cdot A)[\underbrace{\left(c_{2}(L)+\frac{2}{24} p_{1}(T)\right)}_{\text {pos real mass fermions }} \underbrace{-\left(c_{2}(R)+\frac{2}{24} p_{1}(T)\right)}_{\text {neg real mass fermions }}] \\
& =\rho \cdot A\left(c_{2}(L)-c_{2}(R)\right),
\end{aligned}
$$

$\rho=\frac{1}{2} \sum_{\alpha>0} \alpha$: Weyl vector, $\quad \mathrm{SO}(4)_{R} \sim \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$.

Caluculation

- Induced Chern-Simons term for $A_{i} i=1 \cdots r_{G}$:

$$
\begin{aligned}
\frac{1}{2} & \sum_{\alpha>0}(\alpha \cdot A)[\underbrace{\left(c_{2}(L)+\frac{2}{24} p_{1}(T)\right)}_{\text {pos real mass fermions }} \underbrace{-\left(c_{2}(R)+\frac{2}{24} p_{1}(T)\right)}_{\text {neg real mass fermions }}] \\
& =\rho \cdot A\left(c_{2}(L)-c_{2}(R)\right),
\end{aligned}
$$

$\rho=\frac{1}{2} \sum_{\alpha>0} \alpha$: Weyl vector, $\quad \mathrm{SO}(4)_{R} \sim \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$.

- Green-Schwarz contribution:

$$
\frac{1}{2}\langle\rho, \rho\rangle\left(c_{2}(L)-c_{2}(R)\right)^{2}=\frac{h_{G}^{\vee} d_{G}}{24}\left(c_{2}(L)-c_{2}(R)\right)^{2}
$$

Caluculation

- Induced Chern-Simons term for $A_{i} i=1 \cdots r_{G}$:

$$
\begin{aligned}
\frac{1}{2} & \sum_{\alpha>0}(\alpha \cdot A)[\underbrace{\left(c_{2}(L)+\frac{2}{24} p_{1}(T)\right)}_{\text {pos real mass fermions }} \underbrace{-\left(c_{2}(R)+\frac{2}{24} p_{1}(T)\right)}_{\text {neg real mass fermions }}] \\
& =\rho \cdot A\left(c_{2}(L)-c_{2}(R)\right),
\end{aligned}
$$

$\rho=\frac{1}{2} \sum_{\alpha>0} \alpha$: Weyl vector, $\quad \mathrm{SO}(4)_{R} \sim \mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$.

- Green-Schwarz contribution:

$$
\frac{1}{2}\langle\rho, \rho\rangle\left(c_{2}(L)-c_{2}(R)\right)^{2}=\frac{h_{G}^{\vee} d_{G}}{24}\left(c_{2}(L)-c_{2}(R)\right)^{2}
$$

- Anomaly polynomial of G-type $\mathcal{N}=(2,0)$ theory:

$$
I_{G}^{\mathcal{N}=(2,0)}=\frac{h_{G}^{\vee} d_{G}}{24} p_{2}(N)+r_{G} I^{\mathcal{N}=(2,0) \text { tensor }} .
$$

Conclusions

- Anomaly polynomial: exactly computable quantity of 6d SCFTs.
- We established the field theoretical way to calculate them.

Conclusions

- Anomaly polynomial: exactly computable quantity of 6d SCFTs.
- We established the field theoretical way to calculate them.
- Anomaly matching on tensor branch:

Need massless spectrum/Green-Schwarz coupling on tensor branch.

- F-theory geometry: determine both massless spectrum and Green-Schwarz coupling \rightarrow anomaly polynomial of general 6d SCFTs.

Conclusions

- Anomaly polynomial: exactly computable quantity of 6d SCFTs.
- We established the field theoretical way to calculate them.
- Anomaly matching on tensor branch:

Need massless spectrum/Green-Schwarz coupling on tensor branch.

- F-theory geometry: determine both massless spectrum and Green-Schwarz coupling \rightarrow anomaly polynomial of general 6d SCFTs.
- These polynomials may be used to prove a-theorem for 6d SCFTs/ investigate compactification etc......

